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Figure 1: Our method is aimed at boosting the performance of face recognition. This is achieved by gathering a random
image collection without face recognition labels (unlabeled set) and then fitting a mapping from an image to the StyleGAN
latent space onto that collection. To learn this mapping, we use the pSp encoder architecture. For the downstream face
recognition task, the same encoder is then fine-tuned on a (potentially much smaller) face recognition dataset with identity
labels (labeled set).

Abstract

State-of-the-art face recognition systems require vast
amounts of labeled training data. Given the priority of
privacy in face recognition applications, the data is lim-
ited to celebrity web crawls, which have issues such as
limited numbers of identities. On the other hand, self-
supervised revolution in the industry motivates research
on the adaptation of related techniques to facial recogni-
tion. One of the most popular practical tricks is to augment
the dataset by the samples drawn from generative models
while preserving the identity. We show that a simple ap-
proach based on fine-tuning pSp encoder for StyleGAN al-
lows to improve upon the state-of-the-art facial recognition
and performs better compared to training on synthetic face
identities. We also collect large-scale unlabeled datasets
with controllable ethnic constitution – AfricanFaceSet-5M
(5 million images of different people) and AsianFaceSet-
3M (3 million images of different people) – and we show
that pretraining on each of them improves recognition of
the respective ethnicities (as well as others), while com-
bining all unlabeled datasets results in the biggest per-
formance increase. Our self-supervised strategy is the
most useful with limited amounts of labeled training data,

which can be beneficial for more tailored face recognition
tasks and when facing privacy concerns. Evaluation is
based on a standard RFW dataset and a new large-scale
RB-WebFace benchmark. The code and data are made pub-
licly available at https://github.com/seva100/
stylegan-for-facerec.

1. Introduction
Modern face recognition methods rely on deep convo-

lutional networks trained on large-scale datasets [54, 7,
23, 60]. These methods are now being integrated into a
vast number of real-world applications, ranging from face
unlock for smartphones and photo organizers to law en-
forcement systems and border control. A typical open
face recognition dataset consists of web-crawled images
of celebrities, leading to limited size and lack of bal-
ance in subgroups, such as ethnicity, age, etc. Train-
ing a state-of-the-art solution, however, requires enormous
amounts of labeled data, scraping which may lead to pri-
vacy and legal issues. We suggest and study an alterna-
tive solution to using celebrity photos – pretraining the
face recognition backbone on a generative task. Specif-
ically, we first train StyleGAN2-ADA [29] on collected
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Figure 2: Our method is trained in three consecutive steps. First, we fit StyleGAN2-ADA to the face image distribution of
the unlabeled prior dataset Dprior. Second, the pSp encoder is trained (also on Dprior) to map images to the latent codes in
the learned latent space. Finally, the encoder, which is pretrained to extract meaningful features from an image, is fine-tuned
for the downstream face recognition task with the ArcFace loss (similar losses can be used instead) on Dfacerec. The two
first steps comprise the self-supervised pretraining stage; i.e., no identity labels are required for them.

unlabeled data (which we later refer to as an unlabeled prior
dataset) to fit the face image distribution. Subsequently,
we train an encoder (following pixel2style2pixel (pSp) ar-
chitecture [41]) that maps input images to vectors in the
learned StyleGAN2-ADA latent space. Importantly, dur-
ing the pretraining steps, no identity labels are used, so we
can use diverse datasets crawled from the Internet without
compromising privacy. Finally, we transfer the learned pSp
encoder convolutional weights into the face recognition net-
work and train it in a standard face recognition setup.

We show that, in contrast to training face recogni-
tion tasks on StyleGAN generated data (also demonstrated
in [38, 39] and studied e.g. in [36]), our encoder pretraining
step significantly boosts the final performance. The idea of
augmenting face recognition datasets with synthetic data is
widespread and constitutes many approaches, however, un-
clear and heuristic definition of the target label limits the
amount of useful signal that can be transferred into the face
recognition model this way. Our approach goes hand-in-
hand with the current development of self-supervised learn-
ing [15, 35, 12, 16] and makes up one of the first approaches
of its application to face recognition [26, 33]. This allows us
to demonstrate vast improvements on limited labeled train-
ing data compared to the setup without self-supervised pre-
training (for instance, 10% verification accuracy increase
for only 1% of the labeled data used).

