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Bingyi Cao2 ∗†

1Peking University 2Google Research

Abstract

Image retrieval systems conventionally use a two-stage
paradigm, leveraging global features for initial retrieval
and local features for reranking. However, the scalability
of this method is often limited due to the significant storage
and computation cost incurred by local feature matching in
the reranking stage. In this paper, we present SuperGlobal,
a novel approach that exclusively employs global features
for both stages, improving efficiency without sacrificing ac-
curacy. SuperGlobal introduces key enhancements to the
retrieval system, specifically focusing on the global feature
extraction and reranking processes. For extraction, we iden-
tify sub-optimal performance when the widely-used ArcFace
loss and Generalized Mean (GeM) pooling methods are com-
bined and propose several new modules to improve GeM
pooling. In the reranking stage, we introduce a novel method
to update the global features of the query and top-ranked
images by only considering feature refinement with a small
set of images, thus being very compute and memory efficient.
Our experiments demonstrate substantial improvements com-
pared to the state of the art in standard benchmarks. Notably,
on the Revisited Oxford+1M Hard dataset, our single-stage
results improve by 7.1%, while our two-stage gain reaches
3.7% with a strong 64, 865× speedup. Our two-stage system
surpasses the current single-stage state-of-the-art by 16.3%,
offering a scalable, accurate alternative for high-performing
image retrieval systems with minimal time overhead.
Code: https://github.com/ShihaoShao-GH/SuperGlobal.

1. Introduction
Image retrieval systems are tasked with searching large

databases for visual contents similar to a query image. Gen-
erally, the search process consists of two stages. First, an
efficient method sorts database images according to esti-
mated high-level similarity to the query. Then, in the rerank-
ing stage, the most relevant database images found in the
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Figure 1: We introduce SuperGlobal, a novel method for image retrieval
and reranking which relies solely on global image features. SuperGlobal
leverages several improvements to the Generalized Mean (GeM) pooling
function, across regions and scales, as indicated in the purple box on the
left. Our reranking process, illustrated on the right green box, refines the
global feature representation based on the query and top retrieved images
to produce a more relevant set of results.

first stage undergo a more comprehensive matching process
against the query, to return an improved ranked list of results.

In modern implementations, the first stage is instantiated
with deep learning-based global features, which has received
substantial attention in the past few years [35, 37, 26, 48].
The reranking stage is commonly executed via geometric
matching of local image features [30, 32, 4, 8], which pro-
vides information on the spatial consistency between the
query and a given database image.

A recent trend in this area is on leveraging sophisticated
matching processes at the reranking stage, e.g. transformers
[40] or 4D correlation networks [23], which have led to re-
markable improvements in the quality of retrieved results.
However, this has come at a significant cost, where reranking
latency takes several seconds per query and requires more
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than 1MB of memory per database image – making these
approaches challenging to scale to large repositories. Our
work directly tackles this limitation by proposing the first
method fully based on global image features for both stages.
In addition, we rethink pooling techniques and propose mod-
ules to improve global feature extraction. An overview of
our method, SuperGlobal, is presented in Figure 1. More
specifically, we introduce the following contributions.
Contributions:

(1) We propose improvements to the core global feature
representation, based on enhanced pooling strategies. We
point out undesired training behavior when learning global
features combining GeM pooling [35] and ArcFace loss
[11], and introduce a simple and effective solution to this
problem with new pooling modules, including regional and
multi-scale techniques.

(2) We introduce a very efficient and effective reranking
process, based solely on global features, that is able to adapt
the representation of the query and top-ranked database im-
ages on the fly in order to better estimate their similarities.
This method does away with any need for expensive local
features and is inherently very scalable since the features
used in both search stages are the same.

(3) Experiments on standard image retrieval benchmarks
showcase the effectiveness of our methods, establishing new
state-of-the-art results across the board. We boost single-
stage results on Revisited Oxford+1M Hard [34] by 7.1%.
But even more impressively, our simple reranking mecha-
nism outperforms previous complex methods by 3.7% on
the same dataset, while being more than four orders of mag-
nitude faster and requiring 170× less memory.

