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Abstract

Temporal action localization (TAL), which involves rec-
ognizing and locating action instances, is a challenging
task in video understanding. Most existing approaches di-
rectly predict action classes and regress offsets to bound-
aries, while overlooking the discrepant importance of each
frame. In this paper, we propose an Action Sensitivity
Learning framework (ASL) to tackle this task, which aims
to assess the value of each frame and then leverage the
generated action sensitivity to recalibrate the training pro-
cedure. We first introduce a lightweight Action Sensitivity
Evaluator to learn the action sensitivity at the class level
and instance level, respectively. The outputs of the two
branches are combined to reweight the gradient of the two
sub-tasks. Moreover, based on the action sensitivity of each
frame, we design an Action Sensitive Contrastive Loss to
enhance features, where the action-aware frames are sam-
pled as positive pairs to push away the action-irrelevant
frames. The extensive studies on various action localization
benchmarks (i.e., MultiThumos, Charades, Ego4D-Moment
Queries v1.0, Epic-Kitchens 100, Thumos14 and Activi-
tyNet1.3) show that ASL surpasses the state-of-the-art in
terms of average-mAP under multiple types of scenarios,
e.g., single-labeled, densely-labeled and egocentric.

1. Introduction

With an increasing number of videos appearing online,
video understanding has become a prominent research topic
in computer vision. Temporal action localization (TAL),
which aims to temporally locate and recognize human ac-
tions with a set of categories in a video clip, is a challenging
yet fundamental task in this area, owing to its various appli-
cations such as sports highlighting, human action analysis
and security monitoring [25, 63, 46, 17, 14].

We have recently witnessed significant progress in TAL,
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† Corresponding Author.

Action Instance: clothes drying

take out clothes from laundry basket hang clothes on the hanger take out laundry basket

What helps to recognize this action?

What helps to find the boundary?

Figure 1. The motivation of our method. We show the action in-
stance of clothes drying and depict the possible importance of
each frame to recognizing the action category and locating action
boundaries. Each frame’s importance is different.

where most methods can be mainly divided into two parts:
1) Two-stage approaches [75, 85] tackle this task accom-
panied by the generation of class-agnostic action proposals
and then perform classification and proposal boundaries re-
finement in proposal-level; 2) One-stage approaches [79,
72, 32] simultaneously recognize and localize action in-
stances in a single-shot manner. Typical methods [76, 29] of
this type predict categories as well as locate corresponding
temporal boundaries in frame-level, achieving stronger TAL
results currently. In training, they classify every frame as
one action category or background and regress the bound-
aries of frames inside ground-truth action segments. How-
ever, these works treat each frame within action segments
equally in training, leading to sub-optimal performance.

When humans intend to locate action instances, the dis-
crepant information of each frame is referred to. For the
instance of action: clothes drying, as depicted in Fig 1,
frames in the purple box promote recognizing clothes dry-
ing most as they describe the intrinsic sub-action: hang
clothes on the hanger. Analogously, frames in red and gray
boxes depict take out clothes from laundry basket and lift
laundry basket, which are more informative to locate pre-
cise start and end time respectively. In a word, each frame’s
contribution is quite different, due to intrinsic patterns of
actions, as well as existing transitional or blurred frames.

Can we discover informative frames for classifying and
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localizing respectively? To this end, we first introduce a
concept — Action Sensitivity, to measure the frame’s im-
portance. It is disentangled into two parts: action sensi-
tivity to classification sub-task and action sensitivity to
localization sub-task. For one sub-task, the higher action
sensitivity each frame has, the more important it will be for
this sub-task. With this concept, intuitively, more attention
should be paid to action sensitive frames in training.

Therefore in this paper, we propose a lightweight Ac-
tion Sensitivity Evaluator (ASE) for each sub-task to better
exploit frame-level information. Essentially, for a specific
sub-task, ASE learns the action sensitivity of each frame
from two perspectives: class-level and instance-level. The
class-level perspective is to model the coarse action sensi-
tivity distribution of each action category and is achieved
by incorporating gaussian weights. The instance-level per-
spective is complementary to class-level modeling and is
supervised in a prediction-aware manner. Then the training
weights of each frame are dynamically adjusted depending
on their action sensitivity, making it more reasonable and
effective for model training.

With the proposed ASE, we build our novel Action
Sensitivity Learning framework dubbed ASL to tackle tem-
poral action localization task (TAL) effectively. Moreover,
to furthermore enhance the features and improve the dis-
crimination between actions and backgrounds, we design a
novel Action Sensitive Contrastive Loss (ASCL) based on
ASE. It is implemented by elaborately generating various
types of action-related and action-irrelevant features and
performing contrasting between them, which brings mul-
tiple merits for TAL.

By conducting extensive experiments on 6 datasets and
detailed ablation studies, we demonstrate ASL is able to
classify and localize action instances better. In a nutshell,
our main contributions can be summarized as follows:

• We propose a novel framework with an Action Sensi-
tivity Evaluator component to boost training, by dis-
covering action sensitive frames to specific sub-tasks,
which is modeled from class level and instance level.

• We design an Action Sensitive Contrastive Loss to do
feature enhancement and to increase the discrimination
between actions and backgrounds.