The simplicity of the data collection procedure also al-
lows us to control the distribution of the unlabeled data and
thus influence the decrease of the error rates for specific de-
mographic groups. Despite the fact that the current state-
of-the-art algorithms often demonstrate very low average
error rates [13, 47, 51, 48], it is considered unethical to inte-
grate face recognition solutions that exhibit significant eth-
nic, age, or gender bias. Such bias is present both in open-
source face recognition methods [20, 53, 49, 19, 28, 44, 46]
and in comprehensively evaluated commercial face recog-

nition systems [22], resulting in significantly different error
rates measured for the groups of interest. The topic has at-
tracted significant attention in other areas of computer vi-
sion operating in face domain [8, 14, 21, 40] and in the me-
dia.

We constructively demonstrate that collecting large
amounts of in-the-wild face images of a given group of
interest is feasible (and can be done semi-automatically),
while collecting datasets with identity labels is problem-
atic. The labels require linking photos of the same per-
son taken in different conditions, which means the person
must be tracked. This typically constrains public datasets
to celebrities, gathered using search engines [23, 54, 7, 60],
while social networks and companies that provide services
with photos use input from users. Second, the collected
in-the-wild data, treated as a set of faces without identity
labels (but labeled with the group attribution), can be effi-
ciently used for self-supervised pretraining for face recogni-
tion networks, subsequently fine-tuned on the standard face
recognition datasets (see Fig. 1).

To summarize our main contribution, we present a novel
self-supervised method for improving the performance of
face recognition based on StyleGAN pretraining. This al-
lows to leverage large-scale amounts of available unlabeled
data for face recognition. While the improvement is the
most significant on limited data, pretraining is also helpful
for large-scale labeled datasets.

2. Related work
Face recognition datasets. Several large-scale datasets

of faces with identity labels have been released pub-
licly, such as CASIA-WebFace [54], VGGFace2 [7],
MS-Celeb-1M [23] and the very recent million-scale
WebFace-42M dataset [60]. However, these datasets
have been collected “in the wild”, hence, they in-
evitably suffer from biases in terms of age, gender,
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Dataset name # people # images # pic./person ethnic diversity acquisition

MS-Celeb-1M 100K 8.2M 82 uneven mostly American and British actors
VGGFace2 9.1K 3.3M 362 uneven Google Image search
CASIA-WebFace 10K 494K 49 uneven celebrities from IMDb
CASIA-Face-Africa 1.1K 38K 34 all African controlled, indoor and outdoor
MegaFace (unavailable) 672K 4.7M 7 uneven Yahoo Flickr website search queries
DiveFace 24K 72K 3 balanced across 3 ethnicities subset of MegaFace
BUPT-BalancedFace 28K 1.3M 46 balanced across 4 ethnicities celebrities from MS-Celeb-1M
BUPT-GlobalFace 38K 2M 52 matches global population celebrities from MS-Celeb-1M
BUPT-TransferFace >10K 600K 60 75% Cauc. vs. others celebrities from MS-Celeb-1M

AfricanFaceSet-5M 5M 5M unlabeled African majority random faces from YouTube news videos
AsianFaceSet-3M 3M 3M unlabeled Asian majority random faces from YouTube news videos

Table 1: Overview of the publicly available training sets in facial domain. Typically, the quality of a face recognition dataset
is described by several factors: the number of people in the dataset, the number of images per person, and the diversity of
capture conditions. While our AfricanFaceSet-5M and AsianFaceSet-3M datasets are not directly suitable for face recognition
due to the absence of identity labels, they comprise more distinct people than existing large-scale datasets and contain a more
diverse distribution of faces than only celebrities.

or race. To better understand and stimulate research
in fairness about face recognition, several datasets have
been proposed. Examples of such labeled datasets in-
clude BUPT-Globalface [49] (2M images with ethnic
distribution matching the world population) and BUPT-
Balancedface [49] (1.3M images with the perfect ethnic
split). Racial Faces in-the-Wild (RFW) [50] is a verifica-
tion database that has been constructed from MS-Celeb-1M.
Currently, it serves a standard fairness benchmark. Another
verification dataset BFW has been introduced in [42],
which, similarly to RFW, contains eight subgroups balanced
across gender and ethnicity. The main feature of all these
datasets – predefined ethnic split – allows one to disam-
biguate dataset bias and model bias for more precise meth-
ods evaluation. Still, the currently available data possesses
a number of limitations. For instance, the number of dis-
tinct people is typically limited and is often many orders of
magnitude smaller than the dataset size. Additionally, both
identification and verification datasets require many images
per person, which usually restricts the construction of open-
source datasets to the search of celebrity pictures by text
queries. Our two photo collections, released to the public,
– AfricanFaceSet-5M and AsianFaceSet-3M, – fill a differ-
ent gap in the space of available datasets. On the one hand,
they neither have identity labels nor feature many images
per person. On the other hand, these collections are large
and focused on groups and conditions that are underrepre-
sented in general face recognition datasets. Our evaluation
dataset RB-WebFace, assembled from large-scale WebFace-
42M, is a new verification dataset containing a significantly
larger number of pairs and does not use external models
to select the negatives (which introduces certain selection
bias) compared to RFW, which is currently used as the main
benchmark in the bias mitigation-focused branch of works.