2. Related Work
Image retrieval methods. Early work in image retrieval
leveraged hand-crafted local features [24, 7] as a core build-
ing block. While some papers proposed to retrieve directly
based on local features [25, 24, 28], others used them to
construct global representations, based on Bag-of-Words
and similar techniques [39, 19, 20, 42]. Modern systems
have revisited these image retrieval techniques with deep
learning based components, e.g., deep local feature-based
retrieval [27], deep local feature aggregation [41, 43, 46] or
deep global feature modeling [6, 13, 37, 26, 48]. A recent
survey in this area can be found in [9].
Global feature pooling. In particular, a critical aspect that
has been studied for global feature learning is on how to
properly pool contributions of image features from differ-
ent regions into a single high-dimensional vector. SPoC [5]
proposed sum pooling of convolutional features, while [36]
introduced max pooling, which was later approximated by
integral max pooling in R-MAC [44]. Along a similar line,
CroW [21] introduced cross-dimensional weighted sum pool-
ing. NetVLAD [2] introduced an aggregation inspired by

the VLAD method [19]. Generalized Mean (GeM) pooling
[35] is today considered the state-of-the-art method in this
area, being used in several recent papers [23, 8, 48]. A key
contribution of our paper is to revisit global pooling meth-
ods, by pointing out the sub-optimal behavior of GeM when
using a popular training loss, and by improving regional and
multi-scale pooling. Note that R-MAC [44] had explored
regional pooling, with max pooling over regions and sum
pooling of these regional descriptors. In contrast, we apply
the more modern GeM pooling across regions and scales to
achieve enhanced performance.
Loss functions for image retrieval. Several types of loss
functions have been developed to enhance instance-level dis-
criminability, which is required in image retrieval systems.
Earlier work [2, 13, 35] in this area relied on ranking-based
losses such as contrastive [10] or triplet [38]. More advanced
ranking losses based on differentiable versions of Average
Precision (AP) [16] have also demonstrated strong results
[37]. A recent trend is to leverage margin-based classifica-
tion loss functions tuned to this problem, such as ArcFace
[11], CosFace [45] or CurricularFace [18] – these have been
adopted in image retrieval systems such as [23, 8, 48]. In this
work, we point out a critical issue when these margin-based
classification losses are coupled with GeM pooling – which
we fix with new pooling modules.
Reranking for image retrieval. The reranking of image
retrieval results has been traditionally accomplished by
local feature matching and Geometric Verification (GV)
[30, 32, 4], most often coupled to RANSAC [12]. Mod-
ern deep local features [27, 8] have also been used in this
manner. A more recent trend is to employ heavier techniques
for reranking, based on transformers [40] or dense 4D cor-
relation networks [23]. While achieving high performance,
these incur substantial storage and compute costs due to the
need to store local features and feed them through complex
models. Contrary to this trend, we propose a much simpler
reranking technique where only global features are needed
– costing orders of magnitude less than the current state-of-
the-art solution [23] but still achieving higher accuracy.

3. Improving Global Features

3.1. Background

GeM pooling. Generalized Mean (GeM) pooling [35] is
a module that provides a generalized capability for feature
aggregation. GeM pooling is widely adopted in ResNet
[17] (RN for short) models for image retrieval [23, 8, 48],
followed by a fully-connected layer [13], to whiten the ag-
gregated representation. Formally, we denote the feature
map from deep convolution layers by D ∈ RHd×Wd×Cd

and a fully-connected whitening layer with weights and bias
as W ∈ RCg×Cd and b ∈ RCg , where Cd and Cg are the
channel dimensions of the output from the convolution layer
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Figure 2: Trainable GeM pooling p values during DELG training for
different ArcFace margin values, as compared to the optimal p value (4.0).
Note that larger margins cause p to deviate further from its optimal value.

