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Abstract

In this paper, we focus on the mural-restoration task,
which aims to detect damaged regions in the mural and re-
paint them automatically. Different from traditional image
restoration tasks like in/out/blind-painting and image reno-
vation, the corrupted mural suffers from more complicated
degradation. However, existing mural-restoration methods
and datasets still focus on simple degradation like masking.
Such a significant gap prevents mural-restoration from be-
ing applied to real scenarios. To fill this gap, in this work,
we propose a systematic framework to simulate the physi-
cal process for damaged murals and provide a new bench-
mark dataset for mural-restoration. Limited by the simpli-
fication of the data synthesis process, the previous mural-
restoration methods suffer from poor performance in our
proposed dataset. To handle this problem, we propose the
Attention Diffusion Framework (ADF) for this challeng-
ing task. Within the framework, a damage attention map
module is proposed to estimate the damage extent. Facing
the diversity of defects, we propose a series of loss functions
to choose repair strategies adaptively. Finally, experimental
results support the effectiveness of the proposed framework
in terms of both mural synthesis and restoration.

1. Introduction
As an art form of recording ancient civilization’s cul-

ture, murals describe people’s life scenes and society’s land-
scape, which have great scientific, historical, and artistic

*Corresponding authors.

Figure 1: The disruption and restoration of murals. We
propose an simulation framework to generate a damaged
mural image (top) and a restoration method to restore the
corrupted image (bottom).

significance [54, 49]. However, with constant exposure
to the terrible environment, ancient murals are inevitably
destroyed by light, winds, bacteria, and human activities
[30, 45]. According to the digital report of [30], manu-
ally restoring murals is still the primary restoration mode.
This method is time-consuming due to large areas of miss-
ing content caused by wall peeling and color decay. Hence,
it is necessary to design a mural restoration algorithm to ac-
curately repair the structured and unstructured defects [45].

Prior to the deep learning era, researchers attempted to
design geometry-based or patch-based methods to detect
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Figure 2: Dataset comparison of image restoration tasks.

the corrupted area automatically and fill them [2, 8, 3].
Limited by the scalability of traditional models, existing
algorithms can only repair simple dust and spot which is
not compatible with complex mural restoration scenarios.
Therefore, these methods can only be used as auxiliary tools
for manual repair. Recently, benefiting from the signifi-
cant development of deep learning, many image inpainting
techniques are proposed for repairing irregular damages and
scratches of images [36, 59, 23, 33], some of which have at-
tempted to restore corrupted mural images [7, 12, 48].

It is worth noting that some deep image restoration
methods, e.g., photo repair [46, 6, 47], noisy removal
[33, 32, 25, 44] and image translation [60, 42, 21] have
made great achievement in recent years. Unfortunately,
these frameworks cannot be applied to mural image restora-
tion. The main challenges of this task are three-fold: (1)
The physical model of mural damage is more complicated.
In previous works, the damaged images are generated by
simple operations, e.g., additive masking in in/out-painting
and dehazing tasks; color degradation in old photo restora-
tion [46, 47]. However, the mural damage process cannot
be simply expressed by additive noise on the surface, but
by complex unstructured and structured defects. See Fig.
2 for the demonstration of different tasks. (2) After a long
period of ravage, all pixels in the mural are damaged less or
more. Compared with other image restoration tasks where
reliable information like the image structure of the original
image is available, we have to detect the slightly damaged
areas as a reliable reference to repair other areas. (3) The
corrupted mural image is plagued by a series of different
defects. This problem leads to different types and extents of
missing information in damaged regions and requires adap-
tive restoration strategies.

For challenge (1), we model the damage process of mu-
rals with 8 types of basic physics processes and roughly di-
vide them into 2 categories: unstructured (color, scratch,
blunt, grunge) and structured defects (cracking, breaking,

peeling, wearing). On top of this, we propose the first
framework to generate realistic damaged murals with 3D
open-source software blender 1. The proposed frame-
work can not only simulate the random noisy on the mural
surface but also the destruction process of its carrier through
the transformation of the mural 3D model.

