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Abstract

Video-Language Pre-training (VLP) has become one of
the most popular research topics in deep learning. How-
ever, compared to image-language pre-training, VLP has
lagged far behind due to the lack of large amounts of video-
text pairs. In this work, we train a VLP model with a hy-
brid of image-text and video-text pairs, which significantly
outperforms pre-training with only the video-text pairs. Be-
sides, existing methods usually model the cross-modal in-
teraction using cross-attention between single-scale visual
tokens and textual tokens. These visual features are either of
low resolutions lacking fine-grained information, or of high
resolutions without high-level semantics. To address the is-
sue, we propose Hierarchical interactive Video-Language
Pre-training (HiVLP) that efficiently uses a hierarchical vi-
sual feature group for multi-modal cross-attention during
pre-training. In the hierarchical framework, low-resolution
features are learned with focus on more global high-level
semantic information, while high-resolution features carry
fine-grained details. As a result, HiVLP has the ability to
effectively learn both the global and fine-grained represen-
tations to achieve better alignment between video and text
inputs. Furthermore, we design a hierarchical multi-scale
vision contrastive loss for self-supervised learning to boost
the interaction between them. Experimental results show
that HiVLP establishes new state-of-the-art results in three
downstream tasks, text-video retrieval, video-text retrieval,
and video captioning.

1. Introduction
Recently, the framework of pre-training with large-scale

uncurated data and then fine-tuning on some specific down-
stream tasks has attracted much attention. It firstly emerges
in the field of Natural Language Processing (NLP), such
as BERT [10], GPT [41] and T5 [42], which are pre-
trained on a large corpus of web-scraped dataset and then
fine-tuned on a wide variety of NLP downstream tasks.
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Figure 1. (a) Coarse visual feature injecting to CA blocks. (b)
Fine-grained visual feature injecting to CA blocks. (c) Hierarchi-
cal visual feature injecting to CA blocks. A CA block consists of
a casual/bi-directional self-attention layer, a cross-attention layer,
and a feed forward layer. It is with bi-directional self-attention for
vision-language understanding and with casual self-attention layer
for vision-language generation.

Hereafter, it is transferred rapidly to the computer vision
area. For examples, CLIP [40], ALIGN [16], Florence
[58] and BLIP [20] all use more than 100 million open-
domain image-text pairs in Image-Language Pre-training
(ILP). However, most of the existing Video-Language Pre-
training (VLP) works [47, 22, 51, 64, 30] use either a
small-scale dataset (e.g., YouCookII [63] with 14K video-
text pairs) or a large-scale dataset with less diversity (e.g.,
Howto100M [34] sourced from 1.22M videos). To solve
this problem, we use a larger-scale dataset with 114M
image-text pairs and a dataset with 2.5M video-text pairs
to pre-train our model. We show that diversity is more im-
portant than the total amount of training pairs, and a small
set of image-text pairs can achieve much better performance
than using millions of video-text pairs. We believe this is a
significant way to enhance VLP models and alleviate the
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cost of the collection of video-text pairs.
In VLP and ILP, existing works [47, 22, 64, 21, 56] of-

ten use cross-attention to model the cross-modal interaction
between visual features and text features. However, they
usually adopt only the single-scale and low-resolution vi-
sual features (i.e., 1

16 scale of the input) for cross-attention
(CA) blocks, as shown in Figure 1(a). This scheme fails to
obtain fine-grained interaction with text features and lim-
its the performance of the pre-training model. For finer-
grained interactions, [33] injects the high-resolution visual
features (i.e., 1

4 scale of the input) to CA blocks as shown
in Figure 1(b), but it does not have high-level semantics.
To overcome these limitations, we propose Hierarchical in-
teractive Video-Language Pre-training (HiVLP) that effi-
ciently uses a Hierarchical Visual Feature Group (HVFG)
for multi-modal cross-attention. As shown in Figure 1(c),
HVFG includes different scales of visual features, where
the low-resolution ones with high-level semantics are bene-
ficial for global representation and the high-resolution ones
with detailed information are useful for fine-grained inter-
action. Especially, HVFG is able to achieve much better
accuracy because of such a multi-scale.

Many works [47, 64, 51] use self-supervised learning
to assist the video-language pre-training by reconstruct-
ing the masked frame tokens. However, it may introduce
noise to interactions between visual and textual features
for the masked frame tokens [32]. In this paper, we pro-
pose a Multi-level Vision Contrastive (MVC) loss for our
HiVLP by applying a global-to-local contrast learning to
every scale in HVFG. The MVC loss does not damage the
visual tokens and helps the multi-level alignment between
visual and textual features.

Our contributions can be summarized as follows:

• To the best of our knowledge, our HiVLP is the first
work that uses a hierarchical interaction for video-
language pre-training. It is able to effectively learn
both the global and fine-grained representations for
better alignment between visual and textual features.

• We design a multi-level vision contrastive (MVC) loss
for self-supervised learning that can sufficiently mine
multi-level visual information to help video-language
pre-training.

• We reveal that diversity is more important than the
amount of training pairs, and using more diverse
image-text pairs benefits a lot for VLP.

• Our HiVLP unifies video-language understanding and
generation. It achieves state-of-the-art results in text-
video retrieval, video-text retrieval, and video caption-
ing.

2. Related Work

Image-Language Pre-Training (ILP). CLIP [40] is the
pioneering work that collects large-scale web data (400M
image-text pairs) and achieves competitive zero-shot per-
formance on a variety of downstream tasks [39, 14].
ALIGN [16] is pre-trained with a larger-scale dataset (1.8B)
obtaining better performance. FILIP [57] is pre-trained with
300M image-text pairs and designs a cross-modal late inter-
action mechanism for fine-grained contrastive learning. The
key behind their success is that they take the advantages
of large-scale datasets which are currently not available in
VLP. To deal with this problem, we train our HiVLP model
with a hybrid of video-text and image-text pairs.

