
Curvature-Aware Training for Coordinate Networks

Hemanth Saratchandran∗1 Shin-Fang Chng∗1 Sameera Ramasinghe2

Lachlan MacDonald1 Simon Lucey1

1 Australian Institute of Machine Learning, University of Adelaide.
2 Amazon, Australia.

Abstract

Coordinate networks are widely used in computer vi-
sion due to their ability to represent signals as compressed,
continuous entities. However, training these networks with
first-order optimizers can be slow, hindering their use in
real-time applications. Recent works have opted for shal-
low voxel-based representations to achieve faster training,
but this sacrifices memory efficiency. This work proposes
a solution that leverages second-order optimization meth-
ods to significantly reduce training times for coordinate net-
works while maintaining their compressibility. Experiments
demonstrate the effectiveness of this approach on various
signal modalities, such as audio, images, videos, shape and
neural radiance fields (NeRF).

1. Introduction

Coordinate networks [39], or implicit neural functions
[35], achieve state-of-the-art results in multidimensional
signal reconstruction tasks, such as image synthesis [37, 6],
geometry [36, 21], and robotics [16, 5]. However, co-
ordinate networks admitting traditional activation func-
tions (e.g., ReLU, sigmoid, and tanh) fail to capture high-
frequency details due to spectral bias [29]. To overcome
this limitation, positional embedding layers [40] are often
added, but they can produce noisy first-order gradients that
hinder architectures requiring backpropagation [17, 8]. A
recent alternative approach is to use non-traditional activa-
tion functions, such as sine [35] or Gaussian [30] activa-
tions, which enable high-frequency encoding without posi-
tional embedding layers. The major benefit of these activa-
tions over positional embedding layers is their well-behaved
gradients [35, 30].

Although coordinate networks have shown remarkable
performance in signal reconstruction tasks, they are typi-

1∗Equal contribution. Correspondence to: Hemanth Saratchan-
dran <hemanth.saratchandran@adelaide.edu.au>, Shin-Fang Chng
<shinfang.chng@adelaide.edu.au>. Source code will be available at
https://github.com/sfchng/curvature-aware-INRs.
git

0 1000 2000 3000 4000 5000
Iterations

10

15

20

25

30

35

40

45

PS
NR

Sine_L-BFGS
Sine_Adam

ReLU_L-BFGS
ReLU_Adam

Figure 1: Sine- and ReLU-coordinate networks were com-
pared on an image reconstruction task using L-BFGS and
Adam optimizers. The L-BFGS optimizer showed faster
convergence for the sine-network, while the ReLU-network
converged faster with Adam.

cally trained using first-order optimizers like Adam, lead-
ing to slow training times. Consequently, some in the vision
community have resorted to using shallow voxel-based rep-
resentations [10, 44, 3, 38], despite their drawbacks such as
high memory usage and lack of implicit architectural bias.

In this paper, we present an intriguing revelation that a
new breed of coordinate networks [35, 30], activated by
sine and Gaussian functions, can be trained efficiently us-
ing second-order optimizers such as L-BFGS [24]. This
is because their loss landscapes exhibit favorable gradient
and curvature conditioning, which leads to superlinear con-
vergence, in contrast to the linear convergence seen with
Adam. Fig. 1 showcases this point by comparing sine-
and ReLU-coordinate networks trained with an L-BFGS
optimizer [24], a curvature-aware second-order optimizer,
and an Adam optimizer. The convergence rate of the sine-
network trained with L-BFGS is significantly faster than the
one trained with Adam – highlighting the good curvature

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

13328

properties of the loss landscape. In contrast, the ReLU-
network trained with Adam has faster convergence rate than
the one trained with L-BFGS, a manifestation of the poor
curvature properties of its loss landscape.

However, one of the downsides of second-order optimiz-
ers is their computational complexity when dealing with a
large number of parameters. We explore this issue in the
context of coordinate networks and demonstrate that, as
the network size grows, Adam may outperform L-BFGS in
terms of training time. To address this challenge, we pro-
pose a novel strategy of breaking down large-scale datasets
into smaller patches and training a single coordinate net-
work with a second-order optimizer on each patch. Our
experiments reveal that this approach can lead to training
time accelerations of up to 6 − 14 times faster than Adam,
and serves as an effective remedy for modelling larger size
signals.

A summary of our contributions are:-

1. Our paper is the first to examine the training of coor-
dinate networks using L-BFGS and theoretically show
that while superlinear convergence is guaranteed for
networks activated by sine or Gaussian functions, it is
not generally guaranteed for ReLU (with or without
positional embedding).

2. We validate this theory empirically by showing that
sine-/Gaussian-activated coordinate networks are up to
5 times faster when trained with L-BFGS over Adam.
We present results on image, audio, video, shape and
neural radiance field reconstruction tasks.

3. We explore a patch-based decomposition strategy to
limit the considerable computational cost of L-BFGS
as the size of the signal or network grows. Specifi-
cally, we demonstrate that a sine-activated patch-based
NeRF (i.e. KiloNeRF [32]) trained with L-BFGS is
6 times more efficient than the same network trained
with Adam.