and global features, respectively. These two components,
GeM pooling and the whitening layer, produce the global
feature g ∈ RCg by:

g = W

 1

HdWd

∑
h,w

Dp
h,w

1/p

+ b, (1)

where p denotes the generalized mean power.
SoftMax-based loss functions with margin penalties. Ar-
cFace [11] applies a geometric space penalty to expand the
angular margin between different classes while gathering
the same-class embedding to the center, therefore making
it suitable for standard retrieval tasks [48, 8]. Curricular-
Face [18] proposes to further improve angular margin losses
by embedding curriculum training into the loss function and
has the ability to adaptively adjust the relative importance of
easy and hard samples during the course of training, which
has been used in recent image retrieval work [23].
Multi-scale inference. Multi-scale inference is one of the
commonly used methods to aggregate features from different
scales to further improve the performance of image retrieval,
previous papers [8, 48, 23] commonly average the embed-
dings from different scales.

3.2. Suboptimal GeM Pooling with Margin-based
Losses

We observe that combining CurricularFace or ArcFace
loss with GeM pooling systematically causes the trainable
p value in GeM pooling to converge to a lower value w.r.t.
its optimal value for image retrieval. In Figure 2, we show
such phenomena when training DELG [8] with learnable p
values initialized to 3.0, on GLDv2-clean [47]. The optimal
p value in the test split of GLDv2-retrieval, found by simple
grid search to inform the best possible value, is marked with
a dotted green line (in this case, the optimal p value for the
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Figure 3: Optimal p values at inference, shown on the y-axis, for different
fixed GeM pooling p values during DELG training. We note that the optimal
p for inference is larger than the fixed p used for training.

converged model was found to be the same for these three
runs). During training, p values keep decreasing from its
original value, and are further away from the optimal value
of 4.0. Moreover, higher angular margin causes p to deviate
further from its optimal value. In the cases of using fixed
p for GeM pooling during training, the optimal p during
inference could also be different from that in training. We
examine the optimal p values for inference by grid search in
the test split of GLDv2-retrieval for different fixed p values
in training DELG models [8] on GLDv2-clean [47] and
find that optimal p at inference is always higher, as shown in
Figure 3. SOLAR [26] pointed out a similar phenomenon for
models trained with the contrastive loss, while the underlying
reason was not explained.

In this section, we provide an intuition on the change of
p over the course of training based on our empirical study
as follows. A high p value generally forces a small portion
of features to dominate the aggregation process. On the
contrary, a lower p leads to the opposite behavior: e.g., for
p = 1, equivalent to average pooling, all features contribute
equally. At the beginning of training, when the features are
not refined, a lower p value is preferred in order to gather
more information; this is supported by the observation that
p goes down rapidly at the start of the training in Figure 2.
In the later stage of training, when the features are further
refined, focusing on critical features rather than all features
may further improve the model performance. However, due
to the decaying learning rate, p value is not allowed to go up
although higher p may be preferred in this case. This aligns
with Figure 2, where p slowly converges later at training.

To conclude, we consistently observe that margin-based
losses lead to a sub-optimal p value, resulting in the degra-
dation of retrieval performance. This finding provides evi-
dence of improvements and inspires future work for several
state-of-the-art models, e.g. CVNet [23] which uses Curricu-
larFace loss function and DELG [8] with ArcFace loss. We
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introduce a set of modules specifically designed to optimize
pooling for image retrieval in the following section.

3.3. SuperGlobal Pooling

In this section, we revisit global feature pooling and pro-
pose three new modules to enhance retrieval capabilities:
GeM+, Scale-GeM and Regional-GeM – which are illus-
trated in the purple box in Figure 1.
GeM+. As discussed in the previous subsection, GeM’s
p value becomes sub-optimal with margin-based softmax
losses. Thus, we propose a method that starts by training
with margin-based loss, then introduces a parameter tuning
stage that will adjust p in an efficient manner. We find that
in practice this tuning stage leads to the optimal value in
a consistent manner for many datasets. This approach is
named GeM+ and seeks to find the optimal p value of GeM
pooling for image retrieval.
Regional-GeM. When adopting GeM for global pooling in
image retrieval, we expect it to amplify discriminative infor-
mation when aggregating the features to the final embedding.
However, in addition to discriminative information at the
global level, regional information such as object shape and
arrangement can be important for distinguishing between
different instances. Such fine-grained details may not be
captured robustly when simply pooling at the global level.
Therefore, besides using GeM pooling, we further adjust
aggregation in order to incorporate regional information. We
refer to this method as Regional-GeM.

