
SwiftFormer: Efficient Additive Attention for Transformer-based
Real-time Mobile Vision Applications

Abdelrahman Shaker1∗ Muhammad Maaz1 Hanoona Rasheed1 Salman Khan1

Ming-Hsuan Yang2,3,4 Fahad Shahbaz Khan1,5

1Mohamed bin Zayed University of AI 2University of California, Merced
3Yonsei University 4Google Research 5Linköping University

Abstract

Self-attention has become a defacto choice for captur-
ing global context in various vision applications. However,
its quadratic computational complexity with respect to im-
age resolution limits its use in real-time applications, espe-
cially for deployment on resource-constrained mobile de-
vices. Although hybrid approaches have been proposed to
combine the advantages of convolutions and self-attention
for a better speed-accuracy trade-off, the expensive matrix
multiplication operations in self-attention remain a bottle-
neck. In this work, we introduce a novel efficient additive
attention mechanism that effectively replaces the quadratic
matrix multiplication operations with linear element-wise
multiplications. Our design shows that the key-value inter-
action can be replaced with a linear layer without sacrific-
ing any accuracy. Unlike previous state-of-the-art methods,
our efficient formulation of self-attention enables its usage
at all stages of the network. Using our proposed efficient
additive attention, we build a series of models called “Swift-
Former” which achieves state-of-the-art performance in
terms of both accuracy and mobile inference speed. Our
small variant achieves 78.5% top-1 ImageNet-1K accuracy
with only 0.8 ms latency on iPhone 14, which is more ac-
curate and 2× faster compared to MobileViT-v2. Our code
and models: https://tinyurl.com/5ft8v46w

1. Introduction
In recent years, transformer models have shown remark-
able success in various vision applications such as classi-
fication [8, 44, 24, 23, 9], detection [2, 59, 33, 56, 28], and
segmentation [4, 40]. However, deploying these models on
resource-constrained mobile devices for real-time applica-
tions remains challenging due to their inherently complex
nature [20, 29]. Specifically, vision transformers (ViTs)
rely on global self-attention, which has a quadratic com-

*Corresponding author: abdelrahman.youssief@mbzuai.ac.ae

Figure 1: Latency vs Accuracy Comparison. Compared
to the recent EfficientFormer-L1 [20], our SwiftFormer-L1
achieves an absolute gain of 1.7% in terms of top-1 accu-
racy with the same latency and without requiring any neural
architecture search.

plexity with respect to the input image resolution, mak-
ing it impractical for deployment on low-powered mobile
devices [31]. As a result, convolutional neural networks
(CNNs) are still the preferred choice for real-time deploy-
ment on mobile devices, primarily because the convolution
operation is computationally efficient [39, 15]. However, a
major limitation of CNNs is their reliance on local connec-
tions and stationary weights, which can limit their ability to
adapt to variable input resolutions and capture long-range
dependencies in the data. Therefore, developing more effi-
cient and flexible models that combine the strengths of both
CNNs and transformers is critical, particularly for mobile
devices with limited computational resources.

To achieve this goal, several hybrid approaches have

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

17425

been proposed that use lightweight CNN modules in the
high-resolution early stages and self-attention in the low-
resolution later stages [55, 29, 20]. This approach effec-
tively increases the receptive field of the network and strives
to achieve a trade-off between speed and accuracy. Further-
more, different efficient variants of computing self-attention
have been proposed to reduce the model complexity. These
include computing attention across feature dimensions to
implicitly model the global context [29], computing atten-
tion within local windows [24], pooling spatial features be-
fore applying self-attention [9], and sparsely attending to a
fixed number of tokens [34], to name a few.

Although these approaches effectively reduce network
complexity, they still involve inefficient matrix multiplica-
tion operations that significantly impact latency on mobile
devices. To address this issue, Mehta et al. [31] propose
a separable self-attention mechanism that replaces matrix
multiplication operations to element-wise multiplications.
This is achieved by projecting queries to context scores, fol-
lowed by element-wise multiplication with keys to calculate
context vectors for encoding global context.

In this work, we propose efficient additive attention,
which eliminates the need for expensive matrix multipli-
cation operations in computing self-attention. Additionally,
we propose to compute the global context using only the
query-key interactions followed by a linear transformation,
without requiring explicit key-value interactions. This sig-
nificantly reduces the computational complexity and en-
ables us to use the proposed attention block in all stages
of the network. Our contributions are as follows:

• We introduce efficient additive attention, a new ap-
proach for computing self-attention in vision back-
bones that eliminates the need for expensive matrix
multiplication operations, significantly reducing the
computational complexity of the model.

• Unlike previous methods, our proposed efficient atten-
tion design can be used at all stages of the network,
enabling more effective contextual information capture
and achieving superior speed-accuracy trade-off.

• We build a series of efficient generic classification
models called “SwiftFormer”, which utilize our pro-
posed efficient additive attention. Our small model
achieves 78.5% top-1 ImageNet-1K [7] accuracy while
running at only 0.8 ms latency on iPhone 14. More-
over, our large model achieves 83.0% accuracy with a
latency of only 1.9 ms. Our model achieves state-of-
the-art performance, outperforming recent MobileViT-
v2 [31] and EfficientFormer [20] by obtaining a better
trade-off between accuracy and latency (see Fig. 1).

2. Related Work
Efficient CNNs: Designing efficient CNNs for mobile vi-
sion applications has received much attention in recent
years. MobileNet architectures [16, 39, 15] propose depth-
wise separable convolutions as well as efficient inverted
residual blocks for improved performance on various vi-
sion tasks. Other methods aim to improve the efficiency
by leveraging depth-wise dilated convolutions [32], chan-
nel shuffling and pointwise group convolutions [57, 27],
network pruning [11, 50], low bit-width [1, 17], and neu-
ral architecture search [41, 15]. CNN-based methods are
well-performing, efficient, and fast to train and run on edge
devices, resulting in widespread usage in the industry. How-
ever, they are spatially local and lack global interaction be-
tween the features, which deeply affects their performance.
Efficient Transformers: ViTs [8] have been widely used in
numerous vision tasks, and significant advances have been
made in terms of data efficiency [22, 44], transformer ar-
chitecture [30, 20, 3, 54], and token mechanisms [43, 52].
Reducing the number of visual tokens is a major modifica-
tion in the transformer architecture for efficient deployment.
Instead of using a fixed feature representation through the
whole architecture, some methods employ a hierarchical de-
sign where the resolution is gradually decreased through the
stages, including down-sampling techniques [9, 40, 38, 14]
and pyramidal structures [47, 49]. Recently, a few meth-
ods [37, 10, 34] propose token sparsification techniques to
encode only a subset of the most informative tokens.

