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Abstract

One of the most important yet rarely studied challenges
for supervised face clustering is the large intra-class vari-
ance caused by different face attributes such as age, pose,
and expression. Images of the same identity but with dif-
ferent face attributes usually tend to be clustered into dif-
ferent sub-clusters. For the first time, we proposed an
attribute hallucination framework named CLIP-Cluster to
address this issue, which first hallucinates multiple repre-
sentations for different attributes with the powerful CLIP
model and then pools them by learning neighbor-adaptive
attention. Specifically, CLIP-Cluster first introduces a text-
driven attribute hallucination module, which allows one to
use natural language as the interface to hallucinate novel
attributes for a given face image based on the well-aligned
image-language CLIP space. Furthermore, we develop a
neighbor-aware proxy generator that fuses the features de-
scribing various attributes into a proxy feature to build a
bridge among different sub-clusters and reduce the intra-
class variance. The proxy feature is generated by adaptively
attending to the hallucinated visual features and the source
one based on the local neighbor information. On this ba-
sis, a graph built with the proxy representations is used for
subsequent clustering operations. Extensive experiments
show our proposed approach outperforms state-of-the-art
face clustering methods with high inference efficiency.

1. Introduction
Recent years have witnessed the remarkable success of

face clustering technology [5, 21, 45, 47, 49, 52, 63], due
to the progress in deep learning frameworks [17, 40, 41]
and more available large-scale training data [4, 13, 24, 64].
However, among the existing research, the influences of dif-
ferent face attributes on clustering have been poorly inves-
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Figure 1. (a) shows paired hard examples, where aging brings sig-
nificant appearance changes, and it is difficult for the network to
aggregate them into the same cluster. (b) visualizes the CLIP-
guided text-driven face attribute hallucination, which is the core
idea of the proposed CLIP-Cluster.

tigated. Since facial appearance changes dramatically un-
der different factors like age, pose, and expression [14, 31],
how to minimize the effects of these facial variations for
more compact intra-cluster face embedding is still an open
challenge for face clustering.

Face clustering has received thorough attention in the
computer vision research area. More recently, the super-
vised face clustering methods are extensively studied [5,
27, 36, 47, 51, 57] and have achieved significant perfor-
mance gain. While they put more attention on how to es-
timate vertice confidence [12, 51], construct neighbor link-
age [45, 47], or mine graph structure [36, 53], few works
systematically study the impact of intra-cluster variance on
face clustering. Intra-class face variance is a common issue
in both collected face datasets and real-world photos, and its
impact on feature discrimination has actually been repeat-
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edly verified in the face recognition community [22, 44].
Even so, since facial appearance changes dramatically un-
der different face attributes including age, pose, and expres-
sion, it is still challenging to effectively mitigate the impact
of these variances. As the hard example shown in Figure 1
(a), for the same person, aging brings significant appearance
changes, and it is difficult for the network to aggregate them
into the same cluster.

In this work, we are committed to narrowing the intra-
cluster attribute gap through a synthesis-like approach for
easier face clustering. One possible solution is to synthesize
face images through attribute manipulation, thus face sam-
ples are transferred to a uniform attribute space. However,
training such networks with mainstream generative proto-
types [11, 15] for controllable attribute editing has the fol-
lowing limitations: 1) high requirement for large-scale an-
notated paired data, 2) high training difficulty for generating
realistic images in the pixel space, and 3) additional com-
putational cost of extracting features for synthesized images
for subsequent face clustering. For these reasons, we choose
to generate faces for different attributes directly in the fea-
ture space, which is termed attribute hallucination.