• We verify ASL on various action localization datasets
of multiple types: i) densely-labeled (i.e., Multi-
Thumos [74] and Charades [53]). ii) egocentric
(Ego4d-Moment Queries v1.0 [19] and Epic-Kitchens
100 [11]). iii) nearly single-labeled (Thumos14 [57]
and ActivityNet1.3 [2]), and achieve superior results.

2. Related Works
Temporal Action Localization. Temporal action local-

ization is a long-standing research topic. Contemporary ap-

proaches mostly fall into two categories, i.e. two-stage and
one-stage paradigms. Previous two-stage methods usually
focused on action proposal generation [31, 33, 56, 58, 65].
Others have integrated action proposal, calibrated back-
bone, classification and boundary regression or refinement
modules into one single model [51, 69, 49, 81]. Recent ef-
forts have investigated the proposal relations [75, 85, 66],
utilized graph modeling [72, 75], or designed fine-grained
temporal representation [44, 55]. One-stage approaches
usually perform frame-level or segment-level classification
and directly localization or merging segments [49, 80, 32].
[79, 39] process the video with the assistance of pre-defined
anchors or learned proposals, while others utilize exist-
ing information and are totally anchor-free [29, 76, 78].
Currently, some works introduce pretrain-finetune to TAL
task [70, 71] or attempt to train the model in an efficient
end-to-end manner [38, 7, 37]. Others focused on densely-
labeled setting [61, 10, 9, 24, 59, 8]. With the success of
DETR [3] in object detection, query-based methods have
also been proposed [48, 58, 59, 38]. Our method falls
into the one-stage TAL paradigm and performs frame-level
classification and localization. Notably, [43, 39] incorpo-
rate Gaussian kernels to improve receptive fields and opti-
mize the temporal scale of action proposals, [24] use fixed
gaussian-like weights to fuse the coarse and fine stage. We
also utilize gaussian weights as one part of ASE, but it dif-
fers in that: i) Our gaussian-like weights in ASE serve as
modeling class-level action sensitivity and to boost effective
training, while [24, 43, 39] use it only to better encode the
videos. ii) Our learned gaussian weights describe frames’
contributions to each sub-task and can be easily visual-
ized, whereas the semantic meaning of gaussian weights
in [24, 43, 39] is unclear. iii) Our gaussian-like weights are
totally learnable, category-aware and disentangled to differ-
ent sub-tasks.

One-stage Object Detection. Analogous to TAL task,
the object detection task shares a few similarities. As a
counterpart in object detection, the one-stage paradigm has
surged recently. Some works remain anchor-based [35],
while others are anchor-free, utilizing a feature pyramid net-
work [34, 60] and improved label-assign strategies [77, 83,
84, 52]. Moreover, some works define key points in dif-
ferent ways (e.g. corner [26], center [13, 60] or learned
points [73]). These methods bring some inspiration to de-
sign a better TAL framework. Some methods [16, 28, 27]
aim to tackle the misalignment between classification and
localization. But i) we mainly focus on the discrepant in-
formation of frames. ii) Misalignment of two sub-tasks (i.e.,
classification and localization) is only the second issue and
we alleviate it by a novel contrastive loss which differs from
these works.

Contrastive Learning. Contrastive learning [6, 20, 22]
is an unsupervised learning objective that aims to bring sim-
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Figure 2. The overview of ASL. Given a video clip, we first leverage a pre-trained 3D-CNN to extract the video feature and then utilize
a Transformer Encoder to encode feature. We then use ground-truth location sampling to sample all ground-truth segments and feed these
into Action Sensitivity Evaluator. In this module, we model sub-task-specific action sensitivity of each frame from class level and instance-
level. The former is learned by incorporating learnable gaussian-like weights and the latter is learned with an instance-level evaluator.
Then each frame’s weight in training is adjusted based on action sensitivity. Moreover, we propose an Action Sensitive Contrastive Loss
to better enhance the feature and alleviate misalignment problems.

ilar examples closer together in feature space while pushing
dissimilar examples apart. NCE [21] and Info-NCE [41]
are two typical methods that mine data features by distin-
guishing between data and noise or negative samples. Info-
NCE-based contrastive learning has been used in methods
of different tasks, such as [67, 36] in cross-modality re-
trieval and [23, 42] in unsupervised learning. In TAL, [29]
leverages ranking loss to boost discrimination between fore-
ground and background while [48] contrasts different ac-
tions with a global representation of action segments. But
we design a new contrastive loss both across different types
of actions and between actions and backgrounds. More-
over, compared to [50] which also contrasts between ac-
tions and backgrounds, our proposed contrastive loss con-
trasts more between i)same and different action classes,
ii)sensitive frames of localization and classification to mit-
igate the misalignment of sub-tasks. Details will be dis-
cussed in 3.3.

3. Method
Problem Formulation. The task of temporal action

localization (TAL) is to predict a set of action instances
{(tsm, tem, cm)}Mm=1, given a video clip, where M is the
number of predicted action instances, tsm,tem,cm are the
start, end timestamp and action category of the m-th pre-
dicted action instance. ASL is built on an anchor-free rep-
resentation that classifies each frame as one action category
or background, as well as regresses the distances from this
frame to the start time and end time.