Data augmentation. Generating synthetic data is a possi-

ble solution to improving the performance of face recogni-
tion and in some cases reducing the negative effect of the
dataset bias. An idea of this kind is pursued in [37], a non-
linear 3DMM texture model is proposed to produce sharp
renderings of faces from novel poses. This technique im-
proves generalization with respect to the head pose and il-
lumination. A number of approaches synthesize data via
face generative models. For instance, in SynFace [39] ran-
dom face images are constructed by a GAN with identity
control, and labels are constructed by a procedure similar to
MixUp augmentation [55]. Similarly, in [18] a style transfer
GAN is used to simultaneously transfer multiple facial de-
mographic attributes and generate diverse images for each
attribute class. Authors of Virface [31] suggested a method
for incorporating additional negative (impostor) pairs from
the unlabeled data showing a boost in metrics. Zhang et al.
[56] study the applicability of the data generated by Style-
GAN by inspecting the distributions of downstream models
but do not study its effect on face recognition metrics.

Our approach is inspired by the latter idea of generating
synthetic samples but takes a step forward by utilizing the
generative model itself (StyleGAN with an encoder in our
case). As shown in [41, 45, 2, 3], the StyleGAN encoders
have high potential for both generating new realistic faces
from a latent code and solving the inversion problem. This
highlights the expressiveness of these models and richness
of their internal representations.
Self-supervised pretraining. Despite the general dom-
inance of supervised learning in practical ML and CV,
approaches based on self-supervised learning have been
evolving in various forms, such as self-organizing or
siamese networks [4, 5, 9, 24]. Currently, self-supervised
learning is the dominant approach in NLP with a wide spec-
trum of possible approaches [35, 12, 11] and is being ac-
tively adapted in computer vision [16].
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Figure 3: Our data collection process starts by manually specifying a set of YouTube channels with a specific topic, e.g. a set
of news channels of a desired town or part of the world. All videos are downloaded in the highest available quality, one frame
per P seconds is extracted from each video, and all the faces found in the extracted frames are cropped, aligned by landmarks
and resized to the target resolution. This way, we obtain millions of random faces with a desired demographic distribution.

Analogously, we are witnessing the first attempts to ap-
ply self-supervised learning now being integrated into the
face recognition frameworks. In 3D-BERL [26], the perfor-
mance over multiple benchmarks is improved by a separate
3D reconstruction network branch. The work [33] studies
the effect of self-supervised learning for domain transfer in
face recognition. Incremental learning [52] can be bridged
with self-supervised approaches to adapt to large number
of target classes [59]. The procedure for collecting large-
scale unlabeled datasets allows us to adapt self-supervised
training in a more conventional fashion while proving its
efficacy for our application.

3. Method
Our pipeline is comprised of several stages. First, we

train StyleGAN2-ADA to fit the face distribution on the un-
labeled dataset. Second, the pSp encoder is trained (also on
the unlabeled dataset), that will define a feature extractor
well-suited for the group of interest. Finally, the encoder
is fine-tuned for the downstream face recognition task. The
entire procedure is outlined in Subsec. 3.2 and visually de-
scribed in Fig. 2. Before describing the method itself, we
outline the schematics of our prior dataset collection proce-
dures in Subsec. 3.1.