In this work, we propose CLIP-Cluster, which leverages
the recent powerful language-visual model CLIP [32] for
text-driven face attribute hallucination, and opens a brand-
new avenue for face clustering. The core idea of the CLIP-
Cluster is shown in Figure 1 (b). With CLIP-guided text-
driven face attribute hallucination, we can transfer faces to-
ward various ages, poses, and expressions. Benefiting from
the admirable zero-shot image classification capability of
CLIP, we can get rid of the demand for a large amount of
annotated paired data, and turn to more convenient text-
based manipulation. Since CLIP maintains a well-aligned
language-image embedding space, we directly perform at-
tribute transfer in the latent space with identity-preserving
supervisions, and use these features for subsequent face
clustering. In this way, we naturally avoid the additional
computational cost of synthesis in pixel space and extract-
ing features for the generated images. Furthermore, while
a face is transferred across various attributes, we design a
neighbor-aware proxy generator to fuse them into a proxy
feature by learning the neighbor-adaptive attention. This
builds a bridge among different sub-clusters and reduces
the intra-class variance. With these proxy representations
to construct the affinity graph, the subsequent GCN-based
edge predictor can perform face clustering in an easier way.

Extensive experiments show that the proposed CLIP-
Cluster significantly boosts the face clustering performance
on standard partial MS1M from 93.22 to 94.22 pairwise
F-score, and the inference process can be completed effi-
ciently within 280s. In summary, the main contributions of
this work are as follows:

• We propose a CLIP-guided text-driven face attribute

hallucination framework to bridge the large intra-class
attribute gap. Therefore, face clustering can be per-
formed in a more compact embedding space.

• Furthermore, we develop a neighbor-aware proxy gen-
erator that fuses the features describing various at-
tributes into a proxy by learning the neighbor-adaptive
attention to reduce the intra-class variance.

• The proposed CLIP-Cluster improves FP on partial
MS1M to 94.22 within 280s, which outperforms state-
of-the-art methods with high inference efficiency.

2. Related Work

Face Clustering. Face clustering is a promising ap-
proach in a series of application scenarios including data
annotation, file grouping, and photo organization. Tradi-
tional algorithms [10, 20, 23, 28, 38, 60, 62] usually rely on
manually defined heuristic clustering strategies, which pro-
vide valuable theoretical foundations for follow-up works.
Recently, more face clustering research turns to supervised-
based learning [57], with GCN [47, 52, 59] and Trans-
former [12, 27] as the basic technology, and has achieved
remarkable performance. These existing methods cope with
the face clustering problem from different perspectives like
vertice confidence estimation [12, 51], neighbor linkage
prediction [45, 47], and graph structure mining [36, 37, 53].
Yang et al. [51] develop the global-based GCN learning
paradigm for clustering. Wang et al. [47] utilize the lo-
cal context information to predict the linkage relationship.
Shen et al. [36] propose a structure-aware face clustering
approach making it possible to perform training on ultra-
large-scale graphs. However, few existing works systemati-
cally study the impact of intra-cluster variance on face clus-
tering, which is a common problem in both collected face
datasets and real-world photos. We therefore focus on this
key issue, and propose the CLIP-Cluster to tackle this chal-
lenge through text-driven face hallucination for narrowing
the intra-cluster attribute gap.

Vision-Language Models. Recent years have witnessed
the great success of vision-language models [3, 9, 46, 61].
As a representative work, Radford et al. [32] develop the
Contrastive Language-Image Pre-training (CLIP) model,
which is trained on large-scale 400 million image-text pairs
and can be employed for representation learning on multi-
modal embedding space. CLIP maintains a well-aligned
image-language space, and has been proven to have strong
zero-shot classification capability which is transferable over
30 datasets. Motivated by the impressive performance of
CLIP, many follow-ups [18, 54, 55] have been proposed.
Patashnik et al. [30] propose StyleCLIP, which combines
the generative powers of StyleGAN [15] with the visual
concept encoding abilities of CLIP for image synthesis.
Wang et al. [43] leverage the pre-trained CLIP model to
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Figure 2. Overview of the proposed CLIP-Cluster to mitigate the effect of intra-cluster facial variations for better face clustering. Leverag-
ing the powerful zero-shot image classification capability of CLIP, we develop a CLIP-guided text-driven attribute hallucination to bridge
the attribute gap within clusters. With face features {i, f} from CLIP and face recognition space C, and the original and reversed text em-
bedding {t, t̃} as input, the text-driven attribute hallucination obtains transformed feature i+∆i corresponding to t̃. It is further transferred
to the C space with a trained space transfer to get hallucinated face features f̂ . Furthermore, to make reasonable use of this augmented
information f̂ , a neighbor-aware proxy generator is designed for adaptive attribute fusion. Based on these designs, we can perform the
subsequent GCN-based edge prediction in a more compact feature space, which significantly reduces the learning difficulty.

drive a NeRF [25] for image manipulation. Wav2CLIP [48]
learns robust audio representations by distilling from CLIP
embedding space. In this work, we leverage the joint
language-image embedding space of the CLIP to constrain
the consistency of the learned image features and the lan-
guage conditions for text-driven face attribute transfer.