Video-Language Pre-Training (VLP). Existing VLP
works either use a pre-trained S3D [50] to extract visual
features as vision input [30, 52, 51] to speed up the train-
ing process, or firstly perform pre-training on video-text
pairs and then transfer the model to video-language gen-
eration tasks [47, 64, 22]. However, both these two training
approaches limit the model performance because they are
not trained end-to-end [24]. Our HiVLP jointly trains the
model with image-text and video-text pairs end-to-end, and
unifies both video-language understanding and generation
in one framework. FiT [4] also involves pre-training with
both image-text and video-text pairs, but can not do video-
language generation.

Self-Supervised Learning (SSL). To effectively use
datasets, many works [47, 64, 51, 49, 55] use self-
supervised learning to assist VLP. VideoBERT [47] tok-
enizes video frames by hierarchical vector quantization,
and then performs SSL by predicting the masked visual to-
kens. ActBERT [64] predicts the action and object words
of masked video tokens. VLM [51] masks either all video
tokens or all text tokens, and then uses tokens from one
modality to recover masked tokens. However, the existing
methods may damage the visual tokens, which introduces
noise into cross-attention between visual and textual tokens
[32]. For better visual representation learning and avoid-
ing damaging visual tokens, we introduce the MVC loss
which maximizes the mutual information between multi-
scale global and local representations, and improves the
multi-level alignment between visual and textual features.

Hierarchical Interaction. As far as we know, there is
no related work about hierarchical interaction in VLP. The
most related work is VinVL [59] in ILP. VinVL [59] uses
an object detector to extract different sizes of objects as
visual features to do cross-attention with textual features.
The method of VinVL is complicated and the accuracy of
its visual features is limited by the object detector. How-
ever, HiVLP makes different scales of visual features in-
teract with textual features without the need of an object
detector, which is more effective.
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Figure 2. (a) Overview of HiVLP which consists of a vision encoder, a text encoder, a multi-modal video-text encoder and a multi-
modal video-text decoder. Each image (or video clip) is transformed into two augmentations as the inputs to the vision encoder and the
momentum vision encoder, respectively. The hierarchical visual feature group (HVFG) has scales

{
1
8
, 1
16
, 1
32

}
. The multi-level visual

contrastive (MVC) loss is for multi-level SSL. Besides, HiVLP also uses the visual features of 1
32

scale from the vision encoder and the
output of the text encoder to optimize the vision-text contrastive (VTC) loss. Additionally, the multi-modal video-text encoder is trained
with a vision-text matching (VTM) loss for the matching of video-/image-text pairs. The multi-modal video-text decoder is trained with a
language modeling (LM) loss for video captioning. (b) The light FPN [25] is used for gradually upsampling and fusing the output features
of the Swin Transformer. (c) The temporal block consists of a temporal self-attention layer, a SW-MSA layer [29] and a feed forward layer.
We only replace the last block of the Swin Transformer with the temporal block for less parameters.

3. Approach

We firstly describe the detailed architecture of HiVLP.
Then we present the hierarchical interaction HVFG. Finally,
the pre-training objectives are given.

3.1. Architecture

As illustrated in Figure 2(a), HiVLP consists of a vi-
sion encoder, a momentum vision encoder, a text encoder, a
multi-modal video-text encoder, and a multi-modal video-
text decoder. The vision encoder and the text encoder ex-
tract image and text features respectively, and do not need
to interact with each other for a fast approximate nearest
neighbor search in inference [33]. The multi-modal video-
text encoder re-ranks the top-k video-text pairs by an ad-
ditional MLP head that predicts whether they are matched
or not. The multi-modal video-text decoder is used to per-
form the video-language generation (e.g., video caption-
ing). The momentum vision encoder has the same archi-

tecture as the vision encoder, and the weights are updated
by a momentum-based moving average strategy as in MoCo
[15].

The main component of the vision encoder is a hierarchi-
cal backbone Swin Transformer [29], followed by a light
feature pyramid network (FPN) [25]. Besides, we add a
temporal self-attention layer in the last block of Swin Trans-
former to capture the temporal information, as shown in
Figure 2(c). In Figure 2(b), the light FPN uses the output
features of 1

32 , 1
16 , and 1

8 scales from Swin Transformer as
inputs, and then gradually upsamples those features for fea-
ture fusion. Note that to reduce computation overhead, we
do not use 1

4 scale of visual features in HVFG.
The text encoder’s architecture is the same as BERT [10],

which consists of 12 transformer layers. The multi-modal
video-text encoder has 12 cross-attention (CA) blocks each
with a bi-directional self-attention layer. The multi-modal
video-text decoder consists of 12 CA blocks each with a
casual self-attention layer.
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Figure 3. (a) Multi-level global-to-local contrastive loss. (b) Generation of global and local features.

3.2. Hierarchical Interaction

Existing works often inject single-scale visual features
to CA blocks to interact with textual features. For exam-
ple, ALBEF [21] and BLIP [20] use visual features of 1

16
scale, which fail to do fine-grained cross-attention. In con-
trast, [33] adopts features of 1

4 scale, but these over detailed
features without high-level semantics. In our work, we pro-
pose a hierarchical interaction mechanism between visual
and textual features via injecting HVFG into the CA blocks
as shown in Figure 2(a). HVFG includes visual features of
three scales

{
1
8 ,

1
16 ,

1
32

}
. The visual features of 1

8 scale con-
tain fine-grained information, and those of 1

32 scale carry
high-level semantics. Therefore, HVFG is able to obtain
both global and fine-grained representations to boost the in-
teraction between visual and textual features.