3.1. Prior dataset collection

Due to the nature of the task, the prior dataset must con-
tain the samples from the group of interest. At the same
time, samples from the prior dataset do not require iden-
tity labels of any kind, unlike samples of the face recog-
nition datasets. In practice, this removes the restriction of
linking photos of the same person (something that might
be considered a violation of privacy), and thus enlarges the
search space and simplifies data collection. Still, fulfilling
several requirements for the prior dataset remains a chal-
lenge, such as: collecting faces only from a specific group
(e.g. an ethnic or gender group), obtaining a large num-
ber of them (preferably, an order of magnitude more than in
the face recognition dataset to perform subsequent transfer

learning), and using only data legally allowed for collec-
tion. We found semi-automatic YouTube channel scraping
to be an efficient solution that satisfies these requirements.
In particular, we propose to select a set of publicly available
YouTube channels dedicated to the desired group of inter-
est. The channel names are the only entry point and the
only manually performed step for the scraping procedure
(see Fig. 3). Typically, the requirement for the channels
is having them systematically featuring different people; a
possible example would be a set of news channels released
in a country of choice. All videos are downloaded from
every channel, one frame per P seconds of each video is
extracted, and all faces are detected, cropped and aligned
by landmarks via MTCNN [57] library. Our data has been
scraped from a predefined set of channels such as news
channels and others.

The unlabeled prior dataset will later be referred to as
Dprior. Table 1 describes the relative difference of the col-
lected data to the datasets typically used for face recogni-
tion. Note however, that despite the latter being directly
inapplicable for training due to the lack of the labels, they
potentially contain more people than the others.

3.2. Architecture and the training procedure

The central part of our pipeline is a single face recogni-
tion convnet fθ,ψ(I) (a backbone), that takes a single RGB
image I as an input, and outputs a 512-dimensional vec-
tor e ∈ R512 (face embedding). Typically, the backbone
is trained on a training dataset with angular margin based
losses, such as SphereFace [34], ArcFace [13], and oth-
ers, in standard works on face recognition. In our pipeline,
we follow the same procedure, but only after a pretrain-
ing stage is performed. In order to do so, we first train the
StyleGAN2-ADA [29] generator gϕ(w(z)) that transforms
a latent vector z ∈ Z ⊆ R512 into unfolded latent space
w(z) ∈ W+ ⊆ RL×512, and then into a realistic face image
Î . The generator gϕ(w(z)) is trained together with a dis-
criminator that allows the generator to learn the distribution
of faces in Dprior. The training procedure for StyleGAN2-
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ADA follows the one in the corresponding paper. Secondly,
we introduce a network f ′θ,ω(x), which is trained as an en-
coder for the StyleGAN generator, i.e. a network that solves
an inverse problem: given an RGB image I , predict an un-
folded latent code w ∈ W+, such that the corresponding
reconstruction Î = gϕ(w) is as close to the input I as possi-
ble. A set of different possible approaches has appeared
recently for training an encoder for StyleGAN2, ranging
from applying a ConvNet with style-predicting layers [41]
to employing hyper-networks [2]. In our method, the en-
coder architecture follows the pSp method [41], that pro-
poses predicting a latent code by a ConvNet divided into a
convolution part (with parameters θ), following a ResNet
architecture, and a set of fully-convolutional style predic-
tors – map2style blocks (with parameters ω). The training
procedure for the encoder follows the one outlined in [41]
with a few variations. Namely, we only keep the fidelity
losses (standard L2 and neural-based LPIPS [58]) and dis-
able the identity loss proposed by the authors. During the
encoder training, the StyleGAN generator remains frozen
in order to fix the latent space. A pair of networks f ′θ,ω(x)
and gϕ(w(z)) can be seen as an asymmetric autoencoder
(since the number of encoder parameters highly surpasses
the number of generator parameters) with the decoder pre-
trained for a generative task and the encoder subsequently
trained for a discriminative (regressive) task. The visual
quality and the identity preservation of the reconstruction
Î indirectly defines the expressiveness of the latent code l
predicted by the encoder.

Finally, after the encoder f ′θ,ω(I) is trained, we trans-
fer its convolutional parameters θ into the face recognition
backbone fθ,ψ(I), which also comprises a set of new pa-
rameters ψ, corresponding to a fully-connected layer in the
end of the network. We repeat the standard training proce-
dure for face recognition, e.g. described in ArcFace [13]
and others. The backbone is trained on a face recognition
dataset Dfacerec = {D1, . . . ,DN}, where each group Di
corresponds to a set of images of the same person #i. The
slight differences in hyperparameters that we found bene-
ficial when used with pretraining and technical details are
described in the Supplementary [1].