2. Related Work

Coordinate Networks [39] also known as implicit neu-
ral functions [35], have gained increasing interest in recent
years due to the seminal work by Mildenhall et al. [21].
Unlike conventional neural networks that operate on high-
dimensional inputs and are primarily used for classification
tasks, coordinate networks encode signals as weights using
low-dimensional coordinates and aim to preserve smooth-
ness in the outputs [44]. One of the remarkable aspects of
Mildenhall et al.’s work is their demonstration of the gener-
alization properties of neural signal representations, which
ushered in a huge body of work on the subject in recent
years [7, 9, 12, 23, 25, 26, 27, 31, 33, 35, 8, 41, 42, 34,

45, 4]. However, to achieve optimal performance, such net-
works need to use positional embeddings to encode high-
frequency signal content [44]. Sitzmann et al. [35] pro-
posed SIREN, a sine-activated network, that can improve
the fidelity of signals without positional embedding layers.
However, a disadvantage of SIREN is that it needs a prin-
cipled initialization scheme [35]. Ramasinghe and Lucey
[30] introduced a Gaussian-activated coordinate network
that, like SIREN, achieved state-of-the-art performance on
signal reconstruction but is robust to random initialization
schemes.

Optimizaton of Neural Networks is a complex topic
with a rich history. Initially, practitioners used gradient de-
scent due to its ease of use and low memory requirements.
However, as more sophisticated models emerged, variants
of gradient descent were developed to accommodate larger
models. While second-order optimization methods offer su-
perior convergence in theory [24], they are computationally
expensive and not easily applicable to stochastic sampling
strategies. To overcome these challenges, researchers have
developed second-order optimizers that yield superior re-
sults compared to standard first-order ones, such as K-FAC
[19], variants of L-BFGS [2, 43, 22], Shampoo [13], and
GGT [1].

3. Preliminaries
3.1. Coordinate Multi-Layer Perceptrons (MLPs)

Coordinate-MLPs are a new class of neural networks
which encode signals as weights using low dimensional
coordinates as inputs. A coordinate-MLP with L layers,
f : Rn0 → RnL can be defined as

f : x→ TL ◦ ψ ◦ TL−1 ◦ · · · , ◦ψ ◦ T1(x), (1)

where Ti : xi → Aixi + bi is an affine transformation with
trainable parameters Ai ∈ Rni−1×ni , bi ∈ Ri, and ψ is a
non-linear activation. The layer widths of the network are
given by the numbers {n1, n2, . . . , nL}.

All our networks will be trained with the Mean Squared
Error (MSE) loss function. Given N training samples
{(xi, yi)}Ni=1, where xi and yi denotes the input data and
target data, respectively, we write the MSE loss function as

L(θ) = 1

N

N∑
i=1

1

2
|f(θ, xi)− yi|2, (2)

where f denotes a coordinate-MLP, and θ denotes the pa-
rameters of f , i.e. the weights and biases (W, b).

We briefly discuss commonly used coordinate-MLPs.

ReLU-MLPs are popular due to their universal approx-
imation capabilities [14, 18], but they suffer from spec-

13329

tral bias [29]. This bias can cause a preference for low-
frequency components, leading to suboptimal signal recon-
struction, particularly for signals with high-frequency com-
ponents.

Positional encoded MLPs (ReLU-PE) avoid the spec-
tral bias of ReLU-MLPs by adding a positional embedding
layer (PE) to the network. This involves embedding low-
dimensional data inputs x into a higher-dimensional space
using an embedding layer γ : Rd → Rd+D. Popular em-
bedding layers include Fourier feature embeddings [40] and
Gaussian embeddings [44].

Sine-MLPs are a positional embedding free coordinate
network [35] that employ a sine activation function x →
sin(2πωx), where ω is a frequency hyperparameter. A
larger ω increases the frequency of the network allowing
it to learn high-frequency targets, overcoming spectral bias.

Gaussian-MLPs are another class of embedding-free co-
ordinate networks [30] that employ a Gaussian activation
function x → exp

(|x−µ|2
2σ2

)
. The hyperparameter µ denotes

the mean and σ the standard deviation of the Gaussian, with
a smaller σ leading to a higher frequency network.

3.2. Second-order optimizers

This section introduces three second-order optimizers
discussed in the paper. For more information and pseu-
docode, see Sec. 1 of supp. material.

Newtons method utilizes a quadratic approximation of an
objective function f and uses the inverse Hessian matrix to
take a gradient step. The update is computed as:

θt+1 = θt −H(θt)
−1∇f(θt), (3)

where H(θt) denotes the Hessian of f at θt. Thus we see
that the optimizer utilizes curvature information to take up-
dates as the Hessian is a measure of the curvature of the
objective function. Convergence to a global minimum is
guaranteed for convex functions [24], but the algorithm may
not converge for non-convex functions. When the algo-
rithm converges to a minimum, it does so at a quadratic
rate, which is significantly faster than first-order optimiz-
ers such as gradient descent/Adam, which converge at sub-
linear/linear rate [24]. However, inverting the Hessian
has a computational complexity of O(p3) for an objective
function with p parameters [24], making Newton’s method
memory-intensive for high parameter objective functions
such as overparameterised neural networks.

The BFGS algorithm is a quasi-Newton method that ap-
proximates the inverse Hessian matrix with a positive defi-
nite matrixMt iteratively to avoid computing the exact Hes-
sian matrix in Newton’s method.

Given a choice of initialisation, M0, Mt+1 can be com-
puted using the closed form BFGS update

Mt+1 =

(
I − yts

T
t

yTt st

)T

Mt

(
I − yts

T
t

yTt st

)
+
sts

T
t

yTt st
, (4)

where for an objective function f

yt = ∇f(θt+1)−∇f(θt) and st = θt+1 − θt. (5)

The parameter update at iteration t is then given by

θt+1 = θt −Mt∇f(θt). (6)

The fundamental principle of quasi-Newton methods is to
avoid computing the inverse Hessian from scratch every it-
eration. Instead, the BFGS algorithm approximates the in-
verse Hessian H−1 with a positive definite matrix Mt+1,
via (4), using recent curvature information, via (5), and
an existing approximation Mt. This reduces the computa-
tional complexity to O(p2) for an objective function with p-
parameters. The BFGS algorithm converges at a superlinear
rate, slower than Newton’s method but faster than Gradient
descent/Adam, for a twice differentiable objective function
with Lipshitz continuous Hessian [24].