Overview. The overall architecture of ASL is shown in
Fig 2. ASL is composed of four parts: video feature extrac-
tor, feature encoder, action sensitivity evaluator, and two

sub-task heads. Concretely, given a video clip, we first ex-
tract the video feature using a pre-trained 3D-CNN model.
Then we exert a feature encoder involving a pyramid net-
work to better represent the temporal features at multiple
levels. We propose an action sensitivity evaluator module
to access the action sensitivity of frames to a specific sub-
task. The pyramid features combined with frames’ action
sensitivity are further processed by sub-task heads to gener-
ate predictions. We now describe the details of ASL.

3.1. Feature Encoder

With the success of [76, 29], ASL utilizes a Transformer
encoder and feature pyramid network to encode feature se-
quences into a multiscale representation. To enhance fea-
tures, in Transformer encoder we design a new attention
mechanism that operates temporal attention and channel at-
tention parallelly and then fuses these two outputs.

For normal temporal attention that is performed in the
temporal dimension, input features generate query, key and
value tensors (Qt,Kt, Vt) ∈ RT×D, where T is the number
of frames, D is the embedding dimension, then the output
is calculated:

f
′
ta = softmax(

QtK
T
t√

D
)Vt (1)

For channel attention that is conducted in the channel di-
mension, input features generate query, key and value ten-
sors (Qd,Kd, Vd) ∈ RD×T , where D is the number of
channels. Then the output is calculated:

f
′
ca = softmax(

QdK
T
d√

T
)Vd (2)

Above two outputs are then added with a coefficient θ:
f

′
= (1 − θ)f

′

ta + θf
′T
ca . Then it is processed by layer nor-
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malization and feedforward network to obtain the encoded
video representation f ∈ RT×D.

3.2. Action Sensitivity Evaluator

As discussed in 1, not all frames inside ground-truth seg-
ments contribute equally to the sub-task (i.e., localization
or classification). Thus we designed an Action Sensitivity
Evaluator (ASE) module, the core idea of which is to deter-
mine the sub-task-specific action sensitivity of each frame
and help the model pay more attention to those valuable
frames. Besides, this module is lightweight, leading to effi-
cient and effective training.

Decoupling to two levels. Digging into action instances,
a key observation is that actions of a particular category of-
ten share a similar pattern, but they appear slightly different
in diverse scenarios or under different behavior agents. For
example, action instances of category:wash vegetables in-
herently contain sub-actions: turn the tap on, take vegeta-
bles, wash, turn the tap off, where frames depicting washing
are more sensitive to classification, frames depicting turn-
ing the tap on and turning the tap off are more sensitive to
localization. But the respective duration or proportion of
these sub-actions are dependent on the scenes and context
of each action instance, thus making sensitive frames a little
different. This motivates us that the action sensitivity of ev-
ery frame should be decoupled into class-level and instance-
level modeling and then recombined from these two parts.

Disentangling to two sub-tasks. Here sub-tasks mean
classification and localization. Intuitively action sensitivity
for classification needs to be modeled as sensitive frames
for classification is not easily determined. Actually, ac-
tion sensitivity modeling for localization is also necessary.
Though the boundaries of action segments are defined al-
ready, sensitive frames are not necessarily at the start or the
end of an action since i) action boundaries are often un-
clear, ii) each frame of sub-actions around boundaries also
has different semantics. Therefore, action sensitivity mod-
eling should be disentangled for two sub-tasks respectively
(i.e., classification and localization).

Formally, for a given ground-truth G = {t̄s, t̄e, c̄}, each
indicating the start time, end time and category of one ac-
tion, we denote Nf as the number of frames within this ac-
tion, Nc as the number of all pre-defined action categories.
Our goal is to model the class-level action sensitivity p (dis-
entangled into pcls, ploc to classification and localization re-
spectively), instance-level action sensitivity q (disentagled
to qcls, qloc). Then we delve into details of action sensitiv-
ity learning.

Class-level Modeling. Class-level sensitivity poses
a fundamental prior for action sensitivity learning. Two
key observations are that: i) video frames are often con-
secutive. ii) there often exist keyframes that have a peek
value of sensitivity among all frames. In this case, we in-

corporate gaussian-like weights with learnable parameters
µ, σ ∈ RNc to model class-level action sensitivity p.

For classification sub-task, we model corresponding ac-
tion sensitivity pclsi for the i-th frame:

pclsi = exp{− (d(i)− µc)
2

2σ2
c

} (3)

where d(i) is the distance from the current i-th frame to the
central frame of the ground-truth segment which is normal-
ized by Nf . In this case, d(i)∈ [−0.5, 0.5], when i=1 (i.e.,
start frame), d(i) = −0.5, when i = Nf (i.e., end frame),
d(i) = 0.5. Learnable parameters µc, σc denote mean and
variance of each category c’s action sensitivity distribution.

For localization sub-task, different frames are sensitive
to locating start time and end time. Therefore action sen-
sitivity ploc is the combination of two parts. We explicitly
allocate one gaussian-like weights psot to model the start
time locating sensitivity and another peot to model the end
time locating sensitivity. ploc is calculated:

ploci = exp{− (d(i)− µc,1)
2

2σc,1
}︸ ︷︷ ︸

psoti

+exp{− (d(i)− µc,2)
2

2σc,2
}︸ ︷︷ ︸

peoti

(4)

In this way, class-level action sensitivity pcls, ploc ∈
RNf×Nc of all categories are learned with the optimization
of model training. In addition, the initialization of µc and
σc counts as there exists prior knowledge [76, 60] accord-
ing to different sub-tasks. For classification sub-task, near-
center frames are more sensitive. Thus we initialize µc as
0. For localization sub-task, near-start and near-end frames
are more sensitive. Thus we initialize µ1 as -0.5 and µ2 as
0.5. For all σ, we initialize as 1.