For challenge (2), limited by existing mural datasets, cur-
rent algorithms may be biased toward ideal conditions and
cannot handle real-world images. Therefore, in this work,
we propose a diffusion-based model as a baseline for our
dataset, namely Attention Diffusion Framework (ADF) to
restore the damaged mural image. Moreover, we propose a
lightweight module called Damage Attention Map (DAM)
to predict the damage extent, the core of which is an atten-
tion block to adaptive adjust the receptive field.

For challenge (3), a series of loss functions are proposed
to form a comprehensive training target. Combined with the
damage attention map, these losses can repair the missing
information while preserving the basic structure and style
of the input image.

In a nutshell, the main contributions are as follows:

• We propose a novel pipeline to generate damaged mu-
rals for mural-restoration, which is more consistent
with the real physical process. On top of this, we pro-
vide a new mural-restoration benchmark dataset.

• According to the characteristic of mural-restoration,
we propose a restoration framework based on a gener-
ative diffusion model, whose core components include
a damage attention map module and a series of losses.

• Extensive experiments on synthetic and real-world
datasets demonstrate the effectiveness of the proposed
framework.

2. Related Work
Unstructured Degradation Image Restoration. Over

the past two decades, restoring unstructured degradation
has attracted attention in image-to-image translation tasks.
Benefiting from the development of deep learning, end-to-
end methods have outperformed conventional restoration
approaches [53, 1, 31, 15, 4, 35] in recent years. [17] firstly
presents an end-to-end image super-resolution method SR-
CNN and [5] proposes DehazeNet for the haze removal
task. Following these studies, numerous models and tech-
niques have been proposed for image reconstruction[32,
52], super-resolution [44, 58], non-uniform particle removal
[38, 55, 25], and photo renovation [46, 6, 47]. Most of these
studies focus on completing specific degradation removal
tasks. However, the degradation of mural data is rather com-
plex, thus even the well-performed models in specific degra-
dation removal tasks cannot be applied directly in practice.

1https://www.blender.org/
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Figure 3: An overview of simulation framework. All the processes are handled in 3D model software blender. With
the help of the texture engine, 4 types of unstructured defects are simulated including color degradation, scratch, blunt, and
grunge. Benefiting from the real physics engine, 4 types of mural wall wear processes are simulated including cracking,
peeling, breaking, and wearing. A video of the simulation process can be found in the supplementary materials.

Structured Degradation Image Restoration. Com-
pared to unstructured degradation, researchers often de-
scribe structured degradation as the “image painting” task,
which is more challenging. Thanks to recent developments
in model architecture, e.g., GAN [20], diffusion model [22],
deep end-to-end methods have been able to learn semantic
information from a large amount of data and fill in the miss-
ing content. By adding an irregular mask to image data, [33]
firstly presents partial convolution to fill the missing content
of the image. Following this method, many studies focus on
considering local and global semantic contexts to get better
inpainting results [56, 34, 41]. [43] and [26] introduce a uni-
fied framework to complete in/out painting tasks. However,
in the mural-restoration task, repairing a terribly damaged
image may use in&out painting techniques simultaneously.
It is hard to combine different methods (e.g., outpainting
first, inpainting second) to repair it.

3. Proposed Dataset

In this section, we present a novel dataset designed to
reflect the physical damage process of murals. Unlike pre-
vious work [57] using hard masks to cover the ground truth
images, we use the 3D software blender to simulate the
physical process. Detailed operations are present in sec-
tion 3.1, and statistics are provided in section 3.3. We con-
duct experiments in section 5.1 to analysis the validity of
our dataset compared to the previous mural dataset.

3.1. Simulation Process

Overview. The overall framework for generating dam-
aged images is shown in Fig. 3. Given a restored mural
image, we create a 3D mural plane and base wall accord-
ing to the size of the image. (part-b in Fig. 3). Next, we
perform 8 types of physical degradations on the built 3D
model, which is roughly divided into two categories: un-
structured and structured defects. Specifically, the unstruc-
tured defects appear on the superficial surface of murals, in-
cluding color degradation (part-c) and surface degradation
(part-d), while the structured defects reflect the destruction
of mural walls (part-e). Different types of unstructured de-
fects are mixed into a single texture with linear transforma-
tion (part-g) under various parameters (part-f). Finally, we
generate the image by merging the damaged mural plane
and mural wall (part-h). In this way, we can get amounts of
corrupt murals by controlling the parameters (part-i).