Graph Convolutional Network. Graph Convolutional
Network (GCN) [7, 35, 42] opens an efficient path for
processing non-Euclidean structured data compared with
convolution operations. It shows impressive capability on
various computer vision tasks including action recogni-
tion [6, 56], kinship reasoning [19], and semantic segmen-
tation [33, 58]. Since GCN excels at modeling graph-
structured data, it has also been widely adopted in the clus-
tering research community as the basic workflow [45, 47,
51, 52, 53, 59]. Yang et al. [52] and Wang et al. [47] are an
earlier group of researchers that introduce GCN into face
clustering task. They reorganized face data into graphic
patterns for interactive feature propagation and achieved ad-
mirable performance. In this work, we leverage the power-
ful feature learning ability of GCN to design the neighbor-
aware information extractor and edge predictor.

3. Methodology
3.1. Overview

To mitigate the effect of intra-cluster facial variations
on face clustering, we develop a CLIP-guided text-driven

feature transfer strategy for face attribute hallucination to
bridge the attribute gap within clusters, and term the pro-
posed method as CLIP-Cluster. An overview of the pro-
posed CLIP-Cluster is shown in Figure 2. Leveraging the
powerful zero-shot image classification capability of CLIP,
we achieve face attribute transfer in the feature space con-
ditioned on text prompts. Furthermore, to make reasonable
use of this augmented information, a neighbor-aware proxy
generator is developed for adaptive attribute fusion. Based
on these designs, we can perform the subsequent GCN-
based edge prediction in a more compact feature space,
which significantly reduces the learning difficulty. In the
following, we will detail the text-driven face attribute hallu-
cination in Section 3.2. In Section 3.3, the neighbor-aware
proxy generator is introduced for reasonable attribution fu-
sion. Section 3.4 describes the GCN-based edge prediction.
And we systematically summarize the training and test pro-
cess in Section 3.5.

3.2. Text-Driven Attribute Hallucination

In this section, we link the face image to its correspond-
ing language concept, and employ text prompts as condi-
tions to guide the attribute transfer with the help of the pow-
erful vision-language pre-trained model CLIP. We interpret
this process as face attribute hallucination. In this way, each
face sample is extended into different variants, thus open-
ing the avenue for bridging the attribute gap between intra-
cluster neighbors.
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Definition of Text Prompts. For a face image x, we
take into account three representative attributes, i.e. age,
pose and expression, since these factors are thought to
be the main variables responsible for the intra-class dif-
ferences. It is worth noting that the attribute category is
expandable if more fine-grained variants are considered.
Each attribute further contains multiple cases as: Age =
{a0, a1, · · · , aC−1}, Pose = {frontal, profile} and Expres-
sion = {happy, sad, neutral,· · · }, with attributes collection
denoted as R = {Age, Pose, Expression}. We represent the
attribute set of x as r, and the corresponding reversed set as
r̃ = R− r. On this basis, the text prompts templates are de-
fined as “A photo of a male / female at the age of {age}”, “A
photo of a {expression} male / female”, “A photo of a male
/ female in profile” and “A photo of a frontal male / female”
respectively, with the target attributes in r and r̃ filled in.