4. Results

4.1. Data and evaluation protocol

Our system requires two datasets – a labeled face recog-
nition dataset Dfacerec and an unlabeled prior dataset
Dprior. As for the Dfacerec, we employ BUPT-
BalancedFace [49] due to its ethnic and gender balance
guarantees. Namely, it consists of 1.3 million images
belonging to 28K different people, divided into 4 ethnic
groups of equal size – 7K African, East Asian, Indian, and
Caucasian people each. Other state-of-the-art methods can

RFW, accuracy %, ↑
Cauc. African Asian Indian Avg ↑ Std ↓

ArcFace R-50* [13] 96.18 93.98 93.72 94.67 94.64 1.11
CosFace R-50* [47] 95.12 93.93 92.98 92.93 93.74 0.89
DebFace* [19] 95.95 93.67 94.33 94.78 94.68 0.83
ACNN* [28] 96.12 94.00 93.67 94.55 94.58 0.94
PFE* [44] 96.38 95.17 94.27 94.60 95.11 0.93
RL-RBN* [49] 96.27 95.00 94.82 94.68 95.19 0.63
GAC R-50* [20] 96.27 94.40 94.32 94.77 94.94 0.79
Baseline (ArcFace) 96.00 94.00 93.08 94.48 94.39 1.06
+ Dprior (African) 96.35 94.37 93.62 94.88 94.81 1.00
+ Dprior (Asian) 96.38 94.67 94.03 95.03 95.03 0.86
+ Dprior (Afr+Asian) 96.52 95.00 93.90 94.93 95.09 0.94

increase +0.52 +1.00 +0.82 +0.45

Table 2: Comparison of the verification accuracy of the
methods on RFW validation set. Asterisk “*” indicates
that the numbers are directly taken from the respective table
in [20]. In case of the ArcFace R-50 baseline, it also cor-
responds to a slightly different reported training procedure.
For other methods, the epoch with the best RFW African
accuracy score is taken. For GAC [20], we consider the ex-
periment with Estimated ethnic labels in order to compare
in the same setting when ground truth labels are not given
as an input to the model. The pretraining scheme is effi-
cient when applied to the common choice of the FR method
(ArcFace) and the best quality increase is for the ethnicities
seen during pretraining (African and Asian).

only take advantage of a face recognition dataset, and com-
pare with them on BUPT-BalancedFace.

The prior dataset Dprior for our work has been collected
from YouTube via the procedure outlined in Subsec. 3.1.
The dataset consists of two parts – African and East Asian
ethnic groups – corresponding to two of the four bench-
marks, these groups demonstrate higher error rates for face
recognition systems compared to others in the branch of
works [20, 49, 19]. Analogously, these two groups are
known to be challenging according to NIST evaluation on
demographics [22] and benchmarks of other tasks [6]. As
an input for the scraping routine, we have used a set of
30-40 news channels corresponding to the respective part
of the world. One frame per P = 5 seconds was taken,
and only frames from the start through the 20th minute of
each video have been considered. Since the target resolu-
tion for our network training is 112× 112, we only approve
face bounding boxes selected by MTCNN if the face oc-
cupies at least 100 px on each side. Additionally, we in-
crease the decision thresholds for MTCNN to reduce the
number of false positives during the detection process. The
exact set of the news channels is enlisted in the Supple-
mentary [1]. In total, 5 million images for the African
group (AfricanFaceSet-5M) and 3 million images for the
East Asian group (AsianFaceSet-3M) have been collected.

One face recognition validation protocol is based
on a balanced verification set Racial Faces In-the-Wild
(RFW) [50] (following [53, 20, 19, 49]). It consists of 3K
positive pairs of samples (pairs of images of the same per-
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RB-WebFace
TPR @ FPR=10−3 ↑

Cauc. African Asian Indian
ArcFace 89.86 86.73 94.31 93.82
ArcFace + Dprior (African) 92.62 90.20 96.31 95.85
ArcFace + Dprior (Asian) 92.91 90.61 96.15 95.83
ArcFace + Dprior (Afr+Asian) 93.54 91.51 96.51 96.17

increase +3.68 +4.78 +2.20 +2.35
SphereFace 92.08 89.51 95.52 95.02
SphereFace + Dprior (Afr+Asian) 92.83 90.52 96.22 95.65

increase +0.75 +1.01 +0.70 +0.63
GAC 92.48 89.13 96.33 94.66
GAC + Dprior (Afr+Asian) 93.60 90.80 96.76 95.46

increase +1.12 +1.67 +0.43 +0.80

TPR @ FPR=10−4 ↑
ArcFace 81.48 76.80 87.47 86.89
ArcFace + Dprior (African) 85.56 81.99 91.42 90.67
ArcFace + Dprior (Asian) 85.79 82.41 91.12 90.36
ArcFace + Dprior (Afr+Asian) 86.84 83.74 91.74 91.19