Unstructured Degradation. In this paper, we mainly
focus on four basic unstructured defects, including color
degradation ψd, grunge ψg , scratch ψs and blunt ψb. For
grunge degradation ψg , we use the Value noise algorithm
[39] to generate a noisy mask image. Similarly, we use the
Perlin noise [39] for blunt defects and Simplex noise [39]
for scratch defects. To get better blending effects of de-
fects, we use blender addon 2 for unstructured degrada-
tion. For color degradation ψd, we follow the instructions
in [19] to summarize the reason and rules of color changes
in Dunhuang murals.

2https://blendermarket.com/products/grungit
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Figure 4: An overview of model architecture. Different from the guided diffusion model, we add a 1× 1 convolution layer
activated by ReLU on the skip connection. The model takes the synthesis images as the input and extracts high-level features
through a U-like architecture. Then model outputs the result to calculate loss with the target image.

Opposite to the hard masking used in other datasets, the
unstructured degradation is applied to all pixels; thus, we
introduce a random linear transformation to mix these oper-
ations. Formally, then the whole unstructured degradation
operation ψ is obtained by

ψ(x) =α⊙ ψd(x) + β ⊙ ψs(x)

+ λ⊙ ψb(x) + γ ⊙ ψg(x),
(1)

where {α,β,λ,γ} are uniform random variables, and ⊙
means element-wise product.

Structured Degradation. Structured degradation
mainly destroys the physical structure of the mural walls.
In this paper, we focus on four primary structured defects,
including cracking (relatively large cracks), peeling (wall
skin breaks and bends), breaking (many pieces of wall skin
are broken), and wearing (wall edge wear). We use the
blender addon Cracker 3 and OCD 4 to make cracking
and breaking defects. For peeling and wearing defects, we
use the diamond square algorithm [28] to generate the ran-
dom height map and delete parts of the 3D model that height
over the threshold.

3.2. Degradation Hyper-Parameters

As shown in Fig. 3, the damaged mural image is gener-
ated by controlling the parameters of all types of degrada-
tion. How to choose the optimal hyper-parameters to build
a suitable dataset is crucial. In a specific mural restoration
task, we can adjust the degradation parameters to generate a
dataset and fine-tune the model to fit this scenario. We ana-
lyze the effect of each degradation and conduct experiments
to verify it (please see Appendix. B.2 for details). We make
the following remarks: (1) for unstructured degradation, the
parameters of color decay and grunge have the greatest im-
pact on the final restoration effect. (2) for structured degra-

3https://blendermarket.com/products/cracker
4https://blendermarket.com/products/ocd

dation, higher cracking and peeling can help models signif-
icantly improve their ability to repaint patterns. (3) scratch,
blunt, breaking, and wearing degradation are more suitable
for restoration of the terribly damaged murals.

3.3. Statistics

We collect 170 large manual restored, or healthy mural
images (minimum: 1464× 1454, maximum: 6096× 7944)
from the public data [24, 57]. Firstly, we randomly split
each large image into multiple patches (4,411 patches for all
large images). To mimic the diversity of mural corruptions,
we construct three subsets in our dataset with different de-
grees of extent, including Light, Medium and Terrible. All
the control parameters and details of three subsets are listed
in the appendix. We combine these sub-datasets (13,233
images) and split them into a training set (10,584 images)
and a test set (2,649 images). We ensure that there is no
overlap between the training and test sets. Finally, we scale
all images to (256 × 256) to speed up the training. Please
see Appendix. B for more details on our proposed dataset.

4. Attention Diffusion Framework
To the best of our knowledge, existing algorithms cannot

be applied to the mural-restoration task directly. The main
challenges can be roughly listed: (1) In/out-painting-based
methods require a local hard mask to locate the area to re-
store. However, the area to restore in mural is described
by a global soft heatmap, which is unavailable for unseen
data since the physical process is unknown. (2) There are
amounts of structured (missing pixel) and unstructured de-
fects (noisy pixel), which are distributed in a mixed form. In
this case, the single loss used in previous work [32, 27, 43]
is incapable to restore both of these massive defects.