We perform regional aggregation by adapting the Lp pool-
ing approach [15] to our network, with parameter pr. This
can be viewed as a version of GeM pooling which acts on
a regional level. In this setup, activations from the feature
map D are aggregated in a convolutional manner, resulting
in a new feature map, M ∈ RHd×Wd×Cd . We then combine
M and D to produce a more robust feature map, obtaining
an improved global feature as:

gr = W

 1

HdWd

∑
h,w

(
Mh,w +Dh,w

2
)p

1/p

+ b. (2)

With this formulation, we incorporate both regional in-
formation (Mh,w produced by Lp pooling with parameter
pr) and global information (Dh,w produced by the origi-
nal convolutional layer) in GeM pooling. This module is
integrated into our model without the need for additional
training, leveraging the parameter p obtained by the GeM+
process.
Scale-GeM. Though averaging multi-scale features can be
effective [8, 48, 23], a more generalized multi-scale aggrega-
tion may unlock larger retrieval gains. With this motivation,
we explore the application of GeM for enhanced multi-scale
feature inference, and we refer to this as Scale-GeM.

GeM pooling can be applied before or after a fully-
connected whitening layer. Our preliminary experiments
applying it prior to projection yield sub-optimal performance,
so we proceed by first extracting each scale’s global feature
according to Equation 2. Naively applying GeM pooling to
such global features could fail due to the possible negative
values in the features to be pooled. To address this issue, we
consider a modified version of GeM designed for multi-scale
inference as follows:

gms =

(
1

N

N∑
s=1

(gs + ζs)
pms

)1/pms

− ζs, (3)

where ζs = −min(gs) denotes a shift of each scale’s global
feature gs, N denotes the number of scales and pms is the
multi-scale power parameter used in aggregation.

4. Reranking with Global Features
4.1. Refining Global Feature for Reranking

Robust image representations are critical for the accuracy
of image retrieval. Combining the representations of similar
images with that of the original image into an expanded rep-
resentation that is then reissued as the query is a technique
widely used to refine global features, generally leading to
increased recall [14, 3]. Query expansion (QE) [14] is an
example, as it replaces the original representation of the
query image by its expanded version, which is then used
to search better images in the database. On the other hand,
database-side augmentation (DBA) [13] is a method to ap-
ply QE to each image in the database. The key idea is that
visually similar images are highly likely to contain the same
object from different viewpoints and illumination conditions.
Feature refinement with these images improves the robust-
ness of the image representation. It also emphasizes the key
features of the object of interest, which further improves the
representations. QE and DBA methods are very powerful but
suffer from high cost: QE has to issue a new query against
the entire database; DBA requires comparing all database
images against each other, which can be infeasible in large
scale. Furthermore, adding a new image to the database with
DBA requires querying it against the entire database.

Reranking is usually conducted on the top-M retrieved
database images, where M is much smaller than the database
size – making it feasible to apply feature refinement for each
of these images on the fly, to then issue the updated query
against the M retrieved images with the updated representa-
tions. Inspired by QE and DBA, our SuperGlobal reranking
proposes a simple but effective method to aggregate infor-
mation between the top-ranked images and the query, to up-
date their image representations. Unlike previous QE/DBA
work [14, 3] that generally focuses on improving the features
for a better recall, our work aims to refine the features for
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reranking via updated global features. More details can be found in Section 4.2.

higher precision, since the reranking is performed on the
top-M results only.