Text-Driven Attribute Hallucination in CLIP Space.
Since these attribute texts are easily accessible and con-
tain rich prior knowledge, they are advantaged for attribute
transfer guidance. With the image-attribute pair x, r and
the target reversed attribute r̃, the image representation i =
EI(x) and the text embedding t = ET (r) and t̃ = ET (r̃)
are extracted, where EI and ET are the pre-trained image
encoder and text encoder in CLIP as shown in Figure 2. To
obtain the language embedding, we feed ET with the con-
structed text prompt sentences of r and r̃. On this basis, the
semantic offset ∆t = t − t̃ represents the mapping direc-
tion of two different attributes in the latent language spaces.
Since the image and text space is aligned in CLIP, ∆t can
be utilized to guide the corresponding manipulation in the
image space. We therefore develop a text-to-image trans-
fer module M to link these two spaces. The output image
offset guided by ∆t is formulated as,

∆i = Mθ(∆t, i). (1)

Here we include the original image representation i as an-
other input, since the correspondence relationship between
∆t and ∆i is not one-to-one mapping. ∆t only guides the
transfer direction, so i is needed to further provide a start-
ing point for the transformation. This process is supervised
with the following loss function,

LCLIP = DCLIP(∆t,∆i) +DCLIP(t̃, i+∆i), (2)

where DCLIP is the cosine distance between the text and im-
age embeddings in the CLIP space. We simultaneously con-
strain the DCLIP of the global feature pair (t̃, i+∆i) and the
feature offset pair (∆t,∆i) as shown in Figure 2 for better
supervision. In this way, we achieve hallucination across
various attributes with only text prompts as guidance. Ben-
efiting from the zero-shot language-image classification ca-
pability of CLIP, we can get rid of the demand for large-
scale annotated paired data and realize more free and exten-
sible face attribute transfer.

Link CLIP and Clustering Space. CLIP is pre-trained
with text-image pair under contrastive objective, leading
to a wider feature space containing rich prior knowledge.
Since the face clustering task is more focused on identity in-
formation, it is necessary to eliminate the identity-irrelevant
message from CLIP embedding for purer face features. In
representative face clustering frameworks, a CNN-based
model EF trained under face recognition supervision is usu-
ally used to extract face identity representation for cluster-
ing, and we denote this embedding as C. Therefore, it is a
natural solution to transfer CLIP embedding to C space to
obtain identity-aware features which are more suitable for
face clustering. More importantly, this also provides a way
to constrain the identity consistency of faces under different
attributes. For more accurate feature mapping, this MLP-
based space transfer model B is pre-trained with paired face
image embeddings {i, f} from CLIP and C space, where
f = EF (x). Instead of directly learning the feature map-
ping, we alternatively learn the transfer direction, which can
significantly reduce the training difficulty. Specifically, a
reference pair {ir, fr} with the same identity class of {i, f}
is randomly selected, and the learning process of this fea-
ture transfer model B is,

∆f̂ = Bζ(i− ir, fr), (3)

with ∆f̂+fr as the final estimated feature in C space. In this
way, we learn the manipulation direction mapping between
the two spaces. And this training process is supervised by
LTransfer = 1− ⟨∆f̂ + fr, f⟩, where ⟨·, ·⟩ computes the co-
sine similarity between its arguments. The trained transfer
model B is then integrated into the whole framework as a
frozen module for end-to-end training as shown in Figure 2,
and its role is to map ∆i in Equation 1 to the corresponding
C space as ∆f = Bζ(∆i, f). f is the representation of the
original face extracted with f = EF (x), and here it acts as
the reference. f̂ = f + ∆f is the estimated feature with
transferred attribute. On this basis, the identity consistency
constraint is defined as,

LID = 1− ⟨f̂ , f⟩. (4)

After this step, for each face sample, we can transfer it
across various attributes with mere text guidance and ob-
tain the corresponding embeddings f̂ = [f̂1, f̂2, · · · , ˆfM ]
in the C space, where M is the number of total categories in
the reversed attribute set r̃.

3.3. Neighbor-aware Proxy Generator

While a single face is transferred into various attributes
as f̂ = [f̂1, f̂2, · · · , ˆfM ], another key issue is how to make
reasonable and full use of this rich information. To this
end, we further design a neighbor-aware proxy genera-
tor as shown in Figure 3, which is realized via the trans-
former decoder for meaningful feature fusion. Specifically,

20789



GCN-Based Learning

Oringinal Node Transferred Nodes

Query

...