3.3. Pre-Training Objectives

The input of the vision encoder is an image or video clip
X ∈ RB×M×3×H×W , which consists of M frames with
the resolution H × W , where M = 1 for images and B is
the batch size. The input to the text encoder is a batch of
tokenized sequences of words T ∈ NB×L, where L is the
max length of a caption.

In our method, an input video clip X is split into non-
overlapping patches {xi}BMN

i=1 , xi ∈ R3×P×P , where
P × P is input path size and N = H×W

P×P . The patches are
tokenized by a linear embedding layer which is followed by
a linear embedding layer of Swin Transformer.
Vision-Text Contrastive (VTC) Loss. VTC aims to pull
positive pairs of vision and language representations to-
gether and push negative pairs far away. Like ALBEF
[21] using a momentum distillation for vision-language pre-
training, we introduce two queues to store the most re-
cent K vision-text representations pairs from momentum
encoders. Formally, the video-to-text contrastive loss is de-
fined as:

LT2V =
1

B

B∑
i=1

log
−exp(s(fi, t

+
i )/ρ)

exp(s(fi, t
+
i )/ρ) +

∑K
j=1 exp(s(fi, t

−
j )/ρ)

,

(1)

where ρ is the temperature, t+i and t−j are the text features
of the positive and negative text samples for the i-th vision
input Xi respectively, and fi is the visual feature of 1

32 scale
from Xi. s(fi, t+i ) denotes the cosine similarity between fi
and t+i that are matched, and s(fi, t

−
j ) denotes the similarity

between fi and t−j that are not matched. Symmetrically, the
text-to-video contrastive loss is:

LV 2T =
1

B

B∑
i=1

log
−exp(s(ti, f

+
i )/ρ)

exp(s(ti, f
+
i )/ρ) +

∑K
j=1 exp(s(ti, f

−
j )/ρ)

,

(2)
where f+

i and f−
j are positive and negative visual features

of the i-th text feature, respectively.
The sum of LV 2T and LT2V serve as the vision-text con-

trastive loss:

LV TC =
1

2
(LV 2T + LT2V ). (3)

Multi-level Vision Contrastive (MVC) Loss. As shown
in Figure 3(a), MVC aims to pull the global representation
of a scale closer to those local patch representations from
the same vision input in different views of a scale. The
light FPN has three scales L1, L2, and L3 (see Figure 2(b)
and Figure 3(a)). The global feature fij of scale j of the
i-th visual input is obtained by the average of all the patch
features at Lj (Figure 3(b)). The local features fijk, k =
1, 2, 3, ..., sj are generated as shown in Figure 3(b) where
fijk is the average feature pooling result of a local window
such as 2 × 2, and sj is the number of the local averaged
features at L

′

j . Finally, the MVC loss is formulated as:

Lij
MV C =

exp(s(fij , f̂
+
ij )/ρ)

exp(s(fij , f̂
+
ij )/ρ) +

∑(B−1)Sj

k=1 exp(s(fij , f̂
−
ijk)/ρ)

,

(4)

LMV C = − 1

3B

B∑
i=1

3∑
j=1

−logLij
MV C , (5)

where f̂ij and f̂ijk correspond to fij and fijk, respectively,
but from the other augmentation of the visual input.
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Vision-Text Matching (VTM) Loss. Through a MLP
layer, VTM is used to judge whether a video-/image-text
pair is matched or not with the cross entropy function.
There are B positive pairs from the batch, and 2B nega-
tive pairs are obtained according to the hard negative mining
strategy in [21]. This loss is defined as:

LV TM = − 1

3B

3B∑
i=1

[yilog(pi) + (1− yi)log(1− pi)] ,

(6)
where yi is the ground-truth, and pi is the output of the MLP
layer of the i-th pair.
Language Modeling (LM) Loss. We inject the hierar-
chical visual representations into the multi-modal video-
text decoder to generate captions. Let i-th input text be
Ti = [t1i , t

2
i , ..., t

L
i ]. This loss is defined as:

LLM = − 1

BL

B∑
i=1

L∑
l=1

log(p(tli|tl−1
i , ..., t1i , fi1, fi2, fi3)),

(7)
where p(tli|t

l−1
i , ..., t1i , fi1, fi2, fi3) is the output probability

of the multi-modal video-text decoder for the l-th token tli
given the previously fed tokens tl−1

i , ..., t1i and the multi-
level visual features fi1, fi2, fi3.
Total Loss. Finally, we have the total loss to train HiVLP:

Ltotal = αLV TC + βLMVC + γLV TM + δLLM , (8)

where α, β, γ, and δ are the weight coefficients of the
losses.

4. Experiments
In this section, we first describe the pre-training and

downstream datasets, and the implementation details. Then
we show the experimental and comparison results, and fi-
nally ablate our model.

4.1. Datasets

Pre-Training Datasets. Following FiT [4], we involve
two popular datasets (CC-3M [46] and WebVid-2M [4])
for pre-training HiVLP. CC-3M consists of 3M image-
text pairs and WebVid-2M includes 2.5M video-text pairs,
in total 5.5M image-/video-text pairs. Besides, we use
LAION100M, D-14M, and WebVid-2M (total 116.5M
image-/video-text pairs) as the larger-scale dataset to train
our model, resulting in HiVLP∗. LAION100M is a subset
of LAION [45]. D-14M is a combined dataset of image-text
pairs from COCO [26], Visual Genome [17], CC3M [46],
CC12M [6], and SBU captions [35].