Selecting the candidate images for feature refinement
may be challenging, since we don’t have guarantees that
they are actually relevant to the query. False positives may
harm the expanded representation. Besides, the method to
aggregate the features to reinforce the information shared
between them and inject new information not available in
the original representation is unclear. Our work addresses
these challenges and proposes a reranking method only via
refined global features, as described in the following.

4.2. SuperGlobal Reranking

SuperGlobal leverages GeM pooling to refine the global
features for a given query and its top-M retrieved images on
the fly, and then reranks them via the updated descriptors,
as illustrated in Figure 4. Different from previous studies
and given that feature refinement runs at query time, the
query image is also included as a candidate when refining
the features for the database images. This helps to narrow
the focus on query-specific feature refinement. The design
details are discussed as follows.
Top-K nearest neighbors as refinement candidates. For
a given query image, we retrieve the top-M images based on
the global descriptors, where M is a constant and typically
below 1000. Then for the query and the M images, we fetch
the top-K nearest neighbors via global feature similarity,
which are the candidates for the feature refinement, where
K is a constant and usually K ≤ 10.
Feature refinement via GeM pooling. SuperGlobal rerank-
ing leverages GeM pooling for feature refinement. As pre-

viously mentioned, if there are false positives in the nearest
neighbors, they may not be helpful but instead harmful to
the expanded representation. Without strong Geometric Ver-
ification of local features to select true positives, the top-K
nearest neighbors could potentially contain false positives.
SuperGlobal proposes effective strategies for database and
query side separately as illustrated in Figure 4.

For the database side, we propose a weighted pooling
approach, with the global similarity score as the weight with
additional multiplier factor β. After weighting the features,
we demonstrate that applying average pooling (p = 1) on
top is the most effective for the database images. That is,
gdr = (gd+

∑K
i=1(gd ·gi)βgi)/(1+

∑K
i=1(gd ·gi)β), where

gd is the original global feature of the database image, gdr
is the refined global feature we get and gi is the i-th most
similar global feature to gd.

For the query side, we apply GeM pooling to the refined
features of the top K retrieved database images to produce
an expanded global descriptor gqe, and we find the optimal
parameter p is greater than 10, thus max pooling is applied
(since, when p → ∞, GeM pooling becomes max pooling).
Both the original and the expanded descriptors of the query
image are then used to compute the similarity scores for the
final reranking, as follows.
Reranking with refined representations. Each query im-
age possesses its original representation and the expanded
representation. We compute the similarity scores S1 be-
tween each original descriptor gq and refined global descrip-
tors gdr for each database image. We also compute another
set of similarity scores S2 between the expanded query de-
scriptor gqe and each gd. In the end, we average S1 and S2
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Method
Medium Hard

ROxf ROxf+1M RPar RPar+1M ROxf ROxf+1M RPar RPar+1M

Global feature retrieval
RN50-DELG [8] 73.6 60.6 85.7 68.6 51.0 32.7 71.5 44.4
RN101-DELG [8] 76.3 63.7 86.6 70.6 55.6 37.5 72.4 46.9
RN50-DOLG [48] 80.5 76.6 89.8 80.8 58.8 52.2 77.7 62.8
RN101-DOLG [48] 81.5 77.4 91.0 83.3 61.1 54.8 80.3 66.7
RN50-CVNet [23] 81.0 72.6 88.8 79.0 62.1 50.2 76.5 60.2
RN101-CVNet [23] 80.2 74.0 90.3 80.6 63.1 53.7 79.1 62.2
RN50-SuperGlobal (No reranking) [ours] 83.9 74.7 90.5 81.3 67.7 53.6 80.3 65.2
RN101-SuperGlobal (No reranking) [ours] 85.3 78.8 92.1 83.9 72.1 61.9 83.5 69.1