Neighbor-Aware 
Proxy Generator

Neighbor 
Information

Feature
Aggregation

Key&Value

Concatenate

��

�
�

[�, �]

�
�

Fused Feature

Figure 3. Visualization of the proposed neighbor-aware proxy gen-
erator to fuse the features describing various attributes into a proxy
feature to build a bridge among different sub-clusters and reduce
the intra-class variance. This module is realized via the trans-
former decoder with neighbor information as the query and the
transferred attribute features as the key and value.

the neighbor information is extracted with a L̄-layer GCN.
A ∈ RN×N denotes the KNN-based adjacency matrix con-
structed with face features set F = {f} ∈ RN×D, where
N is the number of face images and D is the feature dimen-
sion. We zero the diagonal of A to get Ā, and on this basis,
the neighbor information is learned with,

F̄l+1 = σ(ĀF̄lW̄l), l = 1 . . . L (5)

where W̄l ∈ RD×D is the learnable parameters for this
GCN. σ is a nonlinear activation and we use ReLU [26, 50].
F̄0 = F and F̄L is the final learned neighbor information.

Since f̄L aggregates rich messages from the neighbor-
hood, it reflects the attribute characteristics of these neigh-
boring face nodes. We therefore use f̄L as the query and
leverage the cross-attention mechanism in the transformer
decoder for learning neighbor-aware attention. With v =
[f, f̂ ] ∈ RD×(M+1) as the key and value, the cross-attention
learning process can be formulated as,

vr
′
= MCA(LN(f̄L, v

r−1)),

vr = MLP(LN(vr
′
)), r = 1 . . . R

(6)

where v0 = v and R is the depth of the decoder block.
The transformer decoder architecture is a stack of alternat-
ing layers of Multi-head Cross-Attention (MCA) and MLP
blocks, with the LayerNorm (LN) before every block. Af-
ter this step, we can get the fused feature vR for each face
node. Since vR is obtained under the guidance of neighbor
information, it gives higher fusion weights to the attributes
close to the neighbor nodes, thus building a bridge among
different sub-clusters and reducing the intra-class variance.
Based on these proxy representations, the subsequent net-
work can perform face clustering in an easier way, and si-
multaneously provide feedback guidance for the previous
network under the end-to-end training paradigm.

3.4. GCN-Based Edge Predictor

Based on the learned proxy representations V = {vR},
we further introduce a GCN-based edge confidence predic-
tor as a proxy task for face clustering. With the KNN-based
affinity graph as the adjacency matrix A, which controls the
feature propagation direction, this computational process is
formulated as,

Vl+1 = σ
(
[V T , (ÃVl)

T ]TWl

)
, l = 1 . . . L (7)

where Ã = D̃−1 (A+ I) and D̃ =
∑

j Ãij . Wl ∈ RD×Dout

is a learnable matrix and σ is the ReLU activation func-
tion. Vl denotes the embeddings at l-th layer with V0 = V
is the input face features. Furthermore, for edge predic-
tion, we design an MLP-based binary classifier supervised
by the cross-entropy loss Lcross between the predicted edge
confidence and the ground-truth edge labels. Particularly,
paired features corresponding to an edge are fed into the
MLP for estimating the two-dimension edge confidence.
The ground-truth label of an edge is 1 if the two nodes be-
long to the same class, otherwise it will be 0.

3.5. Training and Inference

In this section, we systematically summarize the training
and testing process based on the above-mentioned designs.

Training For large-scale training, we leverage the
structure-preserving sub-graph sampling strategy in [36]. In
each training iteration, based on these sampled face nodes,
we perform text-driven face hallucination and neighbor-
aware proxy generator to get the fused face embeddings V
which narrow the attribute gap within the cluster. These
features are then utilized for GCN-based edge prediction
learning. All modules are organized in an end-to-end train-
ing paradigm, and the overall loss function is formulated
as,

L = LCLIP + λLID + µLcross (8)

Inference During inference, we use the whole graph as
input for efficiency. The KNN-based affinity graph G is con-
structed as the initial cluster. This graph is then pruned to G′

based on the learned edge scores with threshold τ . After this
step, most wrong connections are removed. However, there
still exists a minority of false positive edges, since the initial
affinity graph is densely connected. We therefore introduce
Infomap [34] as an off-the-shelf tool for further graph re-
finement based on G′ and get the final clusters.