The L-BFGS algorithm is a limited memory variant of
the BFGS algorithm. Instead of storing the approximate
inverse Hessian Mt at each iteration, the algorithm stores
a limited number of the vector pairs {st, yt}, see (5), used
in the construction of the approximate Hessian Mt, see (4).
This reduces the computational complexity to O(p) [24].
Its convergence rate is superlinear [24].

4. Theoretical Analysis
4.1. Analyzing the Hessian of a Coordinate Network

This section gives a theoretical analysis of the poor gra-
dient and curvature conditioning of the MSE loss landscape
of a ReLU-activated coordinate network. In contrast, the
well-conditioned gradient and curvature of the MSE loss
landscape of a sine-/Gaussian-coordinte network is high-
lighted. The predictions made from the theory are then em-
pirically verified. See supp. material sec. 2 for proofs of the
theory.

As the weights of a neural network in (1) are trainable
we can represent it as a map f : Rp × Rd → RnL , where p
denotes the parameter dimension and is given by p = n0 ×
n1+n1×n2+ . . .+nL−1×nL. Letting p = (θ1, . . . , θL)
with θi ∈ Rni×ni−1 , we write the map as

f(θ,X) = fL(θL) ◦ · · · ◦ f1, (θ1)(X), (7)

13330

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1e 2

0

10000

20000

30000
ReLU-PE

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
1e 2

0

25

50

75

Sine

Figure 2: Total eigenvalue distribution of the Hessian of MSE loss for sine- and ReLU-PE-activated networks throughout
training. ReLU-PE has 28% of its eigenvalues at 0, while the smallest eigenvalue for the sine-activated network is 5× 10−4.
This highlights the superior conditioning of the Hessian of a sine-activated network (no zero eigenvalues) compared to a
ReLU one (many zero eigenvalues).

where fi(θi) : Rni−1 → Rni is defined by

fi(θi)(v) = ψ(θi · v). (8)

Each of the maps fi(θi) can be expanded as a map

fi : Rni×ni−1 × Rni−1 → Rni (9)

and thus a neural network can equally well be described via
a collection of maps {fi : Rni×ni−1 × Rni−1 → Rni}nL

i=1

satisfying the composition structure (1).
Given an input data set X , we let

Fk = fk(θk) ◦ · · · ◦ f1(θ1)(X) (10)

denote the k-layer neural output function.
For a fixed set of training data (X,Y), with X ∈ Rd

the inputs and Y ∈ RnL the targets, the MSE loss function,
see (2), is a map L : Rp → R. To simplify the statement
of the following lemma, we introduce the following nota-
tion. Let ∆(ψ′(θL−jFL−j−1) denote the diagonal matrix
with entries given by ψ′(θL−jFL−j−1), where ψ′ denotes
the derivative of the activation function ψ, flattened column
wise as a vector and let

DL−l−1 =

L−l−1∏
j=1

(θTL−j ⊗ Id)∆(ψ′(θL−jFL−j−1)), (11)

where ⊗ denotes the Kronecker product of matrices.
The following lemma computes the gradient of the MSE

loss (2).

Lemma 4.1. Let f be a neural network and (X,Y) a train-
ing data set, with X inputs and Y targets, defined by the
family of maps {fi : Rni×ni−1 ×Rni−1 → Rni}Li=1. Given
θl ∈ Rnl×nl−1 , we have

∇θlL =
(
Id⊗ Fl+1

)
DL−l−1

(
θTL ⊗ Id

)(
FL − y

)
, (12)

where L denotes the MSE loss function associated to the
network.

The Hessian of the MSE loss of a neural network can be
computed using lemma 4.1, the product rule, and the chain
rule. For each point θ ∈ Rp, the Hessian Hess(L(θ)) will
be a (nL×p)×p-matrix. Thus one can see that if p is large,
the Hessian will be an extremely large matrix even in the
case that nL = 1. Even though the Hessian is an enormous
matrix, one can still obtain insight into its structure via (12).
Given a parameter point θk ∈ Rnk×nk−1 , we observe that
the second derivative ∇θk∇θlL will have three main terms
given by applying the product rule:

1.
(
∇θk

(
Id⊗ Fl+1

))
DL−l−1

(
θTL ⊗ Id

)(
FL − y

)
2.

(
Id⊗ Fl+1

)(
∇θkDL−l−1

)(
θTL ⊗ Id

)(
FL − y

)
3.

(
Id⊗ Fl+1

)
DL−l−1

(
∇θk

((
θTL ⊗ Id

)(
FL − y

)))
.

Terms 1. and 3. will all contain first-order derivatives of the
neural network function f . The second term will be the only
term that will contain second-order derivatives of the neural
network function, see Sec. 2 of supp. material for details.
As the derivative of a ReLU activation is a step function,
and its second derivative is a Dirac delta distribution, see
Sec. 2 of supp. material for a proof, this analysis shows that
in the case of a ReLU-activated network (with or without
positional embedding), the Hessian of the loss function is
discontinuous and hence poorly conditioned.