increase +5.36 +6.94 +4.27 +4.30
SphereFace 83.63 80.04 89.10 89.07
SphereFace + Dprior (Afr+Asian) 85.14 81.47 90.65 90.16

increase +1.51 +1.43 +1.55 +1.09
GAC 85.64 80.24 91.72 88.12
GAC + Dprior (Afr+Asian) 86.91 82.47 92.39 89.48

increase +1.27 +2.23 +0.67 +1.36

Table 3: Comparison of the methods on the newly assem-
bled RB-WebFace validation set. Publicly available au-
thors’ implementation of GAC [20] has been used to retrain
the method and evaluate the quality. Here, we showcase the
TPR given two pre-selected FPR thresholds to highlight the
error rate difference separately for each ethnic group. For
GAC, the setting GAC (Estimated) (see [20]) is used. This
table indicates how the proposed pretraining scheme pro-
vides an additional boost for different pipelines.

RB-WebFace
TPR @ FPR=10−3 ↑

Cauc. African Asian Indian
Baseline 89.86 86.73 94.31 93.82
+ 1% Dprior 92.59 90.44 96.06 95.72
+ 10% Dprior 92.84 90.72 96.12 95.64
+ 100% Dprior 93.54 91.51 96.51 96.17

Table 4: Ablation study of the quality dependence on the
|Dprior| prior dataset size on the newly assembled RB-
WebFace validation set. Dprior = {AfricanFaceSet-5M ∪
AsianFaceSet-3M} was used in this set of experiments.

son) and 3K negative pairs (pairs of images of different but
similarly looking people, selected by a face recognition al-
gorithm which can introduce selection bias) for each ethnic
group, summing up to 24K pairs. Evaluation is carried out
in an LFW-like protocol [27] that involves evaluating the
backbone fθ,ψ(I) on images of each pair and thresholding
the resulting cosine distances between embeddings. Each
set of 3K+3K pairs is constructed from 3K people compris-
ing a subset of MS-Celeb-1M [23].

In addition to that, we propose a new test set RB-

WebFace constructed in a similar fashion from the recently
proposed million-scale identification dataset WebFace-42M
(a cleaned version of WebFace-260M [60]). RB-WebFace is
constructed by evaluating a pretrained ethnic group classi-
fier on WebFace-42M to separate it into four ethnic groups
(the group assignment is later refined by a consensus proce-
dure). For each group, the largest possible number of dis-
tinct people is taken to construct positive and negative pairs.
The details are provided in Supplementary [1], as well as
the example pictures and comparison to typically used test
datasets by the number of people and pairs.

4.2. Evaluation

Comparison with the state-of-the-art on RFW. The Ta-
ble 2 contains the comparison to baseline (ArcFace R-
50) and a few state-of-the-art methods (GAC [20], Deb-
Face [19], and others). RFW verification accuracy is re-
ported for each of the four ethnic groups. We demonstrate
an increase in accuracy for all races compared to the base-
line, which is on par with the state-of-the-art and outper-
forming on Caucasian and Indian ethnic groups. The largest
increase w.r.t. the baseline is observed for the African
group. It is important to note that our pretraining scheme
can also be used to initialize other methods and enhance
their results in a similar fashion.
Comparison on newly assembled RB-WebFace test set.
Since the number of positive and negative pairs is orders
of magnitude different, we report the ROC curves values
(TPR vs. FPR), better suited for the class-imbalanced evalu-
ations, instead of reporting accuracy as for RFW. By sweep-
ing the threshold (in [0.1, 0.75] range), we obtain the (TPR,
FPR) pairs, and TPR @ FPR = {10−3, 10−4} is reported
in Table 3. Our method (denoted as Baseline + Dprior)
is compared to the Baseline (ArcFace R-50). Additionally,
we report the enhancement that our procedures provides to
other methods [34, 20]. The main conceptual result that
we demonstrate is the significant increase of the TPR vs.
given FPR for all races and decrease of ethnic bias on RB-
WebFace. A separate plot in the Supplementary [1] com-
prises the TPR measurements for a wide range of possi-
ble FPR values. We also provide the results for ResNet-
{34,100} backbones in Table 6.
Limited labeled data. The study in Fig. 4 describes the de-
pendency of our method’s accuracy on the number of sam-
ples in Dfacerec. We demonstrate the difference between
our method and the ArcFace R-50 baseline for each of the
benchmarks, both on RFW and RB-WebFace. As expected,
pretraining helps the most when the network is fine-tuned
on more limited amounts of labeled data. This especially
highlights the benefits of using self-supervised learning in
these scenarios.
Limited prior dataset. An ablation in Table 4 describes
the quality dependence on the size of the prior dataset. As
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Figure 4: Ablation study of the dependence of the test quality, evaluated for RFW and RB-WebFace datasets, on the
number of labeled samples from |Dfacerec| used for fine-tuning. In this experiment, Dprior = {AfricanFaceSet-5M ∪
AsianFaceSet-3M}, while Dfacerec = BUPT-BalancedFace. For Dfacerec, fraction of the data (100%, 10%, 1%) defines the
number of uniformly sampled people left in the dataset. In the plot legend, Baseline is ArcFace R-50.