4. Experiments
4.1. Experimental Settings

Datasets. We use MS-Celeb-1M (MS1M) [13] and
Webface42M [64] for training and evaluation in the face
clustering task. The refined MS1M contains about 5.82M

20790



face images from 85K identities. We then follow [53] to
evenly split the MS1M [13] into 10 partitions, while each
part consists of about 0.5M images from 8.6K identities.
1 part is used as labeled data (Part0) for training and the
other 9 parts (Part1, · · · , Part9) are regarded as unla-
beled data for testing. The WebFace42M is a large face
benchmark with about 42M images from 2M identities,
which presents a new challenge for face clustering. The
MegaFace [16] contains a probe set with 3,530 images and
a gallery set with over 1M images. We use it to evaluate
face recognition results when training models using pseudo-
labeled images obtained through face clustering methods.

Metrics. We evaluate the face clustering performance on
the mainstream metrics Pairwise F-score (FP ) and BCubed
F-score (FB) [2]. These two indicators measure the cluster-
ing performance from paired data and cluster-wise data re-
spectively, with the harmonic mean of Precision and Recall.
To further verify the quality of the pseudo-labels obtained
from the clustering results, following the practice in [53],
we use different proportions of pseudo-label data along with
the labeled data in Part0 to train the face recognition model
and then evaluate the rank-1 face identification accuracy on
MegaFace challenge 1 with 1M distractors.

Implementation Details. In this work, we select age,
pose and expression as three representative face attributes
for research, which are considered to be the main factors
for the intra-class variance. In further practice, attribute
selection is extensible if other attributes become the main
variance factors in the target dataset. The age and expres-
sion are estimated with FaceLib [1], and the head pose is
predicted through Deepgaze [29]. We divide the age into
four stages, i.e. childhood ( 0−10 ), youth ( 10−30 ), mid-
dle age ( 30 − 50 ), and old age ( 50 − 100 ), and use the
median of each age group as the label. Therefore we have
Age = {a0, · · · , a3} = {5, 20, 40, 75}. There are seven Ex-
pressions including “happy”, “sad”, and “neutral”. Pose =
{frontal, profile} depends on the head pose in yaw dimen-
sion, where yaw∈ [−20, 20] is considered as “frontal”. We
follow these partitions for the accuracy-efficiency trade-off,
and finer divisions can also be made if necessary. For GCN
training, the affinity graph is built by KNN algorithm [8]
with k = 80, therefore there are more wrong edges to bal-
ance the number of positive and negative edge samples in
training. During inference, the affinity graph is built with
k = 50 to reduce the number of wrong edges for cleaner
clustering results. In Equation 8, we experimentally choose
suitable scale factors as λ = µ = 1. The threshold τ is set
as 0.5 for the graph pruning.

4.2. Ablation Study

Design of the Neighbor-Aware Proxy Generator. In
this subsection, we explore different designs for face feature
fusion and evaluate their face clustering performance with

Method Precision Recall FP

Average 96.73 90.97 93.76
Self-Attention 95.67 92.47 94.04

Cross-Attention 97.06 91.54 94.22

Table 1. Comparison of different designs for face feature fusion.
All are trained with the Part0 and tested on the Part1 in MS1M.
We observe that the cross-attention-based neighbor-aware proxy
generator achieves superior performance than others.