Proposition 4.2. Let f be a ReLU-network, with or with-
out positional embedding. Then the hessian of the loss L
contains two types of poorly conditioned terms:

1. sums of step functions

2. sums of Dirac delta distributions.

Prop. 4.2 implies the Hessian of the loss function in
a ReLU-network, with or without positional embedding,
is likely to be rank deficient due to the high probability
of encountering many zeros in the Hessian matrix arising
from the step function and delta function terms in its ex-
pansion. In contrast, the derivatives of sine and Gaussian

13331

functions exhibit smoother behavior and are less prone to
rank-deficiency in their Hessians. Additionally, Prop. 4.2
suggests that the curvature of a ReLU-MLP is poorly condi-
tioned compared to one activated by sine/Gaussian. Hence,
second-order optimizers that take curvature into account are
expected to perform better on sine- or Gaussian-activated
coordinate networks as opposed to those activated by ReLU.

We verified our theoretical predictions on an image re-
construction task by training two networks: one with a sine
activation and another with a ReLU-PE [21]. Both networks
were trained for 50 iterations on a 50 × 50 image with full
sampling and L-BFGS optimizer. We computed the eigen-
values of the Hessian of the MSE loss at each iteration
throughout training. Fig. 2 shows the distribution of eigen-
values in the interval [−0.01, 0.01]. As predicted by our
theory, the sine-activated network has no zero eigenvalues,
whereas the ReLU-PE-network has many. For a more com-
prehensive analysis, including ReLU and Gaussian MLPs
with varying width, depth, and initialization schemes, refer
to Sec. 3 of supp. material.

4.2. Analyzing L-BFGS on a Coordinate Network

In this section, we provide a theoretical and empirical
analysis of the L-BFGS algorithm [24] on coordinate net-
works activated by ReLU and sine/Gaussian. We theo-
retically show that for a ReLU/ReLU-PE-activated coordi-
nate network the L-BFGS algorithm is not guaranteed to
converge superlinearly, however for a sine- or Gaussian-
activated network superlinear convergence is guaranteed.
We then verify these theoretical predictions empirically.
See supp. material sec. 2 for proofs of the theorems.

The following theorem provides conditions under which
the L-BFGS algorithm converges superlinearly. Its proof
can be found in [24].

Theorem 4.3. Let f(θ) be a twice continuously differen-
tiable objective function. Suppose the iterates θt of the L-
BFGS algorithm (see Sec. 3.2) converge to a minimiser θ∗

of f . Furthermore, assume that the Hessian H of f is Lip-
shitz continuous locally around θ∗. Then the iterates θt con-
verge superlinearly to θ∗.

Theorem 4.3 shows that in order to guarantee that the
L-BFGS algorithm converges superlinearly to a minimum,
two conditions must be checked:

1. The objective function f must be twice continuously
differentiable.

2. The Hessian H of the objective function must be Lip-
shitz continuous locally about the minimum point.

We show that ReLU/ReLU-PE-activated coordinate net-
works can fail to satisfy both conditions. We will first de-
fine the notion of a continuously differentiable minimum of
a general continuous objective function.

Definition 1. Let f be a continuous objective function and
θ∗ a (possibly local) minimum of f . We say θ∗ is a contin-
uously differentiable (local) minimum of f if f is differen-
tiable at θ∗ and the derivative is continuous at θ∗. Other-
wise θ∗ is called a non-continuously differentiable (local)
minimum.

Example 1. ReLU(x) = max(x, 0), is an example of a
function that contains both non-continuously differentiable
and continuously differentiable minima. The point 0 is a
non-continuously differentiable minimum. This is because
the derivative of ReLU is given by the function H(x) = 0
for x ≤ 0 and H(x) = 1 for x > 0. This function is
clearly not continuous at 0. However, all negative numbers
are continuously differentiable minima.

Example 2. The function f(x) = |x| is an example of a
function with only non-continuously differentiable minima,
given by x = 0.

Example 3. A sine function has only continuously differen-
tiable minima.

Example 4. The MSE loss function of a ReLU/ReLU-PE-
coordinate network will have non-continuously differen-
tiable minima [23]. In contrast, by the chain rule the MSE
loss function of a sine/Gaussian-coordinate network can
only have continuously differentiable minima.

Ex. 4 highlights a key difference between the loss land-
scape of a ReLU/ReLU-PE-activated network and a sine-
/Gaussian-activated one, trained with MSE loss. Namely,
that the former can have non-continuously differentiable
minima making the Hessian about such a minimum discon-
tinuous, while the latter will always have well behaved con-
tinuously differentiable minima. As the following theorems
show, this can affect the rate of convergence of a second-
order optimizer on the MSE loss of such networks.

Theorem 4.4. Let f be a ReLU/ReLU-PE-activated coor-
dinate network. Let L(θ) denote the MSE loss associated to
f and a training set (X,Y), see Sec. 3.1.

1. Then L is not twice continuously differentiable at every
parameter point θ.

2. If the L-BFGS algorithm applied to L(θ) converges
to a (local) minimum θ∗ such that θ∗ is a non-
continuously differentiable (local) minimum of L.
Then the convergence is not guaranteed to be super-
linear.

Theorem 4.5. Let f be an sine- or Gaussian-activated co-
ordinate network. Let L(θ) denote the MSE loss associated
to f and a training set (X,Y), see Sec. 3.1.