Global feature retrieval + Local feature reranking
RN50-DELG (GV rerank top 100) [8] 78.3 67.2 85.7 69.6 57.9 43.6 71.0 45.7
RN101-DELG (GV rerank top 100) [8] 81.2 69.1 87.2 71.5 64.0 47.5 72.8 48.7
RN50-CVNet (Rerank top 400) [23] 87.9 80.7 90.5 82.4 75.6 65.1 80.2 67.3
RN101-CVNet (Rerank top 400) [23] 87.2 81.9 91.2 83.8 75.9 67.4 81.1 69.3

SuperGlobal retrieval and reranking
RN50-SuperGlobal (Rerank top 400) [ours] 88.8 80.0 92.0 83.4 77.1 64.2 84.4 68.7
RN101-SuperGlobal (Rerank top 400) [ours] 90.9 84.4 93.3 84.9 80.2 71.1 86.7 71.4

Table 1: Results (% mAP) on the ROxford and RParis datasets (and their large-scale versions ROxf+1M and RPar+1M), with both Medium and Hard
evaluation protocols. The best scores for RN50 and RN101, with and without reranking, are highlighted in bold black and bold blue, respectively.

similarity scores for the final reranking. Given the fact that
today’s large-scale databases may contain billions of images,
previous QE/DBA methods are much more costly compared
to our approach, which has time complexity of O(M2) and
is extremely efficient at reranking.

5. Experiments

5.1. Experimental Setup

Common setting. Our proposed methods can be applied to
any model in a plug-in style. Here, we adopt our methods
to the well-known structure CVNet [23] with pre-trained
weights downloaded from their GitHub repository. The mod-
ules we proposed in this paper are all implemented using
TensorFlow [1] and Pytorch [29]. The training and inference
are both conducted on four A100 GPUs with Intel® Xeon ®

Gold 6330 CPU @ 2.00GHz.
Estimating p, pr and pms. We use ROxford 5k [34] as the
tuning dataset to estimate the pooling parameters p, pr and
pms for GeM+, Regional-GeM and Scale-GeM, respectively,
and show that the obtained values are sufficiently precise.
Firstly, we run inference on the model and store the last fea-
ture map for every image. Then, we apply the different types
of pooling, varying the pooling parameters, on the feature
map for each image. To search for the optimal parameter, we
begin by performing a grid search with a step size of 1 and
monitor the mAP metric. We terminate the grid search if the
mAP in the current iteration is smaller than the previous one.
Then, we decrease the grid search step size to 0.1 and redo
the previously mentioned steps. Once this procedure is com-
pleted, we obtain the values of p = 4.6 and pr = 2.5. For
Scale-GeM, similar experimentation finds that pms → ∞,

i.e., max pooling over the multi-scale global features, leads
to the best performance. These final obtained parameters are
used for experimentation on all evaluation datasets.

SuperGlobal reranking. For reranking evaluations, we fol-
low the same setting as CVNet and rerank the top 400 can-
didates in most experiments, i.e. M = 400. Given that our
method is drastically more efficient than CVNet, we also
study the performance with larger M in specific cases. We
pick K = 9 for the reranking method and set β = 0.15 for
feature refinement described in Section 4.2.

ReLU adjustment. During our reranking experimentation,
following the same way as we explore the impact of p in
GeM pooling, we also revisit the ReLU activation [22] by
considering a generalized version where the threshold is
treated as a parameter denoted by α, which is reduced to
vanilla ReLU when α = 0. In the best setup, we set threshold
α to 0.014 for the first block and the joints between blocks.

5.2. Evaluation Benchmarks

We conduct our experiments on several well-established
benchmarks. First, we use Oxford [31] and Paris [33] with
revisited annotations [34], referred to as ROxf and RPar,
respectively. There are 4993 (6322) database images in the
ROxf (RPar) dataset, and a different query set for each, both
with 70 images. Large-scale results are further reported with
the R1M distractor set [34], which contains 1M images. In
addition, we also report results on the Google Landmarks
dataset v2 (GLDv2) [47], using the latest ground-truth ver-
sion (2.1). GLDv2-retrieval has 1129 queries (379 validation
and 750 testing) and 762k database images.
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Method Multi-scale Extraction time Reranking time Memory (GB)

global local (ms per image) (ms on reranking top-400) ROxf RPar

Global features
RN101-DELG [8] 3 7 65 3.6× 106 on 100 4.25 5.35
RN101-CVNet [23] 3 1 65 2.4× 104 on 400 27.02 33.55
RN101-CVNetQ [23] 3 1 65 2.4× 104 on 400 6.88 8.52
RN101-SuperGlobal (Ours) 3 - 65 0.37 on 400 0.04 0.05