For the first challenge, we propose a simple yet effec-
tive light module to identify and locate the damaged areas.
Detailed operations are present in section 4.1.
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Figure 5: The process of attention heatmap prediction. The damaged attention map module takes corrupted images as
input and extracts its high-level features to predict the damage map. Meanwhile, we will keep the content consistency
between prediction and actual heatmap to improve the performance of DAM. Then the damage map of all types of defects is
passed through the diffusion model.

Figure 6: The diffusion process of mural-restoration. The forward process q(xt|xt−1) continually add Gaussian noise to
xt−1 (from left to right), the reverse process pθ(xt−1|xt,x

d,xa) aims to denoise the image xt for given damaged image xd

and attention heatmap xa.

As for the second challenge, we propose three denoising
losses to utilize variant information to improve the quality
of output images as present in section 4.3. An overview of
the attention diffusion framework is shown in Fig. 4, and the
details of the model architecture are provided in section 4.4.

4.1. Damaged Attention Map Module

Different from the inpainting task, where most of the in-
put pixels are copied from the original image, in the mural-
restoration task, all pixels suffer from defects to some ex-
tent. On the other hand, some meaningful remnants are left
in damaged areas, and the output image is expected to be
consistent with these remnants. Such limitations make the
task more challenging.

Moreover, the restoration methods depend on the dam-
age extent across areas: for slightly damaged areas, only
minor modifications are required, while for missing areas,
we have to imagine consistent patches. Therefore, it is nec-
essary to measure the damage first. Although the damage
map can be obtained during the image generation process,
it is unavailable during testing. To handle this issue, we pro-
pose a light module named Damage Attention Map (DAM)
to automatically predict the damage map as shown in Fig.
5. First of all, to reduce the computational burden, the in-
put image is downsampled into 1/4 by two downsampling
blocks, where each block consists of an average pooling
layer and a 3 × 3 convolution layer. Next, the image fea-

ture is normalized and transferred into the locally-aware
feature by a residual block. Afterward, to efficiently ad-
just the receptive field, we append an attention block for the
globally-aware feature. Finally, we employ another resid-
ual block and an upsampling layer to predict the damaged
attention map with the same size as the input image. Prac-
tically, the DAM module outputs a single heatmap for each
image instead of one heatmap for each defect type to reduce
the computation.

4.2. Conditional Denoising Diffusion Model

Diffusion model has achieved great success in image
processing problems, including super-resolution [44, 58],
in/outpainting [56, 34, 41] and colorization [18, 43]. Some
studies show diffusion model fits the inverse problems well
[27, 11], where the goal is to recover an image from noisy
measurements. This model has been proved that can gen-
erate high-quality samples, is highly robust, and easy to
train than other popular generative models [16], for exam-
ple, GAN. Hence, we adopt Conditional Denoising Diffu-
sion Model (CDDPM) as our backbone. It is worth noting
that we can choose other models (e.g., conditional GAN)
as backbone equipped with our proposed module and still
have good performance. We conduct some experiments in
section 5.3 to verify it.

We further introduce the CDDPM [44] into the mural-
restoration task. Given a damaged mural image xd and
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heatmap xa, we want to learn a parametric approxima-
tion p(x|xd,xa) through a stochastic iterative process.
p(x|xd,xa) indicates a mapping from damaged image xd

to restored image x. It is hard to approximate p(x|xd,xa)
directly, hence, we use the diffusion process to divide the
process into sub-tasks. We denote x0 ∼ p(x|xd,xa) be re-
stored image from xd after T steps (xT , . . . ,xt, . . . ,x0),
xT be noise image which drawn from Gaussian dis-
tribution N (0, I). CDDPM aims to learn a process
pθ(xt−1|xt,x

d,xa) which iteratively refines the noise im-
age to get restored image x0. The process of CDDPM is
shown in Fig. 6 and please see Appendix. A for more de-
tails.