1. Then L is twice continuously differentiable at every pa-
rameter point θ.

13332

Ground Truth ReLU ReLU-PE Tanh Gaussian Sine

0 200 400 600 800 1000
Iterations

0

10

20

30

40

50

60

PS
N
R

Gaussian
Sine
Tanh

ReLU
ReLU-PE

Figure 3: 2D Image Reconstruction. Left: Comparison of various coordinate-MLPs f in fitting the Cameraman image
(top left) using the L-BFGS optimizer. Note that all networks were only trained on the target image. We also show gradient
(second row) and Laplacian (third row) of neural output function. Right: Training convergence of each network.

2. If the L-BFGS algorithm applied to L(θ) converges to
a (local) minimum θ∗ then the convergence is super-
linear.

Thms. 4.4 and 4.5 show that the MSE loss of a sine-
or Gaussian-coordinate network has continuous curvature
across parameter space, while ReLU-activated networks do
not. This makes second-order optimizers effective in accel-
erating the training of sine-/Gaussian-activated networks,
compared to first-order optimizers such as SGD or Adam,
which generally have sub-linear/linear rates of convergence
[11, 15].

Fig. 1 shows the convergence of a sine and ReLU-
activated coordinate network trained with both Adam and
L-BFGS on an image reconstruction task. The sine-network
trained with L-BFGS has a much faster convergence rate
than the sine-activated network trained with Adam, as pre-
dicted by Thm. 4.5. However, the ReLU-network trained
with Adam converges at a faster rate than L-BFGS, see
Thm 4.4.

5. Experiments
In this section, we demonstrate the effectiveness of L-

BFGS on various popular tasks: 2D image reconstruc-
tion and novel view synthesis using neural radiance fields
(NeRF); see Sec. 4 of supp. material for additional results
for other modalities such as audio, shape and video recon-
struction.

5.1. Images

Given pixel coordinates x ∈ R2, we aim to optimize
the network f to regress the associated RGB values c ∈
R3 [35, 30]. In this task, we will first explain why non-
traditional activations are well-suited for training with L-

BFGS, followed by their comparisons with that of compet-
itive first-order optimizers, e.g. Adam.

Gradient Perspective. In Fig. 3, we compare the per-
formance of various network architectures optimized with
L-BFGS on the Cameraman image using a 4-hidden layer
MLP with 64 hidden units. As predicted by Prop. 4.2
and Thm. 4.4, ReLU and ReLU-PE activations produce ex-
tremely bad gradients and Laplacian, while Tanh lacks fine
details. In contrast, sine and Gaussian activations produce
high-quality reconstructions with well-behaved derivatives.
Furthermore, non-traditional activations converge signifi-
cantly faster than traditional ones, indicating that traditional
activations do not train well with L-BFGS, as predicted by
Thm. 4.5.

L-BFGS vs Adam. Fig. 4 shows a reconstruction snap-
shot of the pepper image, trained with both L-BFGS and

L-BFGS Adam

0:01 (mm:ss) / 35.76 vs. 22.93 dB (PSNR)

Figure 4: 2D Image Reconstruction. L-BFGS has
achieved a substantially better reconstruction than Adam
given the same amount of training time.

13333

24 25 26 27 28 29

Number of hidden units

0.5

1.0

1.5

2.0

Ti
m

e
pe

r i
te

ra
tio

n
(s

)
1e 2

2 hidden layers
4 hidden layers
8 hidden layers

Figure 5: As the size of the network parameters grow, the
time per iteration for the L-BFGS optimizer increases due
to the added computational complexity. Note that solid line
denotes mean while transparency region denotes variance.

Adam, using a 4-hidden layer, 64 width sine-activated net-
work. Impressively, despite L-BFGS only being trained for
1s, the reconstruction is remarkably sharp (35.76dB), com-
pared to Adam which achieved a PSNR of 22.93. Overall,
L-BFGS achieves convergence 5× faster than Adam.

Computational Bottleneck. We found that when train-
ing with a large size neural network, L-BFGS did not of-
fer any significant advantage over Adam. Fig. 5 shows that
the computational time of L-BFGS increases when the net-
work’s parameter size grows, due to its computational com-
plexity for computations using past curvature vectors, see
Sec. 3.2. To mitigate this issue, we propose a patch-based
decomposition strategy in Sec. 5.2.

5.2. KiloImage

We introduce KiloImage, a patch-based decomposition
strategy for optimizing a gigapixel image using L-BFGS.
We uniformly decompose the image into K grids of equal
dimension, each represented by a small sine-MLP with 4
hidden layers and 64 neurons. We use frequency 30. Once
all the MLPs are optimized, we combine all the resulting
outputs to form a global reconstruction. Fig. 6 shows an ex-
ample of reconstructing a image of resolution 2000× 1000
using the patch-based decomposition technique. We used
K = 200. As depicted in Fig. 6, L-BFGS outperforms
Adam, achieving an average ∼ 14 times faster convergence,
resulting in high-quality reconstructions after just 0.14 sec-
onds of training. We refer the readers to Sec. 4 of the supp.
material for additional results on other gigapixel instances.

Patched-MLP trained with L-BFGS vs. non-patched
MLP trained with Adam We use a 5-layer sine-MLP
with 930 neurons (2603073 parameters) and compared it

to a patched-MLP (2573400 parameters). Due to hard-
ware constraint, we used stochastic sampling with the
largest minibatch-size option (1 million points). We observe
that patched L-BFGS achieves convergence 46× faster
(33.80dB) than the non-patched MLP trained with Adam
(30.24dB).