Table 2: Latency and Memory on the ROxford and RParis datasets . Extraction time measures the time needed for the model to produce global features.
Reranking time measures the latency of the reranking stage after the global/local features are already computed. Memory usage measures the hardware
memory required to store the features.

Method mAP@100

RN50-DELG retrieval 24.1
+ GV (Rerank top-100) 24.3
RN101-DELG retrieval 26.0
+ GV (Rerank top-100) 26.8
RN50-CVNet retrieval 30.2
+ CVNet reranking (Rerank top-100) 32.4
RN101-CVNet Retrieval 32.5
+ CVNet-reranking (Rerank top-100) 34.9
RN50-SuperGlobal retrieval [ours] 31.1
+ SuperGlobal reranking (Rerank top-100) 32.5
+ SuperGlobal reranking (Rerank top-800) 32.7
+ SuperGlobal reranking (Rerank top-1600) 32.6
RN101-SuperGlobal retrieval [ours] 33.4
+ SuperGlobal reranking (Rerank top-100) 34.6
+ SuperGlobal reranking (Rerank top-800) 34.9
+ SuperGlobal reranking (Rerank top-1600) 35.0

Table 3: GLDv2-retrieval evaluation. Experimental results (%
mAP@100) on GLDv2-retrieval [47]. The best scores are presented in
bold black and bold blue colors for each ResNet backbone.

5.3. Results

We compare different components of SuperGlobal against
state-of-the-art models in Table 1. We split the settings into
three categories: (1) Global feature retrieval. (2) Global
feature retrieval + Local feature reranking. (3) SuperGlobal
retrieval and reranking. In addition to the comparisons of per-
formance, to illustrate the efficiency of our method, we com-
pare SuperGlobal against CVNet and DELG in the number
of scales, reranking time and the peak memory consumption,
and summarize the results in Table 2.

Firstly, as seen from Table. 1, SuperGlobal retrieval sig-
nificantly outperforms existing models in single-stage re-
trieval. For instance, in setting (1), our methods (RN101-
SuperGlobal without reranking) outperform the second best
RN101-DOLG by a significant margin of +7.1% in Revis-
ited Oxford+1M Hard. Under the retrieval then reranking
paradigm in setting (2), SuperGlobal retrieval and reranking
in setting (3) achieves +3.7% against the second best RN101-
CVNet when reranking top 400 in Revisited Oxford+1M
Hard. Moreover, SuperGlobal reranking is 64, 865× faster
and requires 170× less memory, as indicated by Table. 2.
Remarkably, our method, even including the reranking time,

is almost as efficient as RN101-CVNet-Global with only
almost zero overhead.

To evaluate our proposed method when reranking more
candidates, we further conduct experiments on GLDv2-
retrieval and show the results in Table. 3. First, by increasing
the number of images in reranking, SuperGlobal achieves
further performance improvements. Considering the signif-
icantly reduced latency and memory requirements of our
method, SuperGlobal is capable of reranking many more
images with the same compute budget. When increasing
the reranking budget to top 800 or 1600 candidates, Super-
Global shows superior performance compared with CVNet
reranking (rerank top 100), while still being 16, 216× faster
and 85× more memory efficient.

5.4. Ablation Study

To evaluate the contribution from each module, we con-
duct a detailed ablation on ROxf and RPar, based on the
RN101-CVNet pre-trained backbone. We sequentially add
the modules one by one to examine whether they lead to a
higher performance. Results are presented in Table 4. In sum-
mary, GeM+ contributes the most to the performance, while
Regional-GeM and Scale-GeM make further improvements.
Our finding of modifying ReLU also brings an additional
+1% improvement.