Instance-level Modeling. Intuitively, a Gaussian can
only give a single peak, and thus class-level action sensi-
tivity learning may not discover all sensitive frames. To this
end, we introduce instance-level modeling which is com-
plementary and aims to capture additional important frames
that haven’t been discovered by class-level modeling.

In the instance-level modeling, as more information
about frame contexts of each instance is referred to, we
obtain instance-level action sensitivity q ∈ RNf using an
instance-level evaluator operated directly on each frame,
composed of 1D temporal convolution network which aims
to encode temporal contexts better, a fully connected layer
and a Sigmoid activation function. We denote Φcls and Φloc

as two sub-task specific instance-level evaluator, then qcls

and qloc are computed:{
qclsi = Φcls(fi)

qloci = Φloc(fi)
(5)

Unlike class-level modeling that contains some prior
knowledge, instance-level sensitivity q is hard to learn in an
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unsupervised manner. Intuitively, from the instance level a
sensitive frame implies that it can result in fine predictions.
Hence we utilize the quality {Q̄i}

Nf

i=1 of each frame’s pre-
diction to supervise the learning of q. For localization, The
higher tIoU indicates a higher degree of overlap between
two segments. Thus tIoU between the predicted segment
and the ground-truth segment can measure the quality of
prediction. For classification, the probability of the ground-
truth category can serve as the quality of prediction. There-
fore, quality Q̄cls and Q̄loc are defined as:{

Q̄cls
i = φ(si[c̄)])

Q̄loc
i = tIoU(∆i, ∆̄)

(6)

where s denotes the classification logits, ∆i is the predicted
segment (ts, te) of the i-th frame, ∆̄ is the corresponding
ground-truth segment, φ(·) is Sigmoid function. We use
MSE loss to supervise the calculation of q. For qcls, opti-
mization objective is formed as 7. Optimization of qloc is in
a similar way.

Ls = MSE(qcls, Q̄cls) (7)

Optimization with Action Sensitivity. In this way,
combining class-level and instance-level, we obtain the final
action sensitivity h(c̄)∈RNf (disentangled to classification
and localization sub-task: h(c̄) → {hcls(c̄), hloc(c̄)}) for
the ground-truth G={t̄s, t̄e, c̄}:{

hcls(c̄) = pcls1[c̄] + qcls

hloc(c̄) = ploc1[c̄] + qloc
(8)

where 1[c̄] ∈ RNc denotes the one-hot vector of c̄. Action
sensitivity h is further used in training. For classification
sub-task, we use a focal loss [35] to classify each frame,
combined with classification action sensitivity hcls:

Lcls =
1

Npos

∑
i

(1inih
cls
i (c̄i)Lfocali + 1bgiLfocali) (9)

where 1ini
,1bgi are indicators that denote if the i-th frame

is within one ground-truth action or if is background, Npos

is the number of frames within action segments, c̄i denotes
the action category of the i-th frame.

For localization sub-task, we use a DIoU loss [82] per-
formed on frames within any ground-truth action instance,
to regress offsets from current frames to boundaries, com-
bined with localization action sensitivity hloc:

Lloc =
1

Npos

∑
i

(1inih
loc
i (c̄i)LDIoUi

) (10)

3.3. Action Sensitive Contrastive Loss

Now with ASE, each frame is equipped with action sen-
sitivity and valuable frames to specific sub-tasks will be dis-
covered. We further boost the training from the perspective

of feature enhancement. Delve into feature representation,
three shortcomings may hinder the performance: i) classi-
fication sensitive and localization sensitive frames are quite
different, resulting in the misalignment of these two sub-
tasks. ii) features in actions of different categories are not
much discriminable. iii) features within action and outside
boundaries are not much distinguished yet.

Therefore, on the basis of ASE, we propose an Ac-
tion Sensitive Contrastive Loss (ASCL) to correspondingly
tackle the above issues. Specifically, for a given video
feature {ft}Tt=1 and a ground-truth action instance G =
{t̄s, t̄e, c̄}, we generate two action-related features and one
action-irrelevant feature. First, to generate more valuable
action-related features, we aim to find sensitive frames to
these sub-tasks. Thinking that ASCL contrasts action in-
stances of different classes, where class-level discrimina-
tion is more important, we hence utilize class-level sensi-
tivity p to parse the sensitive frame ranges Tcls for classifi-
cation and Tloc for localization. With one ground-truth cat-
egory c̄, we get the most sensitive frames acls, asot, aeot for
classification, start time localization, end time localization
respectively. Take aeot as an example:

aeot = argmax
i

(peoti 1[c̄]) (11)

acls and asot are obtained in a similar way. Then, centered
on a and extending forward and backward with a range of
δNf , where δ is the sampling length ratio, we get sensitive
frame ranges Tcls for classification and Tloc for localization
(Tcls and Tloc are limited inside the action instance). Fur-
thermore, we utilize class-level sensitivity to compute sen-
sitive features fcls for classification, floc for localization:

fcls =
1

T

∑
t

pclst 1[c̄]ft, t ∈ Tcls

floc =
1

T

∑
t

ploct 1[c̄]ft, t ∈ Tloc

(12)