5.3. Neural Radiance Fields (NeRF)

NeRF has recently emerged as a compelling strategy
for utilizing a MLP to model 3D objects and scenes using
multi-view 2D images. This approach shows promise for
generating high-fidelity reconstruction in novel view syn-
thesis task [21, 32, 8, 17]. Given 3D points x ∈ R3 and
viewing direction, NeRF aims to estimate the radiance field
of a 3D scene which maps each input 3D coordinate to its
corresponding volume density σ ∈ R and directional emit-
ted color c ∈ R3 [21, 17, 8]. In this section, we compare
L-BFGS against the Adam optimizer on a popular applica-
tion of a coordinate network in novel view synthesis task,
NeRF [21]. For simplicity, we used a minimalist version
of a NeRF model that excluded view-dependence and hier-
archical ray sampling. We trained a tiny Gaussian-activated
MLP with 4 hidden layers and 128 neurons on the real world
LLFF forward-facing scenes [21], that were downscaled by
a factor of 5. Fig. 7 presents the qualitative result obtained
for the fern instance. Impressively, with only 130 seconds,
TinyNeRF trained with L-BFGS generated a detailed recon-
struction in only 400 iterations whereas TinyNeRF trained
with Adam produced blurry renderings for 1300 iterations,
indicating the superiority of L-BFGS for this instance.

KiloNeRF. As discussed in Sec. 5.1, while L-BFGS can
achieve faster convergence compared to Adam, this advan-
tage diminishes as the number of parameters of the neu-
ral network increases. This presents a particular challenge
when training NeRF, a 5D high-dimensional problem that
typically requires a larger network, such as an 8-layer 256
network. In this section, we showcase how we can miti-
gate the computational bottleneck associated with training
a large-scale NeRF with L-BFGS. Building on the recent
innovation of KiloNeRF [32], we trained thousands of 2-
layer 32 width sine-activated KiloNeRF with L-BFGS and
compared its performance to one trained with Adam. Note
that we sampled each MLP with 10k points. As presented
in Table 1, L-BFGS trained the KiloNeRF ∼ 6× faster than
Adam and produced higher reconstruction quality along the
way. Fig. 8 compares a qualitative result of a KiloNeRF
trained with L-BFGS and Adam – after 600 seconds, the
KiloNeRF trained with L-BFGS is already able to produce
good-quality reconstructions.

13334

Figure 6: Gigapixel Image Reconstruction (1000 × 2000 resolution). Our approach represents a gigapixel image using
200 sine-activated tiny-MLPs. We report a comparison in terms of optimization time and PSNR (L-BFGS vs. Adam). Using
L-BFGS, our method achieves a substantially higher-fidelity reconstruction (24.81 dB) than Adam (11.29 dB) given the same
amount of training time. L-BFGS achieves convergence ∼ 14× faster than Adam (33.8 vs. 33.22 dB).

2:10 (mm:ss) / 22.64 vs. 18.40 dB (PSNR)

iter: 800 iter: 142k
L-BFGS Adam

iter: 400 iter: 1300

Figure 7: Novel View Synthesis with NeRF for a fern in-
stance from the LLFF dataset [20]. We report a compari-
son in terms of optimization time and PSNR (L-BFGS vs.
Adam). Using L-BFGS, Tiny-NeRF achieves a good re-
construction (22.64dB) compared to Adam (18.40dB) af-
ter training for the same amount of time. Overall, L-BFGS
achieves convergence (24dB) ∼ 2× faster than Adam.

GT L-BFGS Adam
iter: 1500 iter: 1200

9:40 vs. 15:30 (mm:ss) / 23.31 vs. 19.95 dB (PSNR)

Figure 8: Novel View Synthesis with KiloNeRF for a ficus
test instance from the LLFF dataset [20]. We report a com-
parison in terms of optimization time and PSNR (L-BFGS
vs. Adam). Using L-BFGS, KiloNeRF achieves a good re-
construction (23.31dB) compared to Adam (19.95dB).

5.4. Analyzing the Computational Cost

Fig. 9 compares different second-order optimizers in
terms of memory usage and optimization time per iteration,
see Sec. 1 of supp. material for details on these optimiz-

Method PSNR↑ SSIM↑ LPIPS↓ Num Training
Iters↓ Time (s)↓

Adam 20.78 0.85 0.18 6000 5324.48
L-BFGS 22.01 0.86 0.15 1200 889.97

Table 1: Quantitative results of KiloNeRF on all instances
from the Blender dataset [21]. On average, L-BFGS trained
6× faster than Adam and was able to achieve competitive
quality scores with significantly less iterations.

ers. Interestingly, we found that K-FAC [19] struggled to
optimize a sine-activated coordinate network. This led us
to speculate that the initialization scheme proposed in [35]
may not be optimal for K-FAC optimization and warrants
further investigation. The results in Fig. 9 were obtained us-
ing a 4-layer 64 width Gaussian-activated coordinate-MLP.
Our findings indicate that L-BFGS strikes a good balance
between fast training and comparable memory usage com-
pared to Adam, offering a “best of both worlds” solution.
While Adam has the lowest time and memory per iteration,
it is important to note that second-order optimizers aim to
converge with fewer iterations. This is demonstrated in the
experiments discussed in Sec. 5.