5.5. Qualitative Results

Retrieval only. In Figure 5, we show images with different
ranks retrieved from SuperGlobal and CVNet, in the absence
of reranking. The ranking positions are selected such that
SuperGlobal retrieves matching images (highlighted in green
boxes) while CVNet doesn’t (highlighted in red boxes). We
observe that SuperGlobal pays more attention to the fine-
grained details of the query image because of the updated
pooling techniques proposed in this work.
Reranking. Figure 6 shows top results after SuperGlobal
retrieval and reranking. The ranking positions are selected
such that the reranked images (highlighted in green boxes)
match the query whereas the retrieved images (highlighted
in red boxes) do not. These examples show the additional
improvement over single-stage SuperGlobal retrieval by ap-
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Method GeM+ Regional-GeM Scale-GeM ReLU
Medium Hard

ROxf RPar ROxf RPar

Global features
RN101-CVNet-Global [23] ✘ ✘ ✘ ✘ 80.2 90.3 63.1 79.1
RN101-CVNet-Global ✓ ✘ ✘ ✘ 84.7 90.8 69.6 81.1
RN101-CVNet-Global ✓ ✓ ✘ ✘ 84.8 91.3 70.6 81.9
RN101-CVNet-Global ✓ ✓ ✓ ✘ 84.7 91.5 71.1 82.5
RN101-CVNet-Global (SuperGlobal retrieval) ✓ ✓ ✓ ✓ 85.3 92.1 72.1 83.5

Table 4: Results (% mAP) on the ROxford 5k and RParis 6k datasets, with both Medium and Hard evaluation protocols. Note reranking is not applied in the
evaluation.
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Figure 5: Examples of SuperGlobal retrieval and CVNet retrieval results on ROxf and RPar dataset.

plying SuperGlobal reranking, demonstrating the techniques
in Section 4.2 further refine the order of the top candidates.

5.6. Local vs Global Feature Reranking

SuperGlobal is proved to be significantly more efficient
than CVNet reranking. For completeness, we perform ex-
periments to examine whether conducting CVNet reranking
on top of the SuperGlobal reranking results can further im-

prove the performance. Table 5 shows that the results are
not improved via CVNet reranking, except for a marginal
improvement in ROxford Hard. This indicates that local
and global feature reranking somehow overlap in the cases
which they are able to improve, and our hypothesis for this
is as follows. Global feature reranking combines features
from visually similar images with diverse viewpoints and
lighting conditions, leading to enhanced representation ca-
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Figure 6: Examples of SuperGlobal retrieval and reranking results on ROxf and RPar dataset.

Method CVNet reranking
Medium Hard

ROxf RPar ROxf RPar

SuperGlobal ✘ 90.9 93.3 80.2 86.7
✓ 90.9 91.9 81.0 79.6

Table 5: Results (% mAP) of conducting CVNet reranking on top of our
SuperGlobal reranking results on the ROxford and RParis datasets, with
both Medium and Hard evaluation protocols.

pability and robustness of the updated features. Therefore,
global feature reranking could play a similar role as local
feature reranking in retrieval systems and this might result
in negligible gains when applying CVNet reranking on top
of SuperGlobal.

6. Conclusions

In this paper, we propose a novel image retrieval system,
SuperGlobal, which consists of various modules to refine

global features for image retrieval and reranking. All of our
proposed methods can be plugged into other existing models,
and are easy to implement. For global feature refinement,
we proposed improved pooling techniques by better training,
besides leveraging regional and multi-scale components. In
contrast to conventional expensive reranking systems, we
devise a strategy that requires only global features, delivering
much improved performance while being four orders of
magnitude more efficient. This paper marks a first solution
to the retrieval and reranking problems relying on a single
global image feature. We hope this will spur further research
around this direction, to enable continued improvements to
the scalabity of these systems.
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