Secondly, we aim to simultaneously discriminate ac-
tions and backgrounds better. Consequently we generate
boundary-related background features fbg:

fbg =
1

T

∑
t

ft, t ∈ [t̄s − δNf , t̄
s] ∪ [t̄e, t̄e + δNf ] (13)

The learning objective of ASCL is based on a contrastive
loss. As figure 2 shows, the positive samples P are con-
structed from fcls and floc in action instances of the same
category while the negative samples N come from: i) fcls
and floc in action instances of different categories. ii) all
background features fbg . ASCL is computed for each batch
B with N samples:

LASCL =
1

N

∑
B

− log

∑
fx∈Pf∗

sim(f∗, fx)∑
fx∈Pf∗

sim(f∗, fx) +
∑

fx∈Nf∗

sim(f∗, fx)

(14)
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Optimizing ASCL will be of benefits to tackle the cor-
responding issues above : i) alleviate the misalignment of
two sub-tasks by pulling features of their respective sensi-
tive frames closer. ii) discriminate actions and backgrounds
better by pushing action features of the same category closer
and different categories apart, meanwhile pushing actions
and backgrounds apart. Thus ASCL can enhance the fea-
ture representation and boost training furthermore.

3.4. Training and Inference

Training. In the training process, our final loss function
is designed:

L = Lcls + Lloc + Ls + λLASCL (15)

where Lcls, Lloc and Ls are discussed in equation 9, equa-
tion 10 and equation 7. λ denotes the weight of Action Sen-
sitive Contrastive loss.

Inference. At inference time, our model outputs predic-
tions (ts, te, c) for every frame across all pyramids levels,
where ts, te denote the start and end time of action, c de-
note the predicted action category. c also serves as the ac-
tion confidence score. SoftNMS [1] is then applied on these
results to suppress redundant predictions.

4. Experiments
4.1. Datasets and Evaluation Metric

Datasets. To validate the efficacy of the proposed ASL,
extensive experiments on 6 datasets of 3 types are con-
ducted: i) densely-labeled: MultiThumos[74] and Cha-
rades[53]; ii) densely-labeled and egocentric: Ego4D-
Moment Queries v1.0[19] and Epic-Kitchens 100[11]; iii)
single-labeled: Thumos14[57] and ActivityNet1.3[2].

MultiThumos is a densely labeled dataset including 413
sports videos of 65 classes. Charades is a large multi-label
dataset containing 9848 videos of 157 action classes. These
two datasets are both densely labeled and hence have mul-
tiple action instances in each video clip, where different ac-
tions may occur concurrently.

Ego4D-Moment Queries v1.0 (Ego4D-MQ1.0 for short)
is a large-scale egocentric benchmark with 2,488 video
clips and 22.2K action instances from 110 pre-defined ac-
tion categories, which is densely labeled and composed of
long clips. EPIC-Kitchens 100 is a large egocentric action
dataset containing 100 hours of videos from 700 sessions
capturing cooking activities in different kitchens. These two
datasets are both large, egocentric and densely labeled.

Thumos14 is composed of 200 validation videos and 212
testing videos from 20 action classes while ActivityNet has
19,994 videos with 200 action classes. These two datasets
are singly labeled and thus most of video clips in them have
one action instance in each video clip.

Evaluation Metric. Since ASL focuses on action detec-
tion, we take mean Average Precision (mAP) at certain tIoU
thresholds as the evaluation metric. For all six datasets, we
also report average mAP over several tIoU thresholds as
the main metric. The tIoU thresholds are set consistent with
the official setup or previous methods, which is detailed in
the caption of Table 1, 2, 3, 4.

4.2. Implementation Details.

We follow the practice of using off-the-shelf pre-
extracted features as input, specifically I3D [4] RGB fea-
tures for MultiThumos, Charades, Thumos14 and Activ-
ityNet , EgoVLP [30], Slowfast [15] and Omnivore [18]
features for Ego4D-MQ1.0, Slowfast features [15, 12] for
Epic-Kitchens 100.

We train our model with a batch size of 2, 16, 2, 2
for 60, 30, 15, 25 epochs on MultiThumos, Charades,
Ego4D-MQ1.0 and Epic-Kitchens 100 respectively, where
the learning rate is set to 2e−4. On ActivityNet and Thu-
mos, we train our model with the batch size of 16, 2, the
learning rate of 1e−3, 1e−4 for 15, 30 epochs. We set λ as
0.3 and θ as 0.2.

In post-processing, we apply softNMS [1] to suppress
redundant predictions. For fair comparison, we keep 200,
100, and 2000, 2000 predictions on Thumos14, Activi-
tyNet, Ego4D-MQ1.0 and Epic-Kitchens 100 respectively.
As on MultiThumos and Charades, considering that Point-
TAD [59] splits a video clip into more than 4 parts and gen-
erates 48 predictions for each part, we keep 200 predictions
on these two datasets.