4.3. Loss function

To accommodate the task characteristics of mural-
restoration, we propose a series of loss functions in the rest
of this section. Specifically, it is expected the generated
image to (1) preserve the input image and its first-order in-
formation according to the extent of damage; (2) be consis-
tent with the ground truth image distribution. To this end,
we adopt the following losses. For target (1), we propose
attention heatmap loss, estimation loss and edge loss; for
target (2), we utilize diffusion loss.

Attention Heatmap Loss. In section 4.1, we propose
DAM module to predict attention heatmap of different de-
fects. To learn accurate attention, combining the damaged
restored image, we propose the weighted heatmap loss:

Lh =
1

HW

H∑
i=1

W∑
j=1

exp(|x(i,j) − xd
(i,j)|)

·
[
(x(i,j) − xd

(i,j))
2 − xa

]2
,

(2)

where x(i,j) refers to the pixel of image x at position (i, j)
(all image are scaled into [0, 1]), and xa is the predicted
heatmap. Compared with the standard ℓ2 regression loss,
we multiply the loss by weights exp(|x(i,j) −xd

(i,j)|), such
that severely damaged areas receive sufficient attention.

Estimation Loss. In CDDPM, we denote x̂0 as estimate
restoration image during training period. Hence, it’s intu-
itive to keep the content consistency between x̂0 and x:

Le =
1

HW

H∑
i=1

W∑
j=1

xa
i,j(x̂0,(i,j) − x(i,j))

2. (3)

Here the loss is weighted by the attention heatmap to focus
on severely damaged areas. Moreover, xa and x̂0 are jointly
learned for a better trade-off.

Edge Loss. We notice that simply using the estimation
loss will lead to blurry outputs. To restore damaged lines
clearly, we propose an edge loss to keep frequency domain

consistency:

Ls =
1

HW

H∑
i=1

W∑
j=1

exp(|x(i,j) − xd
(i,j)|)

·
[
grad(x̂0,(i,j))− grad(x(i,j))

]2
,

(4)

where the grad module contains Sobel kernel convo-
lution and a mixture of RGB channels (coefficients are
R:0.257, G:0.504, B:0.097 [40]). Since the Sobel operator
will introduce a little high-frequency noise [40, 14, 13], we
replace the weights xa with exp(|x(i,j) − xd

(i,j)|) to avoid
affecting the learning of DAM.

Diffusion Loss. Following the guided diffusion model,
we use the following diffusion loss to ensure distribution
consistency (fθ is a generative model in CDDPM which is
defined in Appendix. A):

Ld = ∥fθ(xd,xa,xt, γt)− ϵ∥22. (5)

Finally, we get the training loss for CDDPM by combin-
ing the above losses:

Lall = Lh + Ls + Le + Ld. (6)

4.4. Model Architecture

In this subsection, we focus on the model architecture
of fθ. As a common model for medical image segmen-
tation, Unet has made great achievements in recent years.
The model structure is split into three parts, which contain
a series of residual layers and sampling modules. Benefit-
ing from the architecture, Unet can capture the high-level
semantic features (left part), transform these features (mid
part) and reconstruct low-level images (right part). Hence,
Unet is a suitable architecture for the image-to-image task
to repair damaged textures, and edges [22, 16, 10, 9]. To
better fit the mural-restoration task, we employ a modified
guided diffusion model (as shown in Fig. 4) as fθ. Nu-
merous experimental results demonstrate the effectiveness
of the proposed architecture in the mural-restoration task.

5. Experiment
In this section, we will conduct experiments to assess the

effectiveness of ADF in the mural-restoration task.
Competitors. We compare ADF with recent SOTA

methods, including Old Photo Restoration [46], DDRM
[27], SwinIR [32], Real-ESRGAN [43], Restormer [58] and
ALL-In-One [29] (please see Appendix. C.1 for details).
Since existing mural restoration methods cannot be directly
applied to our dataset, we do not make comparisons.