Numerous approaches have recently been proposed to
reduce the quadratic complexity of self-attention, the com-
putational bottleneck in transformer-based architectures, by
computing its approximated variants [34, 29, 31, 46, 19, 5,
45]. EdgeViT [34] uses a global sparse attention module
attending only to a few tokens to improve the efficiency,
while [48] down-samples the key and value vectors that lead
to a better efficiency-accuracy trade-off. GCViT [12] uses
a local-global attention mechanism by employing the inter-
actions between a global query and local key and value to
capture the contextual information. This approach enables
the model to encode both local and global representations
efficiently. EdgeNeXt [29] adopts transposed self-attention
operation to compute the attention maps across the channel
dimension instead of the spatial dimension, followed by to-
ken mixing, to have a linear complexity with respect to the
number of tokens. Reformer [19] replaces the dot-product
attention with a locality-sensitive hashing to group the to-
kens and reduced the complexity from O(n2) to O(n log n).
However, this design is only efficient on longer sequences,
which is typically not the case for ViTs. LinFormer [46] is
a low-rank matrix factorization method that approximates
the self-attention matrix with a low-rank matrix, reducing
the complexity from O(n2) to O(n). Although matrix fac-
torization methods theoretically reduce the complexity of

17426

self-attention, they use expensive projections for comput-
ing attention, which may not reflect the reduction in FLOPs
and parameters into actual speed on mobile platforms.

Although these methods show promise and have reduced
the complexity of self-attention theoretically, they are in-
adequate for reducing the inference speed for mobile de-
ployment. Since the complexity of the multi-headed self-
attention (MHSA) is higher in the earlier stage compared to
the last stages, EfficientFormer [20] incorporates MHSA in
the last stage only to learn contextual information from the
high-level features without increasing the inference speed
significantly. Recently, MobileViT-v2 [31] proposes sep-
arable self-attention that uses element-wise operations in-
stead of the dot-product to compute the attention maps with
linear complexity. Different from the existing approaches,
we propose a consistent hybrid design with an efficient addi-
tive attention mechanism to model the contextual informa-
tion with linear complexity. Instead of capturing the pair-
wise interactions between keys, queries, and values using
the dot-product, we use element-wise operations with learn-
able attention weights to model the interactions between
query and keys only, leading to better inference speed.

3. Method
Motivation: To motivate our method, we first distinguish
three desirable characteristics to be considered when de-
signing an efficient yet accurate approach for resource con-
straint mobile devices.
Efficient Global Context Modeling: As discussed earlier,
most existing approaches either employ the standard MHSA
or an approximated variant to learn the global context.
However, they struggle to operate as fast as MobileNets
on resource-constrained devices. This is likely due to the
computation-intensive multiplicative operations during at-
tention computation or reliance on advanced reshaping and
indexing operations in these approaches. For instance, the
recent MobileViT-v2 [31] is 2× slower than MobileNet-
v2 [39]. Instead of using matrix multiplications, we argue
that encoding the global context using an efficient additive
attention design can reduce the operations with respect to
the number of tokens. This is expected to help operate at
comparable speed and model size, while achieving superior
accuracy compared to MobileNets.
Rethinking key-value interactions: Other than multiplica-
tive operations during attention computation, additive atten-
tion has been recently explored in the NLP domain [51].
However, in the standard form, it performs three-step pro-
cessing to model query, key, and value interactions. Each
step feeds into the subsequent one, thereby requiring se-
quential processing. Here, we rethink the additive attention
for vision tasks by alleviating the need to compute explicit
interactions between key-value. We argue that eliminat-
ing key-value interactions and replacing them with a sim-

ple linear transformation empirically encodes better contex-
tual representation. Our design encodes only global queries
and key interactions to learn the global contextual informa-
tion, followed by a linear transformation to compute global
context-aware attention weights.
Consistent Hybrid Design: Most existing works employ
MHSA or the approximated variant in the last stages, while
avoiding its usage in the earlier stages. This is because
the computational complexity of MHSA grows quadrati-
cally with the length of the tokens, making it impractical
to incorporate during the initial stages. This constraint adds
to the design complexity and requires a careful selection
of stages, where MHSA can be applied. In contrast, our
proposed SwiftFormer module has linear complexity with
respect to the token length and can be incorporated in all
stages to learn consistent global context at each scale. This
consistency improves the model performance and makes it
more generalizable and scalable for high-resolution images.

3.1. Overview of Attention Modules

Vision transformer models are built upon the self-attention
(see Fig. 2 (a)), which can effectively model the interactions
between the input tokens. Specifically, the self-attention has
x as an input, where x ∈ Rn×d, comprising n tokens with
d-dimensional embedding vector. The input x is projected
to query (Q), key (K), and value (V) using three matrices,
WQ, WK, and WV. Each self-attention layer comprises h
heads, which allows the model to attend to different views
of the input. The self-attention can be described as:

x̂ = Softmax
(Q ·K⊤

√
d

)
·V. (1)

The attention scores between each pair of tokens in Q and
K are computed using the dot-product operation. Next,
these scores are normalized followed by Softmax to weigh
the interactions between the tokens. Finally, the weighted
interactions are multiplied by V using the dot-product op-
eration to produce the final weighted output. Overall, the
complexity of the self-attention is O(n2 · d), where n is
the number of tokens and d is the hidden dimension. The
computational and memory demands of Q · K⊤ increase
quadratically as the number of tokens grows, leading to
slow inference speed and high memory usage, making it
impractical to run in real-time for long sequences.

To alleviate this issue, [29] proposes the transpose self-
attention (see Fig. 2 (b)) to reduce the complexity from
quadratic to linear with respect to the number of tokens.
Here, the dot-product operation is applied across the chan-
nel dimension instead of the spatial dimension. This allows
the model to learn feature maps with implicit contextual
representation. The attention can be described as:

x̂ = V · Softmax
(Q⊤ ·K√

d

)
. (2)

17427

Linear

Transpose

1

...