In the training process, we clamp σ with a threshold (set
as 5.0) to ensure σ won’t be very large and thus prevent
very small pcls, ploc, which may cause trivial solution to
minimize the loss. Moreover, We tackle the issue of over-
lapped actions following [76, 60]: i)use multi-scale mecha-
nism [34] to assign actions with different duration to differ-
ent feature levels. ii)If a frame, even with multi-scale used,
is still assigned to more than one ground-truth action, we
choose the action with the shortest duration as its ground-
truth target and model its action sensitivity based on this
ground-truth.

4.3. Main Results

MultiThumos and Charades: We compare ASL with
state-of-the-art methods under detection-mAP on these two
densely-labeled TAL benchmarks. PDAN[10], coarse-
fine[24], MLAD[61], MS-TCT[9] are based on frame-
level representation, while PointTAD[59] are query-based.
As shown in Table 1, ASL reaches the highest mAP
over all tIoU thresholds, outperforming the previous best
method(i.e. PointTAD) by 2.0% absolute increase of aver-
age mAP on MultiThumos and 3.3% on Charades. Notably,
PointTAD is further trained in an end-to-end manner with
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Table 1. Results on MultiThumos and Charades. We report detection-mAP at different tIoU thresholds. Average mAP in [0.1:0.1:0.9]
is reported on MultiThumos and Chrades. Best results are in bold. ‡ indicates results trained with stronger image augmentation [59, 38].
I3D denotes using I3D [4] features and E2E indicates results trained in an end-to-end manner.

Model Modality Feature
MultiThumos Charades

0.2 0.5 0.7 Avg. 0.2 0.5 0.7 Avg.
PDAN [10] RGB I3D - - - 17.3 - - - 8.5
Coarse-Fine [24] RGB I3D - - - - - - - 6.1
MLAD [61] RGB I3D - - - 14.2 - - - -
MS-TCT [9] RGB I3D - - - 16.3 - - - 7.9
PointTAD [59] RGB I3D-E2E 36.8 23.3 11.0 21.7 15.9 12.6 8.5 11.3
PointTAD‡ [59] RGB I3D-E2E 39.7 24.9 12.0 23.5 17.5 13.5 9.1 12.1
ASL RGB I3D 42.4 27.8 13.7 25.5 24.5 16.5 9.4 15.4

Table 2. Results on Ego4D-Moment Queries v1.0. We report mAP at different tIoU thresholds. Average mAP in [0.1:0.1:0.5] is reported
on Ego4D-Moment Queries. Best results are in bold. EgoVLP, SF and OF denote EgoVLP [30], Slowfast [15] and Omnivore [18] features.
InterVideo [5] denotes features extracted from VideoMAE-L [62] and fine-tuned on Ego4D-Moment Queries.

Method/Entry Feature
mAP at IoUs, Val set mAP at IoUs, Test set

0.1 0.3 0.5 Avg. Avg.
VSGN [79] SF 9.10 5.76 3.41 6.03 5.68
VSGN [30] EgoVLP 16.63 11.45 6.57 11.39 10.33
RELER [47] SF+OV 22.75 17.61 13.43 17.94 17.67
Actionformer [40] EgoVLP 26.84 20.57 14.54 20.60 -
Actionformer [40] EgoVLP+SF+OV 28.26 21.88 16.28 22.09 21.76
Actionformer [5] InternVideo - - - 23.29 23.59
ASL EgoVLP 29.45 23.03 16.08 22.83 22.25
ASL EgoVLP+SF+OV 30.50 24.39 17.45 24.15 23.97

Table 3. Results on EPIC-Kitchens 100 val set. We report mAP
at different tIoU thresholds and average mAP in [0.1:0.1:0.5]. All
methods use the same SlowFast [15, 12] features.

Sub-Task Method 0.1 0.3 0.5 Avg

Verb

BMN [31] 10.8 8.4 5.6 8.4
G-TAD [72] 12.1 9.4 6.5 9.4
Actionformer [76] 26.6 24.2 19.1 23.5
ASL 27.9 25.5 19.8 24.6

Noun

BMN [31] 10.3 6.2 3.4 6.5
G-TAD [72] 11.0 8.6 5.4 8.4
Actionformer [76] 25.2 22.7 17.0 21.9
ASL 26.0 23.4 17.7 22.6

strong image augmentation while ASL is feature-based, in-
dicating that ASL performs more accurate TAL with more
efficiency on densely-labeled datasets.

Ego4D-MQ1.0 and Epic-Kitchens 100: These two
datasets are both challenging as they are large-scale, ego-
centric, densely labeled and composed of longer clips. Ta-
ble 2 reports the results on Ego4D-MQ1.0. The state-of-
the-art methods are all based on Actionformer[76] and per-
form frame-level recognition and localization with strong
features. Using the same feature EgoVLP[30], ASL sur-
passes the current best entry[40]. Using the combined
EgoVLP, slowfast[15] and omnivore[18] features, ASL

gains 2.06% improvement of average mAP on Val set
and 2.21% on Test set. Moreover, ASL performs better
than [5] which uses a stronger but not open-sourced In-
ternVideo [5] feature. Meanwhile, on Epic-Kitchens 100
as table 3 shows, ASL outperforms the strong performance
of Actionformer[76], BMN[31] and G-TAD[72] with the
same Slowfast feature[15, 12]. The above results demon-
strate the advantage of ASL on the challenging, egocentric
and densely labeled benchmark.