shown, gradually enlarging it results in a monotonous per-
formance increase for all ethnic groups. This indicates that
the use of large amounts of diverse unlabeled data signifi-
cantly strengthens the method in the end.

RB-WebFace
TPR @ FPR=10−3 ↑

Cauc. African Asian Indian
Baseline 89.86 86.73 94.31 93.82
+ AE on Dprior 92.93 90.83 95.73 95.68
+ VAE on Dprior 92.45 90.39 95.64 95.40
+ ours on Dprior 93.54 91.51 96.51 96.17

TPR @ FPR=10−4 ↑
Baseline 81.48 76.80 87.47 86.89
+ AE on Dprior 85.85 83.09 90.46 89.86
+ VAE on Dprior 85.19 82.08 90.38 89.25
+ ours on Dprior 86.84 83.74 91.74 91.19

Table 5: Comparison of different pretraining strategies.
Along with ours based on consequent training of StyleGAN
and a ResNet encoder, one could employ vanilla (AE) and
variational (VAE) autoencoders for pretraining (with the
same ResNet-50 architecture as an encoder). Despite sim-
pler simultaneous training of an encoder and a decoder in a
single stage, the StyleGAN-based procedure is a more pow-
erful prior. Baseline refers to the ArcFace R-50.

Can StyleGAN be replaced with a simpler encoder-
decoder architecture? In Table 5, we compare our pre-
training procedure to more conventional ones where the
ResNet-50 encoder is pretrained in a symmetric autoen-
coder (AE) or in a symmetric variational autoencoder
(VAE) setting. While these models can be pretrained in a
single stage, our proposed StyleGAN+encoder approach re-

RB-WebFace
TPR @ FPR=10−3 ↑ TPR @ FPR=10−4 ↑

Cauc. Afr. Asian Indian Cauc. Afr. Asian Indian
R-34 84.57 81.47 91.15 89.91 73.60 69.23 83.11 80.40
+ Dprior 90.92 88.34 95.27 94.39 83.08 78.69 89.25 87.98
R-50 89.86 86.73 94.31 93.82 81.48 76.80 87.47 86.89
+ Dprior 93.54 91.51 96.51 96.17 86.84 83.74 91.74 91.19
R-100 93.77 91.55 96.32 96.62 87.28 84.28 91.46 91.66
+ Dprior 94.82 93.00 96.70 96.92 88.76 86.00 92.24 92.70

Table 6: Comparison of different ResNet backbones on
RB-WebFace. The baseline is ArcFace and Dprior =
AfricanFaceSet-5M ∪ AsianFaceSet-3M.

quires two separate pretraining stages but demonstrates bet-
ter performance, which motivates the use of state-of-the-art
generative models for face recognition.
Why is AE/VAE less suitable than StyleGAN when fine-
tuned for face recognition? We see two possible reasons
why our procedure yields better results. First, StyleGAN-
based architectures are tailored to be the state-of-the-art of
face generation, which leads to the possible assumption that
encoder + StyleGAN pipeline is capable of saving more
useful information about the face features than e.g. VAE.
Second, we observe that the quality of StyleGAN gener-
ations significantly improves when it is trained on larger
amount of data, while for VAE it is not the case (6% over
32% improvement when 100x more data given – see Fig. 5).
This scalability issue is also highlighted by the fact that
AE/VAE, trained on the 100% of Dprior, perform for the
face recognition task on par with StyleGAN, trained on only
1% of Dprior (see the Tables 5 and 4).
Is it helpful to draw samples from StyleGAN instead of
training an encoder for it? In this experiment, we used
our trained StyleGAN to generate synthetic faces and add
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Figure 5: FID score, calculated over 100K random pictures
from Dprior = { AfricanFaceSet-5M ∪ AsianFaceSet-3M
} vs. 100K random samples from VAE or StyleGAN. The
score (the less the better) is given w.r.t. the percentage of
Dprior used to train these models. We observe that the im-
age generation quality, that FID represents, drops signifi-
cantly when StyleGAN is provided with more data, while
VAE does not scale to larger data sets that well.