6. Conclusion

In this paper, we examine the application of second-
order optimizers in training coordinate-MLPs. We show
that coordinate networks using non-traditional activations,
such as sine or Gaussian functions, exhibit better Hes-
sians/curvature conditioning than those using ReLU acti-
vations. We validated our theory using an L-BFGS opti-
mizer across various signal reconstruction tasks. Our results
demonstrate that using second-order optimizers on small-
scale data projects significantly reduces training times com-
pared to using Adam. However, in large-scale applications

13335

BFGS Newton-CG K-FAC Adam L-BFGS
0

1000

2000

3000

4000

5000

M
em

or
y

pe
r i

te
ra

tio
n

(M
b) 4855

1239 1177 1057 1057

(a) Memory per iteration

BFGS Newton-CG K-FAC Adam L-BFGS
0.0

0.1

0.2

0.3

0.4

0.5

Ti
m

e
pe

r i
te

ra
tio

n
(s

) 0.51

0.007 0.004 0.002 0.005

(b) Training time per iteration

Figure 9: Comparison of computational complexity of var-
ious well-known second-order optimizers. L-BFGS strikes
a good balance between fast training and comparable mem-
ory usage compared to Adam.

with a large number of parameters, the computational com-
plexity of a second-order optimizer hinders its use. To mit-
igate this challenge, we proposed a patch-based decompo-
sition strategy, breaking down large datasets into smaller
patches. By training a second-order optimizer on each
patch, we offer a viable approach for efficiently training
coordinate networks with second-order optimizers in large-
scale scenarios.

7. Limitations
We trained coordinate-MLPs using L-BFGS with full

samples. While stochastic L-BFGS exists (e.g., [43, 28,
22]), we found that such stochastic L-BFGS algorithms
perform poorly for training coordinate-MLPs compared to
Adam with stochastic sampling. This presents a challenge
for practitioners who want to use stochastic second-order
optimizers in training coordinate-MLPs.

Acknowledgements
This research was funded (partially) by the Australian

Government through the Australian Research Council.

13336

References
[1] Naman Agarwal, Brian Bullins, Xinyi Chen, Elad Hazan,

Karan Singh, Cyril Zhang, and Yi Zhang. Efficient full-
matrix adaptive regularization. In International Conference
on Machine Learning, pages 102–110. PMLR, 2019. 2

[2] Paul T Boggs and Richard H Byrd. Adaptive, limited-
memory bfgs algorithms for unconstrained optimization.
SIAM Journal on Optimization, 29(2):1282–1299, 2019. 2

[3] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Is-
rael, October 23–27, 2022, Proceedings, Part XXXII, pages
333–350. Springer, 2022. 1

[4] Anpei Chen, Zexiang Xu, Xinyue Wei, Siyu Tang, Hao Su,
and Andreas Geiger. Factor fields: A unified framework for
neural fields and beyond. arXiv preprint arXiv:2302.01226,
2023. 2

[5] Boyuan Chen, Robert Kwiatkowski, Carl Vondrick, and Hod
Lipson. Fully body visual self-modeling of robot morpholo-
gies. Science Robotics, 7(68):eabn1944, 2022. 1

[6] Yinbo Chen, Sifei Liu, and Xiaolong Wang. Learning
continuous image representation with local implicit image
function. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 8628–8638,
2021. 1

[7] Zhiqin Chen and Hao Zhang. Learning implicit fields for
generative shape modeling. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 5939–5948, 2019. 2

[8] Shin-Fang Chng, Sameera Ramasinghe, Jamie Sherrah, and
Simon Lucey. Gaussian activated neural radiance fields for
high fidelity reconstruction and pose estimation. In Com-
puter Vision–ECCV 2022: 17th European Conference, Tel
Aviv, Israel, October 23–27, 2022, Proceedings, Part XXXIII,
pages 264–280. Springer, 2022. 1, 2, 7

[9] Boyang Deng, J. P. Lewis, Timothy Jeruzalski, Gerard Pons-
Moll, Geoffrey Hinton, Mohammad Norouzi, and Andrea
Tagliasacchi. Nasa neural articulated shape approximation.
In Andrea Vedaldi, Horst Bischof, Thomas Brox, and Jan-
Michael Frahm, editors, Computer Vision – ECCV 2020,
pages 612–628, Cham, 2020. Springer International Publish-
ing. 2

[10] Sara Fridovich-Keil, Alex Yu, Matthew Tancik, Qinhong
Chen, Benjamin Recht, and Angjoo Kanazawa. Plenoxels:
Radiance fields without neural networks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5501–5510, 2022. 1

[11] Guillaume Garrigos and Robert M Gower. Handbook of con-
vergence theorems for (stochastic) gradient methods. arXiv
preprint arXiv:2301.11235, 2023. 6

[12] Kyle Genova, Forrester Cole, Avneesh Sud, Aaron Sarna,
and Thomas Funkhouser. Local deep implicit functions for
3d shape. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), June
2020. 2

[13] Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo:
Preconditioned stochastic tensor optimization. In Interna-

tional Conference on Machine Learning, pages 1842–1850.
PMLR, 2018. 2

[14] Changcun Huang. Relu networks are universal approxima-
tors via piecewise linear or constant functions. Neural Com-
putation, 32(11):2249–2278, 2020. 2

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 6

[16] Yunzhu Li, Shuang Li, Vincent Sitzmann, Pulkit Agrawal,
and Antonio Torralba. 3d neural scene representations for
visuomotor control. In Conference on Robot Learning, pages
112–123. PMLR, 2022. 1

[17] Chen-Hsuan Lin, Wei-Chiu Ma, Antonio Torralba, and Si-
mon Lucey. Barf: Bundle-adjusting neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5741–5751, 2021. 1, 7

[18] Bo Liu and Yi Liang. Optimal function approximation with
relu neural networks. Neurocomputing, 435:216–227, 2021.
2

[19] James Martens and Roger Grosse. Optimizing neural net-
works with kronecker-factored approximate curvature. In
International conference on machine learning, pages 2408–
2417. PMLR, 2015. 2, 8