2 N

Linear

Transpose

Linear

Context vector

...

Linear

Linear

+

Global queries

Element-wise summationSoftmax Dot product Broadcasted element-wise multiplication

a) Self-attention b) Transpose Self-attention c) Separable Self-attention d) Efficient Additive Attention

1

...

2 N 1

...

2 N

Linear Linear Linear

1

...

2 N 1

...

2 N 1

...

2 N

Linear Linear Linear

...

1

...

2 N 1

...

2 N

Linear Linear

Linear

Linear Linear

1 2 N 1

...

2 N

Norm

Global

...

Context
scores

context...

Figure 2: Comparison with different self-attention modules. (a) is a typical self-attention used in ViTs [8]. (b) is the trans-
pose self-attention used in EdgeNeXt [29], where the self-attention operation is applied across channel feature dimensions
(d×d) instead of the spatial dimension (n×n). (c) is the separable self-attention of MobileViT-v2 [31], it uses element-wise
operations to compute the context vector from the interactions of Q and K matrices. Then, the context vector is multiplied by
V matrix to produce the final output. (d) Our proposed efficient additive self-attention. Here, the query matrix is multiplied
by learnable weights and pooled to produce global queries. Then, the matrix K is element-wise multiplied by the broadcasted
global queries, resulting the global context representation.

The transpose self-attention has a computational complex-
ity of O(n · d2). While this complexity scales linearly with
the number of tokens n, it remains quadratic with respect to
the feature dimension d. Further, the dot-product operation
is still utilized between the query and key matrices.

The separable self-attention mechanism (see Fig. 2 (c))
aims to address the bottleneck of the standard self-attention.
Here, the interactions between the queries (Q), keys (K),
and values (V) are encoded using element-wise operations.
First, the query matrix Q is projected to produce a vector q
of dimensions n× 1, and then fed into Softmax to generate
the context scores, which captures the importance of each
query element. Then, the context scores are multiplied by
the key matrix K and pooled to compute a context vector,
which encodes the contextual information. Finally, the con-
text vector is multiplied element-wise with the value matrix
V to propagate the contextual information and produce the
final output x̂. It can be summarized as:

x̂ = V ∗
∑

K ∗ Softmax(q). (3)

Here, ∗ denotes the element-wise multiplication operation.

3.2. Efficient Additive Attention

The typical additive attention mechanism in NLP captures
the global context by utilizing pairwise interactions between
the tokens via element-wise multiplications instead of using
dot-product operation. It encodes the relevance scores for
the contextual information of the input sequence based on

the interactions of the three attention components (Q, K,
V). In contrast, we show that key-value interactions can
be removed without sacrificing the performance and only
focusing on effectively encoding query-key interactions by
incorporating a linear projection layer is sufficient to learn
the relationship between the tokens (see Fig. 2 (d)). This ap-
proach, named efficient additive attention, has a faster infer-
ence speed and produces more robust contextual representa-
tions as demonstrated by our performance on image classi-
fication, object detection, and segmentation tasks (Sec. 4).
Specifically, the input embedding matrix x is transformed
into query (Q) and key (K) using two matrices Wq, Wk,
where Q, K ∈ Rn×d, Wq, Wk ∈ Rd×d, n is the token
length and d is the dimensions of the embedding vector.
Next, the query matrix Q is multiplied by learnable param-
eter vector wa ∈ Rd to learn the attention weights of the
query, producing global attention query vector α ∈ Rn as:

α = Q ·wa/
√
d (4)

Then, the query matrix is pooled based on the learned
attention weights, resulting in a single global query vector
q ∈ Rd as follows:

q =

n∑
i=1

αi ∗Qi. (5)

Next, the interactions between the global query vector q
∈ Rd and key matrix K ∈ Rn×d are encoded using

17428

Pa
tc

h
Em

be
d

C
on

v
En

co
de

r

Sw
ift

 F
or

m
er

Stage 1
C

on
v

En
co

de
r

Sw
ift

 F
or

m
er

Stage 2

C
on

v
En

co
de

r

Sw
ift

 F
or

m
er

Stage 3

C
on

v
En

co
de

r

Sw
ift

Fo
rm

er

Stage 4

+

D
W

C
on

v

N
or

m

G
eL

U DWConv

Conv
Local

Efficient Additive
Attention Li

ne
ar

Sw
ift

Fo
rm

er

Sw
ift

Fo
rm

er

Sw
ift

Fo
rm

er

Conv. Encoder SwiftFormer Encoder

C
on

v

C
on

v

Representation

Figure 3: Top Row: Overview of our proposed architec-
ture. The input image is fed into the patch embedding
layer, followed by hierarchical stages at four different scales
{ 1
4 ,

1
8 ,

1
16 ,

1
32}. Each stage is consistent and compose of

Conv. Encoder blocks followed by SwiftFormer Encoder.
Between two consecutive stages, we incorporate downsam-
pling layer to reduce the spatial size by a factor of two and
increase the feature dimensions. Bottom Row: We show
the design of the Conv. Eencoder (left) and the SwiftFormer
Encoder (right). The Conv. Encoder is designed to learn ef-
fective local representations and consists of 3×3 depth-wise
convolutions followed by two point-wise convolutions for
channel mixing. The SwiftFormer Encoder aims to learn
enriched local-global representations. It begins with local
convolutional layers to extract local features, followed by
the efficient additive attention module (see Fig. 2 (d)) and
linear layers.

the element-wise product to form global context (Rn×d).
This matrix shares a similarity with the attention matrix in
MHSA and captures information from every token and has
the flexibility to learn the correlation in the input sequence.
However, it is comparatively inexpensive to compute com-
pared to MHSA and has linear complexity with the token
length. Inspired by the transformer architecture, we em-
ploy a linear transformation layer to query-key interactions
to learn the hidden representation of the tokens. The output
of the efficient additive attention x̂ can be described as:

x̂ = Q̂+T
(
K ∗ q

)
. (6)

where Q̂ denotes to the normalized query matrix, T denotes
to the linear transformation.