them to the training set. We first infer StyleGAN latent
codes for all African and Asian samples in our training set
(BUPT-BalancedFace). Since face recognition training al-
ways requires labeled images, we generate samples using
latent codes closer to the inverted training images. In par-
ticular, we take random pairs (I1, I2) of images of the same
ethnic group (either African or Asian) and generate an inter-
polated sample by calculating convex combinations of their
StyleGAN latent codes: Icomb = λ · f ′θ,ω(I1) + (1 − λ) ·
f ′θ,ω(I2), λ ∼ U [0, 1]. The ground-truth label (always re-
quired for face recognition training) is constructed as a two-
hot vector (0, . . . , 0, 1 − λ, 0, . . . , 0, λ, 0, . . . , 0) (as influ-
enced by MixUp [55]). In total, we augment the training
set with an equal amount of synthetic interpolations (1.3
M), obtained from randomly drawn African-African and
Asian-Asian pairs. The results in Table. 7 show that the
added interpolations, despite the created imbalance and in-
creased variability in the data, do not yield a comparable
performance increase. In addition, we show that increasing
the number of interpolations doesn’t help, while pretraining
scheme benefits from more pretraining data (see Table 4).

We provide additional ablations and comparisons in the
Supplementary [1].

5. Conclusions

As an increasing number of modern computer vision
methods become production-ready, new challenges regard-
ing their final use are posed. In this work, we present a solu-
tion for improving the quality of facial recognition by pre-
training the face image encoder with unlabeled data using

RB-WebFace
TPR @ FPR=10−3 ↑ TPR @ FPR=10−4 ↑

Cauc. Afr. Asian Indian Cauc. Afr. Asian Indian
ArcFace R-50 89.86 86.73 94.31 93.82 81.48 76.80 87.47 86.89
+ Dprior 93.54 91.51 96.51 96.17 86.84 83.74 91.74 91.19
+ 1.3M interps 91.87 89.07 96.08 95.55 84.65 79.97 91.13 90.30
+ 6M interps 89.48 86.85 94.92 94.22 80.95 77.00 88.75 87.94

Table 7: In this experiment, instead of pretraining our
model as an encoder for StyleGAN, we use the StyleGAN
and the trained encoder to draw samples from the learned
face distribution and add them to our dataset. The results
indicate that interpolation-based procedure, despite being
more straightforward than the proposed pretraining-based
scheme, is actually less efficient.

StyleGAN and encoder. Furthermore, we additionally re-
lease two training datasets for unsupervised pretraining and
one large-scale protocol for bias estimation. We show that
we are able to tune the performance on different ethnicities
by altering the composition of the unlabeled prior datasets.
We hope that the released datasets, together with the proto-
col, will drive forward the research on mitigating the face
recognition biases using self-supervised approaches.

There are several directions for possible future work that
we foresee. First, integrating the two steps of pretraining
and fine-tuning into one would help to avoid forgetting of
the pretrained weights. Second, publicly available datasets
often don’t possess enough variability (both in terms of cap-
ture conditions and demographics) [25] and typically fea-
ture only low-resolution images which might be a blocking
factor for the fairness research [49, 30]. Accordingly, the
results on the newly assembled RB-WebFace benchmark
can be analyzed more thoroughly, which can bring new in-
sights about the factors positively affecting bias mitigation
in real-world scenarios. Finally, various architectures typi-
cally used for self-supervised learning (such as transformers
or highly scalable generative models [43]), might allow for
the construction of more flexible methods due to heteroge-
neous inputs and outputs.

Legal concerns. The collected unlabeled data was col-
lected anonymously in accordance with Standard YouTube
License and CC YouTube License and does not contain per-
sonally identifiable information (PII). The data is released
only in the form of links to YouTube videos and the corre-
sponding timestamps, fully following good practice of sim-
ilar data collection [10, 17, 32] and with the data subjects
protection as per Art. 14 5(b) GDPR law.
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