Thumos14 and ActivityNet1.3: These two datasets are
popular and nearly single-labeled, with approximately one
action instance in each clip. Table 4 compares the re-
sults of ASL with various state-of-the-art methods (e.g.,
two-stage methods: BSN[33], G-TAD[72], P-GCN[75],
RTDNet[58], one-stage methods: AFSD[29], SSN[81],
Actionformer[76].). On Thumos14, across all tIoU thresh-
olds, ASL achieves the best and gains 1.1% improvement
of average mAP (67.9% v.s. 66.8%). On ActivityNet, ASL
also outperforms previous methods of mAP@0.75 and av-
erage mAP, though the gap is slight. One possible reason is
that due to the success of action recognition on ActivityNet,
we follow the common practice [76, 79, 85] to fuse external
video-level classification scores [68]. In this case, class-
level sensitivity will not play an important role in train-
ing. Another reason may be that since each video in Ac-
tivityNet is nearly single-labeled, our proposed ASCL will
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Table 4. Results on Thumos14 and ActivityNet1.3. We report mAP at different tIoU thresholds. Average mAP in [0.3:0.1:0.7] is reported
on THUMOS14 and [0.5:0.05:0.95] on ActivityNet1.3. The best results are in bold.

Model Feature
Thumos14 ActivityNet1.3

0.3 0.4 0.5 0.6 0.7 Avg. 0.5 0.75 0.95 Avg.
BSN [33] TSN [64] 53.5 45.0 36.9 28.4 20.0 36.8 46.5 30.0 8.0 30.0
BMN [31] TSN [64] 56.0 47.4 38.8 29.7 20.5 38.5 50.1 34.8 8.3 33.9
G-TAD [72] TSN [64] 54.5 47.6 40.3 30.8 23.4 39.3 50.4 34.6 9.0 34.1
P-GCN [75] I3D [4] 63.6 57.8 49.1 - - - 48.3 33.2 3.3 31.1
TCANet [44] TSN [64] 60.6 53.2 44.6 36.8 26.7 44.3 52.3 36.7 6.9 35.5
ContextLoc [85] I3D [4] 68.3 63.8 54.3 41.8 26.2 50.9 56.0 35.2 3.6 34.2
VSGN [79] TSN [64] 66.7 60.4 52.4 41.0 30.4 50.2 52.4 36.0 8.4 35.1
RTD-Net [58] I3D [4] 68.3 62.3 51.9 38.8 23.7 49.0 47.2 30.7 8.6 30.8
SSN [81] TS [54] 51.0 41.0 29.8 - - - 43.2 28.7 5.6 28.3
GTAN [39] P3D [45] 57.8 47.2 38.8 - - - 52.6 34.1 8.9 34.3
AFSD [29] I3D [4] 67.3 62.4 55.5 43.7 31.1 52.0 52.4 35.3 6.5 34.4
React [48] I3D [4] 69.2 65.0 57.1 47.8 35.6 55.0 49.6 33.0 8.6 32.6
TadTR [38] I3D [4] 62.4 57.4 49.2 37.8 26.3 46.6 49.1 32.6 8.5 32.3
Actionformer [76] I3D [4] 82.1 77.8 71.0 59.4 43.9 66.8 54.2 36.9 7.6 36.0
ASL I3D [4] 83.1 79.0 71.7 59.7 45.8 67.9 54.1 37.4 8.0 36.2

Table 5. Ablation studies of components. ASE: Action Sensi-
tivity Evaluator. class.: class-level modeling. inst.: instance-level
modeling. ASCL: Action Sensitive Contrastive Loss.

#

Components mAP at different tIoUs
ASE ASCL

0.2 0.5 0.7 Avg.
class. inst.

1 39.6 25.9 11.6 23.4
2 ✓ 41.0 26.5 12.9 24.5
3 ✓ 40.5 26.2 12.0 23.9
4 ✓ 40.2 26.1 11.8 23.7
5 ✓ ✓ 41.9 27.0 13.6 25.1
6 ✓ ✓ 41.8 27.2 13.3 25.0
7 ✓ ✓ ✓ 42.4 27.8 13.7 25.5

be short of positive and negative samples, leading to a non-
significant increase compared to improvements on densely
labeled datasets as Table 1, 2.

4.4. Ablation Study

To further verify the efficacy of our contributions, we
analyze main components of ASL on MultiThumos.

Action Sensitive Evaluator. Our proposed ASE can be
divided into class-level and instance-level modeling. we
first investigate the effect of these parts. In Table 5, base-
line 1 denotes using our proposed framework without ASE
and ASCL. After being equipped with class-level modeling,
it boosts the performance by 1.1% of average mAP (base-
line 2 v.s. baseline 1). When further adding instance-level
bias, it gains 0.5% absolute increase (baseline 6 v.s. base-
line 2). And our ASE contributes a total improvement of
1.6% on average mAP (baseline 7 v.s. baseline 1). It is ob-
vious that action sensitivity modeling from both class-level
and instance-level is beneficial to TAL task.

Table 6. Ablation studies of Gaussians weights. cls and loc
denotes classification and localization sub-task. For gaussian
weights in class-level action sensitivity learning, learnable/fixed
denotes parameters learnable/not learnable. None denotes not us-
ing gaussian weights.