3.3. SwiftFormer Architecture

Our SwiftFormer is based on the recently introduced Ef-
ficientFormer [20]. The main idea of EfficientFormer is
to introduce 4D MetaBlocks based on PoolFormer [53]
to learn local representations efficiently, while using 3D
MetaBlocks based on self-attention to encode global con-
text. However, the performance of EfficientFormer is lim-

ited by two design choices. Firstly, it uses ineffective token
mixing, and secondly, it only employs 3D MetaBlocks in
the last stage due to quadratic complexity of MHSA. This
likely leads to inconsistent and insufficient contextual rep-
resentation. To address these limitations, our SwiftFormer
improves the token mixing by using a simple yet effective
Conv. Encoder. Further, we introduce efficient additive at-
tention module that can be incorporated in all stages (Sec.
3.2). This leads to more consistent learning of local-global
representations. It is worth mentioning that EfficientFormer
employs a latency-driven slimming method to obtain opti-
mal configurations for its model variants, which leads to
maximizing the speed. In contrast, our SwiftFormer mod-
els are built without using any neural architecture search.

Fig. 3 shows an overview of our proposed architecture.
The main components are: (i) Effective Conv. Encoder,
and (ii) SwiftFormer Encoder. In contrast to other hy-
brid designs, the proposed architecture is consistent and
has Conv. Encoders followed by SwiftFormer Encoder in
all stages. Our architecture extracts hierarchical features
at four different scales across four stages. At the begin-
ning of the network, the input image of size H×W×3
is fed through Patch Embedding layer, implemented
with two 3×3 convolutions with a stride of 2, resulting
H
4 ×

W
4 ×C1 feature maps. Then, the output feature maps

are fed into the first stage, which begins with Conv. En-
coder to extract spatial features, followed by SwiftFormer
to learn the local-global information. Between two consec-
utive stages, there is a downsampling layer to increase the
channel dimension and reduce the token length. Next, the
resulting feature maps are subsequently fed into the sec-
ond, third, and fourth stages of the architecture, produc-
ing H

8 ×
W
8 ×C2, H

16×
W
16×C3, and H

32×
W
32×C4 dimensional

feature maps, respectively. Hence, each stage learns local-
global features at different scales of the input image, which
allows the network to have enriched representation.
Effective Conv. Encoder: The baseline EfficientFormer
[20] employs 3 × 3 average pooling layers as a local token
mixer, similar to PoolFormer [53]. Although PoolFormer
layers are known for their fast inference speed, replacing
them with depth-wise convolutions does not increase the
latency. Further, it improves the performance without in-
creasing the parameters and latency. Specifically, the fea-
tures maps Xi are fed into 3 × 3 depth-wise convolution
(DWConv) followed by Batch Normalization (BN). Then,
the resulting features are fed into two point-wise convolu-
tions (Conv1) alongside GeLU activation. Finally, we in-
corporate a skip connection to enable information to flow
across the network. The Conv. Encoder is defined as:

X̂i = Conv1(Conv1,G(DWConvBN (Xi))) + Xi. (7)

where Xi refers to the input features, Conv1,G refers to
point-wise convolution followed by GeLU, DWConvBN

17429

refers to depth-wise convolution followed by Batch Nor-
malization, and X̂i refers to the output feature maps.
SwiftFormer Encoder: This module is carefully designed
to efficiently encode enriched local-global representation in
each stage. As shown in Fig. 3, the initial block of the Swift-
Former Encoder is composed of 3× 3 depth-wise convolu-
tion followed by point-wise convolution, which enables the
module to learn spatial information and encode local repre-
sentation. Then, the resulting feature maps are fed into the
efficient additive attention block, which aims to learn con-
textual information at each scale of the input size. Finally,
the output feature maps are fed into a Linear block, which
composes of two 1×1 point-wise convolution layers, Batch
Normalization, and GeLU activation to generate non-linear
features. The SwiftFormer Encoder is described as:

X̂i = Conv1(DWConvBN (X̂i)),

X̂i = QK(X̂i) + X̂i,

X̂i+1 = Conv1(ConvBN,1,G(X̂i)) + X̂i.

(8)

where ConvBN,1,G denotes to Batch Normalization, fol-
lowed by, 1×1 Conv layer, followed by GeLU, and QK de-
notes the efficient additive attention (explained in Sec. 6).

4. Experiments
We evaluate our SwiftFormer models across four down-
stream tasks: classification on ImageNet-1K [7], object de-
tection and instance segmentation on MS-COCO 2017 [21],
and semantic segmentation on ADE20K [58].

4.1. Implementation Details

ImageNet-1K [7]: All of our models are trained from
scratch on ImageNet-1K dataset for 300 epochs with
AdamW optimizer [26] and cosine learning rate scheduler
with an initial learning rate of 1e−3. We use a linear warm-
up for 5 epochs. We use an image resolution of 224×224
for both training and testing. Following the training recipe
of [20], we use the same teacher model for distillation [36].
The experiments are conducted with PyTorch 1.12 [35] us-
ing 8 NVIDIA A100 GPUs. The latency is measured using
iPhone 14 (iOS 16), and the throughput is measured using
A100 40 GB GPU. For latency measurements, we compile
the models using CoreML library [6] and perform inference
with a batch size of 1. For the throughput on A100, the
inference is performed using a batch size of 128.
MS-COCO 2017 [21]: We use our ImageNet pre-trained
models as the backbones in Mask-RCNN framework for
object detection and instance segmentation on MS-COCO
2017 dataset. The dataset contains 118K training and 5K
validation images. Following [20], we finetune our models
for 12 epochs with an image size of 1333 × 800 and batch
size of 32 using AdamW optimizer. We use learning rate of

2e−4 and report the performance for detection and instance
segmentation in terms of mean average precision (mAP).
ADE20K [58]: The dataset comprises 20K training and
2K validation images and contains 150 class categories
for scene parsing. Similar to [20] we use our ImageNet
pre-trained models to extract image features and semantic
FPN [18] as a decoder for segmentation. The model is
trained with an image size of 512 × 512 for 40K iterations
with a batch size of 32 using AdamW optimizer. We use
poly learning rate scheduling with an initial learning rate of
2e−4. We report the semantic segmentation performance in
terms of mean intersection over union (mIoU).