[20] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Transac-
tions on Graphics (TOG), 38(4):1–14, 2019. 8

[21] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021. 1,
2, 5, 7, 8

[22] Philipp Moritz, Robert Nishihara, and Michael Jordan. A
linearly-convergent stochastic l-bfgs algorithm. In Artificial
Intelligence and Statistics, pages 249–258. PMLR, 2016. 2,
9

[23] Rotem Mulayoff, Tomer Michaeli, and Daniel Soudry. The
implicit bias of minima stability: A view from function
space. Advances in Neural Information Processing Systems,
34:17749–17761, 2021. 2, 5

[24] Jorge Nocedal and Stephen J Wright. Numerical optimiza-
tion. Springer, 1999. 1, 2, 3, 5

[25] Jeong Joon Park, Peter Florence, Julian Straub, Richard
Newcombe, and Steven Lovegrove. Deepsdf: Learning con-
tinuous signed distance functions for shape representation.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), June 2019. 2

[26] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien
Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo
Martin-Brualla. Nerfies: Deformable neural radiance fields.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 5865–5874, 2021. 2

[27] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10318–10327, 2021. 2

13337

[28] Peng Qi, Wei Zhou, and Jizhong Han. A method for stochas-
tic l-bfgs optimization. In 2017 IEEE 2nd International Con-
ference on Cloud Computing and Big Data Analysis (ICC-
CBDA), pages 156–160. IEEE, 2017. 9

[29] Nasim Rahaman, Aristide Baratin, Devansh Arpit, Felix
Draxler, Min Lin, Fred Hamprecht, Yoshua Bengio, and
Aaron Courville. On the spectral bias of neural networks.
In International Conference on Machine Learning, pages
5301–5310. PMLR, 2019. 1, 3

[30] S. Ramasinghe and S. Lucey. Beyond Periodicity: Towards
a Unifying Framework for Activations in Coordinate-MLPs.
In ECCV, 2022. 1, 2, 3, 6

[31] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,
Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decom-
posed radiance fields. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 14153–14161, June 2021. 2

[32] C. Reiser, S. Peng, Y. Liao, and A. Geiger. KiloNeRF:
Speeding Up Neural Radiance Fields With Thousands of
Tiny MLPs. In ICCV, 2021. 2, 7

[33] Shunsuke Saito, Zeng Huang, Ryota Natsume, Shigeo Mor-
ishima, Angjoo Kanazawa, and Hao Li. Pifu: Pixel-aligned
implicit function for high-resolution clothed human digitiza-
tion. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision (ICCV), October 2019. 2

[34] Vishwanath Saragadam, Jasper Tan, Guha Balakrishnan,
Richard G Baraniuk, and Ashok Veeraraghavan. Miner:
Multiscale implicit neural representation. In Computer
Vision–ECCV 2022: 17th European Conference, Tel Aviv, Is-
rael, October 23–27, 2022, Proceedings, Part XXIII, pages
318–333. Springer, 2022. 2

[35] V. Sitzmann, J. Martel, A. Bergman, D. Lindell, G., and Wet-
zstein. Implicit Neural Representations with Periodic Acti-
vation Functions. In NIPS, 2020. 1, 2, 3, 6, 8

[36] Vincent Sitzmann, Michael Zollhöfer, and Gordon Wet-
zstein. Scene representation networks: Continuous 3d-
structure-aware neural scene representations. Advances in
Neural Information Processing Systems, 32, 2019. 1

[37] Ivan Skorokhodov, Savva Ignatyev, and Mohamed Elho-
seiny. Adversarial generation of continuous images. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10753–10764, 2021. 1

[38] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel
grid optimization: Super-fast convergence for radiance fields
reconstruction. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 5459–
5469, 2022. 1

[39] Yu Sun, Jiaming Liu, Mingyang Xie, Brendt Wohlberg,
and Ulugbek S Kamilov. Coil: Coordinate-based inter-
nal learning for imaging inverse problems. arXiv preprint
arXiv:2102.05181, 2021. 1, 2

[40] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara
Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-
mamoorthi, Jonathan Barron, and Ren Ng. Fourier features
let networks learn high frequency functions in low dimen-
sional domains. Advances in Neural Information Processing
Systems, 33:7537–7547, 2020. 1, 3

[41] Zirui Wang, Shangzhe Wu, Weidi Xie, Min Chen,
and Victor Adrian Prisacariu. Nerf–: Neural radiance
fields without known camera parameters. arXiv preprint
arXiv:2102.07064, 2021. 2

[42] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelnerf: Neural radiance fields from one or few images.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4578–4587,
June 2021. 2

[43] Renbo Zhao, William Benjamin Haskell, and Vincent YF
Tan. Stochastic l-bfgs: Improved convergence rates and
practical acceleration strategies. IEEE Transactions on Sig-
nal Processing, 66(5):1155–1169, 2017. 2, 9

[44] Jianqiao Zheng, Sameera Ramasinghe, Xueqian Li, and Si-
mon Lucey. Trading positional complexity vs deepness in
coordinate networks. In Computer Vision – ECCV 2022,
pages 144–160, Cham, 2022. Springer Nature Switzerland.
1, 2, 3

[45] Zihan Zhu, Songyou Peng, Viktor Larsson, Weiwei Xu, Hu-
jun Bao, Zhaopeng Cui, Martin R Oswald, and Marc Polle-
feys. Nice-slam: Neural implicit scalable encoding for slam.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 12786–12796, 2022.
2

13338