Training Details. All experiments are conducted on an
Ubuntu 16.04.1 server equipped with an Intel Xeon(R) Sil-
ver 4110 CPU and eight RTX 3090 GPUs.
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Figure 7: The real world experiment of mural-restoration. The first column contains the damaged mural; the first and
second rows show the restoration results of the model which is trained on the previous and our proposed dataset respectively.
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Figure 8: The qualitative results of mural-restoration experiments.

All codes are developed in Python 3.7.13, PyTorch
1.12.1 and torchvision 0.13.1 environment. We train our
ADF model for 1000 iterations with a batch size of 64 (8
per GPU). Specially, we train our method from scratch and
do not perform early stopping. Following [44], we choose
Adam optimizer with a linear warmup schedule. The learn-
ing rate starts from 5×10−5 and increases to 10−4 over 500
iterations. We set weight decay and dropout rate to 10−5

and 0.2, respectively. All images are resized into 256× 256
to reduce the computational burden.

5.1. Real-world Experiments

We collect some real-world paired images (including
damaged and repaired images) to build test dataset. We con-
duct real-world experiments to demonstrate the validity of
our proposed mural disruption simulation framework and
restoration method ADF.

We train all baselines on our proposed and previous
datasets [57] respectively. The comparison is shown in Fig.
7. The quantitative results of all baselines on real-world are

listed in Tab. 1 and Tab. 2. According to the result of ex-
periments, we make the following observations:

(1) Dataset Comparison. In Fig. 7, it’s clear that most
of the baselines trained on our dataset (second row) have
better results compared to the previous dataset (first row).

This indicates that the previous pipeline does not describe
the damage to the mural realistically. The existing mural
dataset can not be used as training data to repair the real-
world damaged mural. Therefore, our proposed synthesis
pipeline is necessary and practical.

(2) Baseline Comparison. In Tab. 1 and Tab. 2, both
for the previous dataset and ours, the ADF model achieves
outstanding performance and generates satisfactory restora-
tion images. This shows that our proposed DAM module
and a series of loss functions are significantly effective in
the mural restoration task. These modules can improve the
model’s ability to locate the damaged area and the samples’
quality.
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Method PSNR ↑ SSIM ↑ IS ↑ FID ↓

Old Photo [46] 12.18 0.41 1.02 73.12
DDRM [27] 12.74 0.43 1.05 69.94
SwinIR [32] 13.51 0.46 1.04 72.18
ESRGAN [50] 11.83 0.36 1.01 74.27
Restormer [58] 12.95 0.38 1.03 71.82
All-in-one [29] 12.49 0.40 1.02 73.09

Ours method 17.65 0.62 1.09 57.13

Table 1: The results on the real damaged mural dataset.
The performance of model which trained on the previous
dataset. Upward arrows indicate that the image quality is
proportional to metric, downward is otherwise. The best
results are highlighted in bold.

Method PSNR ↑ SSIM ↑ IS ↑ FID ↓

Old Photo [46] 15.23 0.46 1.05 57.54
DDRM [27] 15.91 0.49 1.06 59.93
SwinIR [32] 17.83 0.56 1.08 54.74
ESRGAN [50] 14.98 0.52 1.06 49.82
Restormer [58] 16.94 0.57 1.09 50.38
All-in-one [29] 15.26 0.47 1.05 51.23

Ours method 19.08 0.68 1.12 47.59

Table 2: The results on the real damaged mural dataset.
The performance of the model trained on our dataset.

Method PSNR ↑ SSIM ↑ IS ↑ FID ↓

Old Photo [46] 21.12 0.70 1.13 48.11
DDRM [27] 17.39 0.62 1.17 54.19
SwinIR [32] 22.03 0.78 1.16 43.95
Real-ESRGAN [50] 22.36 0.77 1.15 37.36
Restormer [58] 21.71 0.75 1.14 37.23
All-in-one [29] 22.52 0.68 1.16 39.27

Ours method 23.64 0.80 1.18 35.88

Table 3: Quantitative results on our proposed dataset.