4.2. Baseline Comparison

Table 1 illustrates the impact of integrating our proposed
contributions into the baseline EfficientFormer-L1 [20]
model in terms of ImageNet-1K top-1 accuracy and infer-
ence speed. The first row shows the results of the baseline
model, which only includes the self-attention based trans-
former block in the final stage of the network and achieves
a top-1 accuracy of 79.2% with a latency of 1.1 ms on an
iPhone 14 mobile device. The second row replaces the pool
mixers in the baseline model with our proposed Conv. En-
coder, resulting in an improvement in performance to 79.9%
while maintaining the same latency. In the third row, we
replace the transformer block in the baseline with our pro-
posed SwiftFormer Encoder built on the efficient additive
attention. Although the performance drops by 0.2%, the
inference speed improves by 0.1 ms, and the model has lin-
ear complexity with the number of tokens. This enables
us to integrate the SwiftFormer Encoder into all stages and
achieve better performance while maintaining the same in-
ference speed as of baseline (first versus last row).

Method Latency (ms) Top-1 (%)

EfficientFormer-L1 (Baseline) 1.1 79.2
+ Replace Pool Mixer by effective Conv. Encoder 1.1 79.9
+ Replace Transformer block by SwiftFormer Encoder 1.0 79.7
+ Incorporate SwiftFormer block across all stages 1.1 80.9

Table 1: Baseline comparison between our SwiftFormer-L1
and EfficientFormer-L1 [20] on the ImageNet-1K dataset.
The latency is measured on iPhone14 Neural Engine.

4.3. Image Classification

Table 2 presents a comparison of our proposed SwiftFormer
models (XS, S, L1, and L3) with previous state-of-the-art
ConvNets, transformer-based, and hybrid models. We show
that our models set new state-of-the-art results, and out-
perform the recently introduced EfficientFormer [20] and
MobileViT-v2 [31] in all model variants. This comprehen-
sive evaluation shows the advantage of our proposed models
in terms of both accuracy and latency on mobile devices.

17430

Model Type Latency (ms) ↓ Throughput (A100) ↑ Params(M) ↓ GMACs ↓ Neural Search Top-1(%) ↑
MobileNet-v2×1.0 [39] ConvNet 0.8 9889 3.5 0.3 ✗ 71.8

MobileNet-v3-Large×0.75 [15] ConvNet 0.8 10934 4.0 0.2 ✓ 73.3
EdgeViT-XXS [34] Hybrid 1.7 5965 4.1 0.6 ✗ 74.4
MobileViT-XS [30] Hybrid 1.5 3707 2.3 0.7 ✗ 74.8
SwiftFormer-XS Hybrid 0.7 6034 3.5 0.6 ✗ 75.7

MobileNet-v2×1.4 [39] ConvNet 0.9 7447 6.1 0.6 ✗ 74.7
MobileNet-v3-Large [15] ConvNet 0.9 10351 5.4 0.3 ✓ 75.1

EfficientNet-b0 [42] ConvNet 1.3 8537 5.3 0.4 ✓ 77.1
DeiT-T [44] Transformer 3.8 5860 5.7 3.8 ✗ 72.2

EdgeViT-XS [34] Hybrid 2.7 4812 6.7 1.1 ✗ 77.5
MobileViT-v2×1.0 [31] Hybrid 1.7 3201 4.9 1.8 ✗ 78.1

SwiftFormer-S Hybrid 0.8 5051 6.1 1.0 ✗ 78.5
MobileFormer-508M [3] Hybrid 3.0 4443 14.0 0.5 ✗ 79.3

PoolFormer-S12 [53] Pool 1.2 3227 12.0 1.8 ✗ 77.2
EdgeViT-S [34] Hybrid 3.5 4256 13.1 1.9 ✗ 81.0

EfficientFormer-L1 [20] Hybrid 1.1 5046 12.3 1.3 ✓ 79.2
MobileViT-v2×1.5 [31] Hybrid 3.4 2356 10.6 4.0 ✗ 80.4

SwiftFormer-L1 Hybrid 1.1 4469 12.1 1.6 ✗ 80.9
ResNet-50 [13] ConvNet 1.9 4835 25.5 4.1 ✗ 78.5

PoolFormer-S36 [53] Pool 2.8 1114 31.0 5.0 ✗ 81.4
ConvNeXt-T [25] ConvNet 2.5 3235 28.6 4.5 ✗ 82.1

DeiT-S [44] Transformer 9.9 2990 22.5 4.5 ✗ 81.8
Swin-T [25] Transformer NA 2635 28.3 4.5 ✗ 81.3

MobileViT-v2×2.0 [31] Hybrid 5.0 1906 18.5 7.5 ✗ 81.2
EfficientFormer-L3 [20] Hybrid 2.0 2691 31.3 3.9 ✓ 82.4

SwiftFormer-L3 Hybrid 1.9 2890 28.5 4.0 ✗ 83.0

Table 2: Comparison of our proposed SwiftFormer with the state-of-the-art counterpart models on ImgeNet-1K. The
latency is measured on iPhone 14 Neural Engine (iOS 16) and the throughput is measured on Nvidia A100 GPU. Our models
run faster than MobileNets, Hybrid, and Transformer models, with a better trade-off between accuracy and model complexity.
The error for the latency measurement is less than ±0.1 ms. The input size remains consistent at 224×224 for all models,
except for the MobileViT [30] and MobileViT-v2 [31] variants, which employ a larger dimension of 256×256. Our results
are shown in bold for all model variants.

Comparison with ConvNets: Our SwiftFormer models
surpass the widely used lightweight CNNs counterparts sig-
nificantly in terms of top-1 accuracy, while running faster
than the highly optimized MobileNet-v2 and MobileNet-
v3 on an iPhone 14 mobile device. Specifically, our
SwiftFormer-XS runs 0.1 ms faster than MobileNet-v2×1.0
and MobileNet-v3-Large×0.75 and achieve better top-1
accuracy with a margin of 3.9% and 2.4% respectively.
Our SwiftFormer-S runs faster than EfficientNet-b0 [42] by
1.6× and achieves 1.4% higher top-1 accuracy. Further,
our SwiftFormer-L3 achieves 4.5% and 0.9% gain in top-
1 accuracy over ResNet-50 and ConvNeXt-T, respectively,
while running at the same latency as ResNet-50 and 1.3×
faster than ConvNeXt-T. This demonstrates that our Swift-
Former models, powered by our proposed efficient additive
attention, run faster than the lightweight CNN models on
mobile devices and achieve superior performance. Recent
device-level optimizations for CNN-based models, such as
dedicated hardware implementations for convolutions with
batch normalization and non-linearity, likely contribute to
the high throughput of fully CNN-based models on A100.