Downstream Task Datasets. There are four downstream
datasets used in our work for video retrieval. (i) MSR-VTT
[53] consists of 10K YouTube videos with 200K human-
annotated descriptions. Similar to previous methods [4],
we use the split of 9K for training and 1K for testing. (ii)
MSVD [7] is a smaller dataset with 1970 videos and 78800
sentences, about 40 descriptions per video. Like [4], we
use the split of 1200, 100, and 670 videos for training, val-
idation and testing, respectively. (iii) DiDeMo [3] has 10k
videos, each of which is described by multiple sentences,
resulting in 40K sentences. For a fair comparison, we fol-
low the setting in [4], where all descriptions for one video
are concatenated into a single sentence. (iv) LSMDC [43]
contains 128K clips. Like [4], we use 7408 clips for val-
idation and 1000 clips for testing. For video captioning,
we evaluate our model on MSR-VTT and MSVD. Follow-
ing the split of [30], on MSR-VTT, we use 6.5K training
videos and 2.9K testing videos; on MSVD, we use 1.2K
training videos and 670 testing videos.

4.2. Implementation Details

Our model HiVLP is pre-trained on 16 GPUs (32G mem-
ory). Our vision encoder is initialized by Swin-B [29] pre-
trained on ImageNet-21k [9]. The light FPN is randomly
initialized. The text encoder, multi-modal video-text en-
coder, and multi-modal video-text decoder are BERTs ini-
tialized from BERTbase [10]. HiVLP is pre-trained for 25
epochs, the first 20 epochs only with image-text pairs with a
batch size of 30 and the last 5 epochs with both image-text
and video-text pairs. Each video clip consists of 4 frames.
We use AdamW optimizer with a weight decay of 0.02, and
the learning rate is initialized as 10−5 and is warmed up to
10−4 after 3,000 training iterations. We then decrease the
learning rate by the cosine decay strategy to 10−5. For the
hyper-parameters in Equation 8, we set α, β, and δ to 1.0
and γ to 0.001. The input resolution is 224× 224 with data
augmentations used in [21]. And we use 160 GPUs (16G
memory) to train HiVLP∗ with a batch size of 18 per GPU.
For speeding up the training of HiVLP∗, we sample 1 frame
from each clip.

For the downstream task of text-video retrieval, we sam-
ple 4 frames per video for training. Since the multi-modal
video-text encoder filters top-k candidates during inference
(k is set to 128). We sample 8 frames per video for testing
on MSR-VTT, MSVD, and LSMDC. Because the videos in
DiDeMo are longer, we sample 10 frames for testing from
it. For the downstream task of video captioning, we eval-
uate our model on MSR-VTT and MSVD, with 8 random
frames per video for training and 16 frames per video for
testing. For all downstream tasks, the initial learning rate
is set to 5 × 10−6, and the weight decay, the batch size,
and the total number of epochs are set to 0.05, 64, and 10,
respectively.
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Method Pre-Training Datasets #Pairs R@1↑ R@5↑ R@10↑ MedR↓ MR↑
Zero-Shot

SupportSet [38] HowTo100M 100M 8.7 23.0 31.1 31.0 20.9
HD-VILA [54] HD-VILA-100M 100M 14.4 31.6 41.6 17.5 29.2

FiT [4] CC3M, WebVid-2M 5.5M 18.7 39.5 51.6 10.0 36.6
ALPRO [19] CC3M, WebVid-2M 5.5M 24.1 44.7 55.4 8.0 41.4

CLIP [40] WIT400M 400M 30.6 54.4 64.3 4.0 49.8
Florence [58] FLD-900M 900M 37.6 63.8 72.6 - 58

BLIP [20] L-115M, D-14M 239M 43.3 65.6 74.7 2.0 61.2
HiVLP CC3M, WebVid-2M 5.5M 26.4 47.3 55.7 7.0 43.1
HiVLP∗ L-100M, D-14M, WebVid-2M 116.5M 43.5 66.4 76.4 2.0 62.1

Fine-Tuning
ActBERT [64] HowTo100M 100M 16.3 42.8 56.9 10.0 38.7

HERO [22] HowTo100M 100M 16.8 43.4 57.7 - 39.3
NoiseEstimation [2] HowTo100M 100M 17.4 41.6 53.6 8.0 37.5

UniVL [30] HowTo100M 100M 21.2 49.6 63.1 6.0 44.6
ClipBERT [18] HowTo100M 100M 22.0 46.8 59.9 6.0 42.9

AVLnet [44] HowTo100M 100M 27.1 55.6 66.6 4.0 49.8
MMT [12] HowTo100M 100M 26.6 57.1 69.6 4.0 51.1

SupportSet [38] HowTo100M 100M 30.1 58.5 69.3 3.0 52.6
FiT [4] CC3M, WebVid-2M 5.5M 31.0 59.5 70.5 3.0 53.7

ALPRO [19] CC3M, WebVid-2M 5.5M 33.9 60.7 73.2 3.0 55.9
HD-VILA [54] HD-VILA-100M 100M 35.0 65.2 77.2 3.0 59.1
CLIP4Clip [31] WIT400M 400M 44.5 71.4 81.6 2.0 65.8

HiVLP CC3M, WebVid-2M 5.5M 41.1 65.9 75.9 2.0 61.0
HiVLP* L-100M, D-14M, WebVid-2M 116.5M 50.9 76.4 83.6 1.0 70.3

Table 1. Comparisons with SOTA text-to-video retrieval methods on MSR-VTT. R@K: Recall@K; MedR: Median Rank; MR: Mean
Rank; L-115M: LAION115M; L-100M: LAION100M.