# cls. loc. 0.1 0.3 0.5 Avg.
1 None None 40.9 26.3 12.3 24.2
2

fixed
None 40.9 26.5 12.4 24.4

3 fixed 41.0 26.6 12.7 24.6
4 learnable 41.7 26.8 13.0 24.9
5

learnable
None 41.9 27.1 13.0 24.9

6 fixed 42.0 26.9 13.4 25.1
7 learnable 42.4 27.8 13.7 25.5

Gaussian Weights. Then we analyze the effect of learn-
able gaussian weights in class-level action sensitivity learn-
ing. Table 6 demonstrates that compared to baseline 1
which does not use any gaussian weights to learn action
sensitivity, fixed gaussian weights with prior knowledge do
bring benefits (baseline 2,3 v.s. baseline 1). Meanwhile,
learnable gaussian weights are more favored (baseline 4 v.s.
baseline 3, baseline 7 v.s. baseline 6). Moreover, learnable
gaussian weights for both two sub-tasks achieve the best re-
sults.

We further study the number of Gaussians used in clas-
sification and localization sub-task. As shown in Table 7,
using two Gaussians for localization and one Gaussian for
classification achieves the best results. It is probably be-
cause on the one hand, using two Gaussians for localiza-
tion explicitly allocates one for modeling start time and one
for modeling end time. On the other hand, more Gaussian
weights may be a burden for training, leading to inferior
performance.
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Table 7. Ablation studies of number of Gaussians weights. #cls
and #loc denote the number of Gaussian weights used in classifi-
cation and localization sub-task. shared indicates two sub-tasks
share one Gaussian weights.

#cls #loc 0.1 0.3 0.5 Avg
1(shared) 1(shared) 42.2 27.2 13.7 25.3

0
0 40.9 26.3 12.3 24.2
1 41.5 26.9 13.0 24.8
2 41.6 27.1 13.4 25.0

1
0 42.2 27.1 13.2 25.1
1 42.0 26.7 13.1 24.9
2 42.4 27.8 13.7 25.5

2
0 42.3 26.9 13.3 25.1
1 41.8 26.9 13.0 25.0
2 42.0 27.2 13.6 25.3
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Figure 3. Ablation of hyperparameters in ASCL.

Action Sensitive Contrastive Loss. Moreover, we delve
into our proposed ASCL. As shown in Table 5, ASCL im-
proves around 0.6% of average mAP on the basis of class-
level prior (baseline 5 v.s. baseline 2) and 0.5% on the basis
of ASE (baseline 7 v.s. baseline 6). Baseline 4, where using
ASCL alone denotes sampling near the center frame to form
fcls and floc directly, also gains an improvement of 0.3%
compared to the vanilla framework (baseline 4 v.s. baseline
1). This indicates the effectiveness of contrast between ac-
tions and backgrounds. When performing ASCL based on
ASE, it will facilitate the final performance more because it
can alleviate the misalignment as discussed in 3.3.

Finally we discussed the hyperparameters in ASCL.
Fig 3(a) shows the performance curve of average mAP cor-
responding to ASCL weight λ. Average mAP on MultiThu-
mos generally improves when λ increases and slightly drop
as λ reaches 0.4. Fig 3(b) reports the average mAP to differ-
ent sampling length ratios δ. When δ equals 0.2, our method
achieves the best. In this case, we set λ to 0.3 and δ to 0.2.

4.5. Qualitative Experiment

To better illustrate the effectiveness of ASL, we visual-
ize some qualitative results of Ego4D-MQ1.0 benchmark in
Fig 4. We show that i) frames depicting action’s main sub-
action (i.e., hang clothes on the hanger, water run through
hands) are of higher action sensitivity for classification. ii)
Frames depicting near-start and near-end sub-action (i.e,
turn the tap on, lift laundry basket, e.t.c.) are of higher ac-

Action Sensitivity for Classification

Action Sensitivity for Localization

… … …

Action Sensitivity for Classification

Action Sensitivity for Localization

… … …

Action: hang clothes to dry

Action: wash hands

1.451.31 1.26
1.23

1.09

0.94 0.88

0.84

0.82

1.241.19 1.16

0.950.86 0.91
0.89

1.36

1.02
1.11 1.10

1.16 1.18

1.05

1.24

0.82

1.32 1.27

1.02
1.041.051.04

0.90

Figure 4. Visualization of (Top) the frame sensitivity to sub-tasks
of Action: hang clothes to dry and (bottom) Action: wash
hands. Please zoom in for the best view.

tion sensitivity for localization. Moreover, action sensitivity
of frames is not continuous, as our proposed instance-level
action sensitivity is discrete partly because blurred or tran-
sitional frames exist in video clips.

5. Conclusion
In this paper, we introduce an Action Sensitivity Learn-

ing framework (ASL) for temporal action localization
(TAL). ASL models action sensitivity of each frame and
dynamically change their weights in training. Together with
the proposed Action Sensitive Contrastive Loss (ASCL) to
further enhance features and alleviate misalignment, ASL is
able to recognize and localize action instances effectively.
For accurate TAL, fine-grained information should be con-
sidered (e.g. frame-level information). We believe that ASL
is a step further in this direction. In the future, efforts could
be paid to more complicated sensitivity modeling. Besides,
ASL could also be redesigned as a plug-and-play compo-
nent that will be beneficial to various TAL methods.
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