Comparison with transformer models: Although trans-
former models usually outperform CNN-based models in

terms of accuracy, they tend to suffer from high latency
when running on resource-constrained mobile devices. For
instance, DeiT-S, which has a similar model size to ResNet-
50 and achieves higher top-1 accuracy by 3.3%, but ResNet-
50 runs approximately 5.2× faster on an iPhone 14 mobile
device. In contrast, our SwiftFormer-L3 model achieves
1.2% higher accuracy than DeiT-S, while running at the
same speed as ResNet-50. Further our SwiftFormer-S
model runs approximately 4.7× faster than DeiT-T on an
iPhone 14 mobile device and has 6.3% better accuracy.

Comparison with hybrid models: Although most exist-
ing hybrid approaches achieve higher accuracy compared
to their lightweight CNN counterparts, they still under-
perform the fully CNN-based models in terms of latency
due to the quadratic complexity of multi-head self-attention.
For example, EdgeViT-XXS runs at approximately 2×
slower compared to MobileNet-v3-Large×0.75. On the
other hand, our SwiftFormer-XS has better latency as com-
pared to lightweight CNNs and approximately is 2× faster
than EdgeViT-XXS and MobileViT-XS, with an overall
1.3% and 0.9% higher top-1 accuracy respectively. Fur-
ther, our SwiftFormer-L1 model is 3× faster than the state-
of-the-art MobileViT-v2×1.5 with 0.5% better top-1 ac-

17431

Backbone
Detection & Instance Segmentation Semantic

APbox APbox
50 APbox

75 APmask APmask
50 APmask

75 mIoU(%)

ResNet18 [13] 34.0 54.0 36.7 31.2 51.0 32.7 32.9
PoolFormer-S12 [53] 37.3 59.0 40.1 34.6 55.8 36.9 37.2

EfficientFormer-L1 [20] 37.9 60.3 41.0 35.4 57.3 37.3 38.9
SwiftFormer-L1 41.2 63.2 44.8 38.1 60.2 40.7 41.4

ResNet50 [13] 38.0 58.6 41.4 34.4 55.1 36.7 36.7
PVT-S [48] 40.4 62.9 43.8 37.8 60.1 40.3 39.9

PoolFormer-S24 [53] 40.1 62.2 43.4 37.0 59.1 39.6 40.3
Swin-T [24] 42.2 64.4 46.2 39.1 64.6 42.0 41.5

EfficientFormer-L3 [20] 41.4 63.9 44.7 38.1 61.0 40.4 43.5
SwiftFormer-L3 42.7 64.4 46.7 39.1 61.7 41.8 43.9

Table 3: Results using SwiftFormer as a backbone on dense prediction tasks: Object detection and instance segmentation
on COCO, whereas semantic segmentation on ADE20K. Our approach outperforms EfficientFormer on all three tasks.

Figure 4: Results on COCO. Examples for object detection and instance segmentation on the COCO 2017 validation set.
Our SwiftFormer-L1 model can accurately detect and segment instances in images.

Figure 5: Qualitative results on ADE20K. The qualitative examples for semantic segmentation on the ADE20K validation
set. Top: Ground truth masks. Bottom: The semantic segmentation results. Our model can accurately segment various
indoor and outdoor scenes.

curacy. Our SwiftFormer-L3 model achieves 83.0% top-1
accuracy and runs at 1.9 ms, which is 2.6× faster than
MobileViT-v2×2.0 with an absolute 1.8% accuracy gain.
Knowledge distillation (KD): It is worth mentioning that
we use the same teacher model of DeiT [44] and Effi-
cientFormer [20] in Table 2. We perform a baseline com-
parison to show the efficiency of our method without us-
ing KD. EfficientFormer-L1 achieves 77.3% accuracy w/o
KD, compared to 79.2% with KD. Our SwiftFormer-L1
achieves 79.8% w/o KD, compared to 80.9% with KD.
This shows that our approach achieves a higher absolute
gain of 2.5% over EfficientFormer-L1, when not using KD.

Our SwiftFormer-XS and SwiftFormer-S w/o KD achieve
74.1% and 77.0%, respectively.

4.4. Object Detection and Instance Segmentation

Table 3 compares the object detection and instance seg-
mentation results of Mask-RCNN with different lightweight
backbones. Our SwiftFormer-L1 backbone achieves 41.2
AP box, surpassing the lightweight ResNet18 and
PoolFormer-S12 backbones by 7.2 and 3.9 points respec-
tively. Further, it performs better than the previous state-
of-the-art EfficientFormer-L1 backbone by 3.3 AP box. For
instance segmentation, our method achieves 38.1 AP mask

17432

score which is 2.7 points better than the previous state-
of-the-art. Similar trend is observed for SwinftFormer-
L3 backbone, which surpasses the previous state-of-the-art
EfficientFormer-L3 backbone by 1.3 points and 1.0 points
in AP box and mask respectively. The improvement in
the downstream detection and instance segmentation tasks
illustrates the effectiveness of our SwiftFormer backbone
models for the dense prediction tasks.

4.5. Semantic Segmentation

Table 3 shows the semantic segmentation results of Swift-
Former backbone-based models as compared to previously
proposed backbones. We achieve 41.4% mean intersec-
tion over union score using SwiftFormer-L1, surpassing
ResNet18 by 8.5%, PoolFormer-S12 by 4.2%, and the
state-of-the-art EfficientFormer-L1 by 2.5%. Similarly,
our SwiftFormer-L3 backbone-based segmentation models
achieve 43.9 mIoU, surpassing all previous methods.

4.6. Qualitative Results

Fig. 4 shows the qualitative results of our detection and
instance segmentation model on COCO dataset. We also
show in Fig. 5 qualitative examples for semantic segmen-
tation results on the ADE20K dataset. Additionally, we
demonstrate in Fig. 6 a baseline comparison with the base-
line EfficentFormer-L1. The baseline misclassifies a bird as
a sheep in the first example and as a bear in the second ex-
ample, while misclassifies kites as birds in the third exam-
ple. Our SwiftFormer-L1 accurately detects and segments
objects in these examples, which demonstrates the ability
of SwiftFormer to accurately identify and segment objects
within a diverse range of indoor and outdoor settings.