Method R@1↑ R@5↑ R@10↑ MR↑
CE [28] 19.8 49.0 63.8 44.2

Support Set [38] 28.4 60.0 72.9 53.8
FiT [4] 33.7 64.7 76.3 57.3

CLIP4Clip [31] 46.2 76.1 84.6 68.9
HiVLP 39.1 68.1 77.2 61.5
HiVLP∗ 50.2 78.9 85.8 71.6

Table 2. Text-to-video results on the MSVD dataset.

Method R@1↑ R@5↑ R@10↑ MR↑
ClipBERT [18] 20.4 44.5 56.7 40.5

FiT [4] 34.6 65.0 74.7 58.1
ALPRO [54] 35.9 67.5 78.8 60.7

CLIP4Clip [31] 43.4 70.2 80.6 64.7
HiVLP 40.5 68.7 77.1 62.1
HiVLP∗ 48.1 73.8 82.5 68.1

Table 3. Text-to-video results on the DiDeMo dataset.

4.3. Comparisons with State-of-the-Art Methods

In this section, we compare HiVLP with state-of-the-art
(SOTA) methods on three popular video-language down-
stream tasks (text-video retrieval, video-text retrieval, and
video captioning).
Text-Video Retrieval. We use MSR-VTT, MSVD,

Method R@1↑ R@5↑ R@10↑ MR↑
MMT [12] 12.9 29.2 38.8 27.0

FiT [4] 15.0 30.8 39.8 28.5
MDMMT [11] 18.8 38.5 47.9 35.1

CLIP4Clip [31] 21.6 41.8 49.8 37.7
HiVLP 20.4 38.8 48.4 35.9
HiVLP∗ 24.8 44.1 54.6 41.2

Table 4. Text-to-video results on the LSMDC dataset.

LSMDC, and DiDeMo datasets to evaluate text-video re-
trieval. We report zero-shot and fine-tuning results (Table
1) on MSR-VTT. For zero-shot retrieval, pre-trained with
the same small amount of data, HiVLP outperforms FiT
by a large margin (7.4% on R@1). CLIP, Florence, BLIP,
and HiVLP∗ use large-scale datasets for pre-training, with
the numbers of pairs 400M, 900M, 239M, and 116.5M,
respectively. BLIP performs best among previous works.
However, even with much fewer training pairs (116.5M vs.
239M), our HiVLP∗ outperforms BLIP on all the metrics
except obtaining the same MedR. Note that BLIP uses both
filtered and synthetic captions in LAION115M and D-14M,
while we only use the filtered captions in LAION100M and
D-14M.

For fine-tuning comparison, HiVLP/HiVLP∗ is fine-
tuned with the VTC and VTM losses. In Table 1, we see that
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Method
MSR-VTT MSVD LDMDC

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
CLIP4Clip-meanP+ [31] 43.1 70.5 81.2 56.6 79.7 84.3 20.6 39.4 47.5

CLIP4Clip-seqTransf+ [31] 42.7 70.9 80.6 62.0 87.3 92.6 20.8 39.0 48.6
X-Pool+ [13] 44.4 73.3 84.0 66.4 90.0 94.2 22.7 42.6 51.2

HiVLP∗ 51.5 75.9 83.1 67.2 89.5 95.7 25.6 45.6 53.8

Table 5. Comparison with SOTA methods on MSR-VTT, MSVD, and LSMDC for video-text retrieval. + indicates using both CLIP’s
image and text encoders as its encoders.

Method #Test Frames
MSVD MSR-VTT

B4↑ M↑ R↑ C↑ B4↑ M↑ R↑ C↑
SibNet [27] 30 54.2 34.8 71.7 88.2 40.9 27.5 60.2 47.5
SAAT [62] 28 46.5 33.5 69.4 81.0 39.9 27.7 61.2 51.0

STG-KD [36] 16 52.2 36.9 73.9 93.0 40.5 28.3 60.9 47.1
PMI-CAP [8] 32 54.6 36.4 - 95.1 42.1 28.7 - 49.4

ORG-TRL [61] 28 54.3 36.4 73.9 95.2 43.6 28.8 62.1 50.9
OpenBook [60] 28 - - - - 33.9 23.7 50.2 52.9
SwinBERT [24] 64 66.3 42.4 80.9 149.4 45.4 30.6 64.1 55.9

HiVLP 16 67.1 45.3 81.8 144.5 47.4 31.2 64.6 62.3
HiVLP∗ 16 68.3 45.1 82.0 151.6 49.2 32.4 65.9 67.8

Table 6. Comparison with SOTA methods on MSVD and MSR-VTT for video captioning.

Figure 4. Diversity vs. amount of training pairs.

HiVLP uses the same pre-training datasets as FiT but again
outperforms it by a large margin (10.1% on Rank@1). With
only about 29% amount of pre-training pairs in CLIP4Clip,
HiVLP∗ exceeds CLIP4Clip on all the metrics significantly.
Tables 2, 3, and 4 show the comparison on another three
datasets, where HiVLP∗ outperforms the other methods by
a large margin.
Video-Text Retrieval. In Table 5, we use HiVLP∗ to com-
pare with the SOTA methods which are built on CLIP. Our
method can beat these CLIP-based methods with fewer pre-
training pairs (116.5M vs. 400M).
Video Captioning. We also evaluate our model on MSR-
VTT and MSVD for video captioning. Four popular metrics
BLEU4 [37] (B4), METEOR [5] (M), ROUGE-L [23] (R),
and CIDEr [48] (C) are employed. We fine-tune our model
with the LM loss for the video-language generation task.