5.2. Benchmark Experiments

Main Results. We conduct similar image restoration
studies on mural images comparing our proposed method
ADF. Fig. 8 shows the results of all competitors on our
benchmark dataset. According to the figures, we have the
following observations: (1) Most methods can process sim-
ple unstructured degradation. However, for terribly dam-
aged defects, e.g., peeling, breaking, and cracking, the pre-
vious restoration methods prefer to blur them instead of re-
painting them. (2) Our proposed method ADF outperforms
all the competitors in most cases. This approach can repair
the missing content and restore the texture and stoke of the
damaged mural. The results demonstrate that our method
can be applied in practice.

Tab. 3 shows some automated metrics, including PSNR,

Model
Loss function Metrics

Lh Ls Le PSNR↑ SSIM↑ IS↑ FID↓

✓ 19.28 0.67 1.09 54.00
Origin ✓ 22.30 0.72 1.15 49.95

✓ ✓ 22.59 0.76 1.14 47.07

✓ 19.07 0.77 1.12 47.92
✓ 20.02 0.76 1.16 45.31

Ours ✓ ✓ 20.65 0.72 1.17 44.74
✓ ✓ 22.76 0.79 1.17 38.63
✓ ✓ ✓ 23.64 0.80 1.18 35.88

Table 4: Performance of ablation studies under different
settings. Origins indicate that the guided diffusion without
DAM module.

Dam. Map (true) Dam. Map (ℒ�) Dam. Map (normal)

Grad. Map (true) Grad. Map (ℒ�) Grad. Map (normal)

Ground Truth Samp. 600/1000 (ℒ�) Samp. 600/1000 (normal)

Figure 9: Abalation studies on our proposed techniques.

SSIM, IS, and FID for mural-restoration task [51]. We can
conclude that our method ADF can achieve the highest sam-
ple quality scores than other competitors. The main reason
is that previous works are designed to restore specific or
several defects, which are hard to apply in this benchmark.

5.3. Ablation Studies.

In this section, we conduct extensive experiments to val-
idate the effect of three components: DAM module, loss
functions, and the backbone (result is shown in Tab. 4).

(1) DAM module. In general, when the loss functions
are all set to the same, our proposed framework will perform
better than the original model in most metrics. This demon-
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Ground Truth Damaged Mural CGAN CGAN with Our Module

Ground Truth Damaged Mural DDPM DDPM with Our Module

Figure 10: Abalation studies on different backbone.

strates our proposed DAM module can efficiently overcome
the challenges in mural restoration.

(2) Loss function. When Lh and DAM are used to-
gether, the effect is even better than when they exist alone.
This result indicates that the Lh we proposed is reasonably
matched with DAM (as shown in Fig. 9, first row).

Moreover, the edge of the generated image, which uses
Ls (Fig. 9, second row, middle) is clear than the normal one
(right). This demonstrates Ls can efficiently reconstruct the
damaged edge of the mural image.

In most cases, Le can improve the performance of the
model and accelerate the model generation process (Fig. 9,
third row). Compared to Lh (locate damaged areas) and Ls

(enhance edges), Le is the only loss that constrains content
consistency directly, while others focus on auxiliary infor-
mation. Hence, Le is critical to the performance improve-
ment of the model.

(3) Backbone. From the result of Fig. 10, it’s clear that
for both types of origin model, our module can efficiently
improve the performance. This means our proposed DAM
and losses are effective and can be migrated to other back-
bones besides CDDPM, e.g, Conditional GAN. Please see
the Appendix. C.2 for details of the experiment setup.

6. Conclusion
In conclusion, we focus on a complex image restoration

task, namely mural restoration. To address the lack of suit-
able paired mural-restoration datasets, with the help of the
physics and texture engine of the 3D software blender,
we propose a systematic framework to simulate the actual
damage process and generate images. Moreover, we intro-
duce an effective framework called ADF to complete mu-
ral restoration tasks. Finally, we conduct numerous experi-
ments to demonstrate that our proposed method and bench-
mark dataset are valid for this task.

The benchmark dataset proposed by us belongs to syn-
thetic images, and there is still a certain gap between it and
the real damaged images. Therefore, manual annotation of
real damaged datasets significantly contributes to the mural-
restoration task. Our future work will focus on improving

the simulation framework of the damage process.
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