Figure 6: Qualitative comparison between EfficientFormer-
L1 (top) and our SwiftFormer-L1 (bottom) on images from
COCO val set for detection and instance segmentation.

5. Ablation study
To show the effectiveness of the proposed efficient addi-
tive attention, we conduct a comparison with other attention
variants over SwiftFormer-L1 in Table. 4. It is notable that

Attention Method Latency (ms)↓ Throughput↑ Top-1 (%)↑
Self-attention (Heads=2) 8.5 3316 80.6
Self-attention (Heads=4) 18.0 3035 81.1
Transpose self-attention (Heads=2) 2.0 3671 80.2
Separable self-attention 1.4 3940 80.6
Efficient Additive Attention (Ours) 1.1 4469 80.9

Table 4: Quantitative analysis of Fig. 2. We replace our
attention module with these methods in the same setting.

Figure 7: Visualization of the learned global query vector of
the efficient additive attention from SwiftFormer-L1 model
at different stages. Both the first and last stages show that
the global context is captured effectively.

the proposed efficient additive attention achieves the best
trade-off between latency and top-1 accuracy. To demon-
strate further insights on the interpretability of the proposed
efficient additive attention, we visualize the learned global
attention query vector α of Eq. 4 of the first and last stages
of the network. The global query vector of the efficient ad-
ditive attention aligns with the semantics of the image and
hence acts as an informative source in the additive attention
mechanism. Also, it localizes the features of the objects
accurately with fine details in the first stage.

6. Conclusion
Transformers have gained popularity in vision applications
due to their effective use of self-attention computation.
However, their use in mobile vision applications is chal-
lenging due to the quadratic nature of self-attention, which
is computationally expensive on mobile devices. In this
work, we propose a novel efficient additive attention that re-
places the expensive matrix multiplication operations with
element-wise operations and eliminates explicit keys-values
interaction. Our proposed attention is linear with respect to
the input tokens and used in all stages of the network.

Although we achieve a superior balance between accu-
racy and efficiency, we observe that in the case of dense
small object detection, our approach is less accurate likely
due to not using positional encoding or attention biases. Our
future work is to improve the performance of efficient addi-
tive attention in dense prediction tasks.

17433

References
[1] Adrian Bulat and Georgios Tzimiropoulos. Bit-mixer:

Mixed-precision networks with runtime bit-width selection.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021.

[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European Confer-
ence on Computer Vision, 2020.

[3] Yinpeng Chen, Xiyang Dai, Dongdong Chen, Mengchen
Liu, Xiaoyi Dong, Lu Yuan, and Zicheng Liu. Mobile-
former: Bridging mobilenet and transformer. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

[4] Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan-
der Kirillov, and Rohit Girdhar. Masked-attention mask
transformer for universal image segmentation. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2022.

[5] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting the design of spatial attention in vision
transformers. In Advances in Neural Information Processing
Systems, 2021.

[6] CoreMLTools. Use coremltools to convert models from
third-party libraries to core ml., 2021.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2009.

[8] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

[9] Haoqi Fan, Bo Xiong, Karttikeya Mangalam, Yanghao Li,
Zhicheng Yan, Jitendra Malik, and Christoph Feichten-
hofer. Multiscale vision transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vi-
sion, 2021.

[10] Mohsen Fayyaz, Soroush Abbasi Kouhpayegani, Farnoush
Rezaei Jafari, Eric Sommerlade, Hamid Reza Vaezi Joze,
Hamed Pirsiavash, and Juergen Gall. Adaptive token sam-
pling for efficient vision transformers. 2022.

[11] TSong Han, Huizi Mao, and William J. Dally. Deep com-
pression: Compressing deep neural network with pruning,
trained quantization and huffman coding. In International
Conference on Learning Representations, 2016.

[12] Ali Hatamizadeh, Hongxu Yin, Greg Heinrich, Jan Kautz,
and Pavlo Molchanov. Global context vision transformers.
In International Conference on Machine Learning, pages
12633–12646. PMLR, 2023.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 2016.

[14] Byeongho Heo, Sangdoo Yun, Dongyoon Han, Sanghyuk
Chun, Junsuk Choe, and Seong Joon Oh. Rethinking spa-
tial dimensions of vision transformers. In ICCV, 2021.

[15] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for
mobilenet-v3. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, 2019.

[16] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. CoRR,
abs/1704.04861, 2017.

[17] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,
Matthew Tang, Andrew Howard, Hartwig Adam, and Dmitry
Kalenichenko. Quantization and training of neural networks
for efficient integer-arithmetic-only inference. In CVPR,
2018.

[18] A. Kirillov, R. Girshick, K. He, and P. Dollar. Panoptic fea-
ture pyramid networks. In 2019 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), 2019.

[19] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer. In International Confer-
ence on Learning Representations, 2020.

[20] Yanyu Li, Geng Yuan, Yang Wen, Ju Hu, Georgios Evange-
lidis, Sergey Tulyakov, Yanzhi Wang, and Jian Ren. Effi-
cientformer: Vision transformers at mobilenet speed. 2022.

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
European Conference on Computer Vision, 2014.

[22] Yahui Liu, Enver Sangineto, Wei Bi, Nicu Sebe, Bruno
Lepri, and Marco De Nadai. Efficient training of visual trans-
formers with small datasets. In Advances in Neural Informa-
tion Processing Systems, 2021.

[23] Ze Liu, Han Hu, Yutong Lin, Zhuliang Yao, Zhenda Xie,
Yixuan Wei, Jia Ning, Yue Cao, Zheng Zhang, Li Dong, et al.
Swin transformer v2: Scaling up capacity and resolution. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 2022.

[24] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021.

[25] Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feicht-
enhofer, Trevor Darrell, and Saining Xie. A convnet for the
2020s. In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, 2022.

[26] Ilya Loshchilov and Frank Hutter. Decoupled weight de-
cay regularization. In International Conference on Learning
Representations, 2019.