As shown in Table 6, HiVLP works best on all the met-

rics except one. Note that SwinBERT adopts 64 frames for
testing.

4.4. Ablation Study

We randomly choose 1/10 image-text pairs from CC3M,
resulting in 300k image-text pairs to do ablation study. We
surprisingly find that our model pre-trained with only 300k
image-text pairs can beat the models SupportSet and HD-
VILA pre-trained respectively on Howto100M and HD-
VILA-100M, when they are transferred to the MSR-VTT
dataset for text-to-video zero-shot retrieval (45.3 vs. 31.1
vs. 41.6 on R@10).
Image-Text Pairs to Enhance VLP. As shown in Figure 4,
when the number of image-text pairs is increased from 3M
to 114M but with the same set of video-text pairs, the
Rank@1 on the MSR-VTT dataset raises a lot (from 26.4
to 43.5); when only using much fewer image-text pairs of
CC3M than video-text pairs of HD-VILP (0.3M vs. 100M),
the Rank@1 performance is much better (17.4 vs. 14.4). It
reveals that image-text pairs can bring more diversity than
the same amount or more video-text pairs, and more image-
text pairs benefit a lot. We believe this is a significant way
to enhance the performance of VLP models.
MVC Loss Design. We use the HiVLP without the MVC
loss as the baseline model. As shown in Table 7, the visual
SSL both G2G and G2L-1 are able to improve the perfor-
mance of the baseline. Using the G2L-1 contrastive loss is
better than the G2G contrastive loss, because G2L-1 can dig
out local information while G2G cannot. And using more
number of different scales of visual features in the MVC
loss (i.e., G2L-2 and G2L-3) can further boost the align-
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Caption: A jackal is walking around in a field

Figure 5. Grad-CAM visualization on the cross-attention maps of the different-scale visual features injected to the CA blocks. We extract
the attention maps in the 8th layer of the multi-modal video-text encoder. The word ”jackal” in the caption is the attention target in the
video. (Best viewed on screen.)

Model MVC loss R@10↑ MR↑
Baseline - 43.5 31.1
+G2G (L1, L

′′
1 ) 44.2 31.4

+G2L-1 (L1, L
′
1) 44.9 31.8

+G2L-2 (L1, L
′
1), (L2, L

′
2) 45.2 32.2

+G2L-3 (L1, L
′
1), (L2, L

′
2), (L3, L

′
3) 45.3 32.5

Table 7. Impact of the MVC loss for zero-shot transfer to MSR-
VTT. Note that (Lj , L

′
j) is the j scale of global-to-local (G2L)

contrastive loss, with Lj , L
′
j , j = 1, 2, 3 indicated in Figure 3(a).

L
′′
1 denotes replacing the dense projection L

′
1 by the global pro-

jection as indicated in the upper part of Figure 3(b). And (L1, L
′′
1 )

denotes the j = 1 global-to-global (G2G) contrastive loss. MR:
Mean Rank.

ment between the multi-scale visual features and the textual
features.

Impact of HVFG. Table 8 compares our hierarchical vi-
sion features with only single-scale ones. HiVLP-1/8 uses
large single scales of visual features to achieve the best per-
formance among HiVLP-1/32, HiVLP-1/16, and HiVLP-
1/8. However, HiVLP-1/8 does not efficiently use the
deeper and small scales of visual features with higher-level
semantics. To solve this problem, HiVLP effectively uses
both global and fine-grained visual features to interact with
textual features, resulting in much better performance than
HiVLP-1/8 (32.5 vs. 30.5 on MR).

Visualization. As Figure 5 shown, HiVLP can capture fine-
grained information better than HiVLP-1/8. The attention
maps of HiVLP-1/16 look random due to its low-resolution
feature maps.

Model scales of features R@1↑ R@10↑ MR↑
HiVLP-1/32

{
1
32
, 1
32
, 1
32

}
14.0 43.4 30.0

HiVLP-1/16
{

1
16
, 1
16
, 1
16

}
14.3 43.6 30.2

HiVLP-1/8
{

1
8
, 1
8
, 1
8

}
14.8 43.7 30.5

HiVLP
{

1
32
, 1
16
, 1
8

}
17.4 45.3 32.5

Table 8. Ablation study of different vision features injecting to
CA blocks for text-to-video retrieval zero-shot transfer to MSR-
VTT.

5. Conclusion

We have presented HiVLP, a novel hierarchical interac-
tive video-language pre-training framework. Different from
previous methods that input single-scale visual features to
cross-attention blocks, HiVLP injects a hierarchical vision
feature group (HVFG) to effectively use both global and
fine-grained visual features for interaction with textual fea-
tures. Additionally, our HiVLP is pre-trained with multi-
level self-supervised learning that can further improve the
model performance. We also reveal that VLP models bene-
fit a lot from the diversity of image-text pairs. Extensive
experimental results of downstream tasks (text-video re-
trieval, video-text retrieval, and video captioning) on 4 pop-
ular benchmark datasets show that HiVLP is able to achieve
better performance than previous SOTA methods overall by
a large margin.

Acknowledgements

We gratefully acknowledge the support of Mind-
Spore [1], CANN (Compute Architecture for Neural Net-
works) and Ascend AI Processor used for this research.

13763



References
[1] https://www.mindspore.cn/.
[2] Elad Amrani, Rami Ben-Ari, Daniel Rotman, and Alex

Bronstein. Noise estimation using density estimation for
self-supervised multimodal learning. In AAAI, 2021.

[3] Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef
Sivic, Trevor Darrell, and Bryan Russell. Localizing mo-
ments in video with natural language. In ICCV, 2017.

[4] Max Bain, Arsha Nagrani, Gül Varol, and Andrew Zisser-
man. Frozen in time: A joint video and image encoder for
end-to-end retrieval. In ICCV, 2021.

[5] Satanjeev Banerjee and Alon Lavie. Meteor: An automatic
metric for mt evaluation with improved correlation with hu-
man judgments. In ACL, 2005.

[6] Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu
Soricut. Conceptual 12M: Pushing web-scale image-text
pre-training to recognize long-tail visual concepts. In CVPR,
2021.

[7] David Chen and William Dolan. Collecting highly parallel
data for paraphrase evaluation. In ACL, 2011.

[8] Shaoxiang Chen, Wenhao Jiang, Wei Liu, and Yu-Gang
Jiang. Learning modality interaction for temporal sentence
localization and event captioning in videos. In ECCV, 2020.

[9] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In CVPR, 2009.

[10] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In NAACL, 2019.

[11] Maksim Dzabraev, Maksim Kalashnikov, Stepan Komkov,
and Aleksandr Petiushko. Mdmmt: Multidomain multi-
modal transformer for video retrieval. In CVPR, June 2021.

[12] Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia
Schmid. Multi-modal transformer for video retrieval. In
ECCV, 2020.

[13] Satya Krishna Gorti, Noel Vouitsis, Junwei Ma, Keyvan
Golestan, Maksims Volkovs, Animesh Garg, and Guangwei
Yu. X-pool: Cross-modal language-video attention for text-
video retrieval. In CVPR, 2022.

[14] Peiyan Guan, Renjing Pei, Bin Shao, Jianzhuang Liu,
Weimian Li, Jiaxi Gu, Songcen Xu, Youliang Yan, and Ed-
mund Lam. Pidro: Parallel isomeric attention with dynamic
routing for text-video retrieval. In ICCV, 2023.

[15] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross
Girshick. Momentum contrast for unsupervised visual rep-
resentation learning. In CVPR, 2020.

[16] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In ICML, 2021.

[17] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A. Shamma, Michael S. Bernstein,
and Li Fei-Fei. Visual genome: Connecting language and
vision using crowdsourced dense image annotations. IJCV,
123(1):32–73, 2017.

[18] Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg,
Mohit Bansal, and Jingjing Liu. Less is more: Clipbert for
video-and-language learning via sparse sampling. In CVPR,
2021.

[19] Dongxu Li, Junnan Li, Hongdong Li, Juan Carlos Niebles,
and Steven C.H. Hoi. Align and prompt: Video-and-
language pre-training with entity prompts. In CVPR, 2022.

[20] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. In ICML,
2022.

[21] Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare,
Shafiq Joty, Caiming Xiong, and Steven Chu Hong Hoi.
Align before fuse: Vision and language representation learn-
ing with momentum distillation. In NeurIPS, 2021.

[22] Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng Yu,
and Jingjing Liu. Hero: Hierarchical encoder for video+ lan-
guage omni-representation pre-training. In EMNLP, 2020.

[23] Chin-Yew Lin and Franz Josef Och. Automatic evaluation
of machine translation quality using longest common subse-
quence and skip-bigram statistics. In ACL, 2004.

[24] Kevin Lin, Linjie Li, Chung-Ching Lin, Faisal Ahmed, Zhe
Gan, Zicheng Liu, Yumao Lu, and Lijuan Wang. Swinbert:
End-to-end transformers with sparse attention for video cap-
tioning. In CVPR, 2022.

[25] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He,
Bharath Hariharan, and Serge Belongie. Feature pyramid
networks for object detection. In CVPR, 2017.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C. Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV, 2014.

[27] Sheng Liu, Zhou Ren, and Junsong Yuan. Sibnet: Sibling
convolutional encoder for video captioning. In NeurIPS,
2020.

[28] Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zis-
serman. Use what you have: Video retrieval using represen-
tations from collaborative experts. In BMVC, 2019.

[29] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021.

[30] Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan
Duan, Tianrui Li, Jason Li, Taroon Bharti, and Ming
Zhou. Univl: A unified video and language pre-
training model for multimodal understanding and generation.
arXiv:2002.06353, 2020.

[31] Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei,
Nan Duan, and Tianrui Li. Clip4clip: An empirical study of
clip for end to end video clip retrieval. arXiv:2104.08860,
2021.

[32] Jianjie Luo, Yehao Li, Yingwei Pan, Ting Yao, Hongyang
Chao, and Tao Mei. Coco-bert: Improving video-language
pre-training with contrastive cross-modal matching and de-
noising. In ACM MM, 2021.

[33] Antoine Miech, Jean-Baptiste Alayrac, Ivan Laptev, Josef
Sivic, and Andrew Zisserman. Thinking fast and slow: Ef-

13764



ficient text-to-visual retrieval with transformers. In CVPR,
2021.

[34] Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
HowTo100M: Learning a Text-Video Embedding by
Watching Hundred Million Narrated Video Clips. In ICCV,
2019.

[35] Vicente Ordonez, Girish Kulkarni, and Tamara L. Berg.
Im2text: Describing images using 1 million captioned pho-
tographs. In NeurIPS, 2011.

[36] Boxiao Pan, Haoye Cai, De-An Huang, Kuan-Hui Lee,
Adrien Gaidon, Ehsan Adeli, and Juan Carlos Niebles.
Spatio-temporal graph for video captioning with knowledge
distillation. In CVPR, 2020.

[37] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing
Zhu. Bleu: a method for automatic evaluation of machine
translation. In ACL, 2002.

[38] Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian
Metze, Alexander Hauptmann, Joao Henriques, and Andrea
Vedaldi. Support-set bottlenecks for video-text representa-
tion learning. In ICLR, 2021.