[27] Ningning Ma, Xiangyu Zhang, Hai-Tao Zheng, and Jian Sun.
Shufflenet v2: Practical guidelines for efficient cnn architec-
ture design. In European Conference on Computer Vision,
2018.

17434

[28] Muhammad Maaz, Hanoona Rasheed, Salman Khan, Fa-
had Shahbaz Khan, Rao Muhammad Anwer, and Ming-
Hsuan Yang. Class-agnostic object detection with multi-
modal transformer. In European Conference on Computer
Vision, 2022.

[29] Muhammad Maaz, Abdelrahman Shaker, Hisham
Cholakkal, Salman Khan, Syed Waqas Zamir, Rao Muham-
mad Anwer, and Fahad Shahbaz Khan. Edgenext: Efficiently
amalgamated cnn-transformer architecture for mobile vision
applications. In CADL2022, 2022.

[30] Sachin Mehta and Mohammad Rastegari. Mobilevit: light-
weight, general-purpose, and mobile-friendly vision trans-
former. In International Conference on Learning Represen-
tations, 2022.

[31] Sachin Mehta and Mohammad Rastegari. Separable self-
attention for mobile vision transformers. Transactions on
Machine Learning Research, 2023.

[32] Sachin Mehta, Mohammad Rastegari, Linda Shapiro, and
Hannaneh Hajishirzi. Espnetv2: A light-weight, power ef-
ficient, and general purpose convolutional neural network.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019.

[33] Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng,
Houqiang Li, Yuhui Yuan, Lei Sun, and Jingdong Wang.
Conditional detr for fast training convergence. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, 2021.

[34] Junting Pan, Adrian Bulat, Fuwen Tan, Xiatian Zhu, Lukasz
Dudziak, Hongsheng Li, Georgios Tzimiropoulos, and Brais
Martinez. Edgevits: Competing light-weight cnns on mobile
devices with vision transformers. In European Conference
on Computer Vision, 2022.

[35] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison,
Andreas Kopf, Edward Yang, Zachary DeVito, Martin Rai-
son, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In
Advances in Neural Information Processing Systems, 2019.

[36] Ilija Radosavovic, Raj Prateek Kosaraju, Ross Girshick,
Kaiming He, and Piotr Dollár. Designing network design
spaces. In CVPR, 2020.

[37] Yongming Rao, Wenliang Zhao, Benlin Liu, Jiwen Lu, Jie
Zhou, and Cho-Jui Hsieh. Dynamicvit: Efficient vision
transformers with dynamic token sparsification. In Advances
in Neural Information Processing Systems, 2021.

[38] Michael Ryoo, AJ Piergiovanni, Anurag Arnab, Mostafa
Dehghani, and Anelia Angelova. Tokenlearner: Adaptive
space-time tokenization for videos. In Advances in Neural
Information Processing Systems, 2021.

[39] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey
Zhmoginov, and Liang-Chieh Chen. Mobilenet-v2: In-
verted residuals and linear bottlenecks. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 2018.

[40] Abdelrahman Shaker, Muhammad Maaz, Hanoona Rasheed,
Salman Khan, Ming-Hsuan Yang, and Fahad Shahbaz Khan.

Unetr++: Delving into efficient and accurate 3d medical im-
age segmentation. arXiv:2212.04497, 2022.

[41] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2019.

[42] Mingxing Tan and Quoc Le. EfficientNet: Rethinking model
scaling for convolutional neural networks. In Proceedings
of the 36th International Conference on Machine Learning,
2019.

[43] Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lu-
cas Beyer, Xiaohua Zhai, Thomas Unterthiner, Jessica Yung,
Daniel Keysers, Jakob Uszkoreit, Mario Lucic, et al. Mlp-
mixer: An all-mlp architecture for vision. In Advances in
Neural Information Processing Systems, 2021.

[44] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In International Conference on Machine Learning,
2021.

[45] Zhengzhong Tu, Hossein Talebi, Han Zhang, Feng Yang,
Peyman Milanfar, Alan Bovik, and Yinxiao Li. Maxvit:
Multi-axis vision transformer. In ECCV, 2022.

[46] Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and
Hao Ma. Linformer: Self-attention with linear complexity.
arXiv preprint arXiv:2006.04768, 2020.

[47] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao. Pyra-
mid vision transformer: A versatile backbone for dense pre-
diction without convolutions. In CVPR, 2021.

[48] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pyramid vision transformer: A versatile backbone for dense
prediction without convolutions. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 568–578, 2021.

[49] Wenhai Wang, Enze Xie, Xiang Li, Deng-Ping Fan, Kaitao
Song, Ding Liang, Tong Lu, Ping Luo, and Ling Shao.
Pvtv2: Improved baselines with pyramid vision transformer.
Computational Visual Media, 2022.

[50] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and
Hai Li. Learning structured sparsity in deep neural net-
works. In Advances in Neural Information Processing Sys-
tems, 2016.

[51] Chuhan Wu, Fangzhao Wu, Tao Qi, and Yongfeng Huang.
Fastformer: Additive attention can be all you need. arXiv
preprint arXiv:2108.09084, 2021.

[52] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In CVPR, 2022.

[53] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In CVPR, 2022.

[54] Haokui Zhang, Wenze Hu, and Xiaoyu Wang. Edgeformer:
Improving light-weight convnets by learning from vision
transformers. arXiv preprint arXiv:2203.03952, 2022.

17435

[55] Haokui Zhang, Wenze Hu, and Xiaoyu Wang. Parc-net: Po-
sition aware circular convolution with merits from convnets
and transformer. In European Conference on Computer Vi-
sion, 2022.

[56] Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun
Zhu, Lionel Ni, and Harry Shum. Dino: Detr with im-
proved denoising anchor boxes for end-to-end object detec-
tion. In International Conference on Learning Representa-
tions, 2022.

[57] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.
Shufflenet: An extremely efficient convolutional neural net-
work for mobile devices. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
2018.

[58] Bolei Zhou, Hang Zhao, Xavier Puig, Sanja Fidler, Adela
Barriuso, and Antonio Torralba. Scene parsing through
ade20k dataset. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2017.

[59] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang,
and Jifeng Dai. Deformable detr: Deformable transformers
for end-to-end object detection. In International Conference
on Learning Representations, 2021.

17436