[39] Renjing Pei, Jianzhuang Liu, Weimian Li, Bin Shao, Song-
cen Xu, Peng Dai, Juwei Lu, and Youliang Yan. Clipping:
Distilling clip-based models with a student base for video-
language retrieval. In CVPR, 2023.

[40] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. ICML, 2021.

[41] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya
Sutskever. Improving language understanding by generative
pre-training. In ICML, 2018.

[42] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee,
Sharan Narang, Michael Matena, Yanqi Zhou, Wei Li, and
Peter J. Liu. Exploring the limits of transfer learning with a
unified text-to-text transformer. JMLR, 2020.

[43] Anna Rohrbach, Marcus Rohrbach, Niket Tandon, and Bernt
Schiele. A dataset for movie description. In CVPR, 2015.

[44] Andrew Rouditchenko, Angie Boggust, David Harwath,
Brian Chen, Dhiraj Joshi, Samuel Thomas, Kartik Au-
dhkhasi, Hilde Kuehne, Rameswar Panda, Rogerio Feris,
et al. Avlnet: Learning audio-visual language representa-
tions from instructional videos. arXiv:2006.09199, 2020.

[45] Christoph Schuhmann, Richard Vencu, Romain Beaumont,
Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo
Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m:
Open dataset of clipfiltered 400 million image-text pairs.
arXiv:2111.02114, 2021.

[46] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In ACL,
2018.

[47] Chen Sun, Austin Myers, Carl Vondrick, Kevin Murphy, and
Cordelia Schmid. Videobert: A joint model for video and
language representation learning. In ICCV, 2019.

[48] Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. Cider: Consensus-based image description evalua-
tion. In CVPR, 2015.

[49] Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun
Huang, Zhiyu Zhao, Hongjie Zhang, Jilan Xu, Yi Liu, Zun
Wang, Sen Xing, Guo Chen, Junting Pan, Jiashuo Yu, Yali
Wang, Limin Wang, and Yu Qiao. Internvideo: General
video foundation models via generative and discriminative
learning. arXiv preprint arXiv:2212.03191, 2022.

[50] Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In ECCV,
2018.

[51] Hu Xu, Gargi Ghosh, Po-Yao Huang, Prahal Arora,
Masoumeh Aminzadeh, Christoph Feichtenhofer, Florian
Metze, and Luke Zettlemoyer. Vlm: Task-agnostic
video-language model pre-training for video understanding.
arXiv:2105.09996, 2021.

[52] Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko,
Armen Aghajanyan, Florian Metze, Luke Zettlemoyer, and
Christoph Feichtenhofer. Videoclip: Contrastive pre-training
for zero-shot video-text understanding. In EMNLP, 2021.

[53] Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large
video description dataset for bridging video and language. In
CVPR, 2016.

[54] Hongwei Xue, Tiankai Hang, Yanhong Zeng, Yuchong Sun,
Bei Liu, Huan Yang, Jianlong Fu, and Baining Guo. Ad-
vancing high-resolution video-language representation with
large-scale video transcriptions. In CVPR, 2022.

[55] Hongwei Xue, Yuchong Sun, Bei Liu, Jianlong Fu, Ruihua
Song, Houqiang Li, and Jiebo Luo. Clip-vip: Adapting pre-
trained image-text model to video-language representation
alignment. arXiv preprint arXiv:2209.06430, 2022.

[56] Jinyu Yang, Jiali Duan, Son Tran, Yi Xu, Sampath Chanda,
Liqun Chen, Belinda Zeng, Trishul Chilimbi, and Junzhou
Huang. Vision-language pre-training with triple contrastive
learning. In CVPR, 2022.

[57] Lewei Yao, Runhui Huang, Lu Hou, Guansong Lu, Minzhe
Niu, Hang Xu, Xiaodan Liang, Zhenguo Li, Xin Jiang, and
Chunjing Xu. Filip: Fine-grained interactive language-image
pre-training. arXiv:2111.07783, 2021.

[58] Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel Codella,
Xiyang Dai, Jianfeng Gao, Houdong Hu, Xuedong Huang,
Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu,
Yumao Lu, Yu Shi, Lijuan Wang, Jianfeng Wang, Bin Xiao,
Zhen Xiao, Jianwei Yang, Michael Zeng, Luowei Zhou, and
Pengchuan Zhang. Florence: A new foundation model for
computer vision. arXiv:2111.11432, 2021.

[59] Pengchuan Zhang, Xiujun Li, Xiaowei Hu, Jianwei Yang,
Lei Zhang, Lijuan Wang, Yejin Choi, and Jianfeng Gao.
Vinvl: Making visual representations matter in vision-
language models. CVPR 2021, 2021.

[60] Ziqi Zhang, Zhongang Qi, Chunfeng Yuan, Ying Shan, Bing
Li, Ying Deng, and Weiming Hu. Open-book video caption-
ing with retrieve-copy-generate network. In CVPR, 2021.

[61] Ziqi Zhang, Yaya Shi, Chunfeng Yuan, Bing Li, Peijin Wang,
Weiming Hu, and Zheng-Jun Zha. Object relational graph

13765



with teacher-recommended learning for video captioning. In
CVPR, 2020.

[62] Qi Zheng, Chaoyue Wang, and Dacheng Tao. Syntax-aware
action targeting for video captioning. In CVPR, 2020.

[63] Luowei Zhou, Chenliang Xu, and Jason J Corso. Towards
automatic learning of procedures from web instructional
videos. In AAAI, 2018.

[64] Linchao Zhu and Yi Yang. Actbert: Learning global-local
video-text representations. In CVPR, 2020.

13766