Method Precision Recall FP

Ours + Naive Pruning 94.26 84.05 88.86
Only Infomap 95.50 92.51 93.98

Ours + Infomap 97.06 91.54 94.22

Table 2. Investigation of the graph refinement designs. We com-
pare the naive pruning and the Infomap-based refinement strate-
gies, and show the results with mere Infomap. All are trained with
Part0 and tested on Part1 in MS1M. It can be seen that the ad-
ditional refinement operation brings significant performance gain.

all models trained on the Part0 and tested on the Part1
of MS1M. After the face attribute hallucination operation,
each face sample is augmented to various attributes across
age, expression, and pose. Since our core intention is to
narrow the attribute gap within the same class so as to com-
pact the intra-cluster variance, it is a key issue to develop
a fusion module for information fusion while making the
most of these learned features. To this end, we exploit a
cross-attention-based neighbor-aware proxy generator that
employs neighbor messages as the query to fuse the features
describing various attributes into a proxy feature to build a
bridge among different sub-clusters and reduce the intra-
class variance. Here we compare this design with two other
ones, i.e. averaging operation, and self-attention-based ap-
proach. The performance comparison is shown in Table 1.
It can be seen that the naive averaging operation is inferior
to the other two learnable transformer-based strategies. The
introduction of the attention mechanism helps to perform
feature fusion adaptively, leading to significant performance
improvement. Furthermore, in the cross-attention-based de-
sign, the GCN-based neighbor information is adopted as
the query to reflect the attribute distribution of nearby face
nodes, thus providing guidance for feature fusion with dif-
ferent attributes. In this way, the fused feature is encouraged
to be consistent with the query information, thus achieving
the purpose of reducing the attribute gap between adjacent
samples. And it boosts the face clustering Fp from 94.04 to
94.22 compared with the self-attention-based one.

Effect of the Additional Graph Refinement. In our
method, we use edge prediction as a proxy task for face
clustering. This proxy is simple with high efficiency, and
edge pruning with the learned edge confidence is able to
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Method Precision Recall FP Time

K-Means [23] 52.52 70.45 60.18 11.5h
DBSCAN [10] 72.88 42.46 53.50 110s

HAC [39] 66.84 70.01 68.39 12.7h
ARO [28] 81.10 7.30 13.34 1650s
CDP [57] 80.19 70.47 75.01 140s

L-GCN [47] 74.38 83.51 78.68 5208s
GCN-D+S [53] 98.24 75.93 85.66 3700s
GCN-V+E [51] 92.56 83.74 87.93 690s

DA-Net [12] 95.88 85.87 90.60 329s
STAR-FC [36] 96.20 88.10 91.97 310s

STAR-FC++ [37] 96.74 89.93 93.21 312s
ADA-Nets [45] - - 92.79 1100s

MHC [5] - - 93.22 -

Ours 97.06 91.54 94.22 280s

Table 3. Methods comparison on face clustering performance and
inference time. All models are trained with Part0 and tested
with Part1 from MS1M. Our proposed method achieves state-of-
the-art face clustering results with comparable inference efficiency
with most of the recent high-performance methods.

eliminate a majority of negative edges. Whereas, since
we perform inference based on the KNN-based densely-
connected affinity graph, there may be some remaining false
positive edges. We therefore add a further refinement op-
eration for better clustering. In this subsection, we inves-
tigate the impact of different refinement operations on the
final face clustering performance as shown in Table 2, with
Part0 as the training data and testing on the Part1 of
MS1M. In the naive pruning method, face clusters are ob-
tained with dynamic edge pruning [57] based on the pre-
dicted edge scores. Compared with the naive pruning strat-
egy, graph refinement based on Infomap [34] can improve
the pairwise F-score from 88.86 to 94.22, which verifies the
significance of the additional refinement operation to boost
the face clustering results. We also show the face cluster-
ing results with mere Infomap technology for fairer compar-
isons. It can be seen that our method has great performance
improvement on the basis of Infomap from 93.98 to 94.22,
which proves the effectiveness of our proposed method in
dealing with face clustering problems.

4.3. Face Clustering on MS1M

For face clustering performance evaluation and method
comparison, we conduct experiments on the popular large-
scale face dataset MS1M [13]. All results in Table 3 are
obtained on the MS1M dataset with Part0 as the train-
ing set and Part1 as the testing set. In addition to the
pairwise F-score result, we also show the corresponding
precision and recall for more comprehensive evaluations.
It can be seen that the proposed method greatly surpasses
the existing methods and achieves state-of-art face cluster-

Method Precision Recall FP FB

K-Means [23] 95.99 50.05 65.80 78.29
HAC [39] 98.25 59.76 74.31 85.46

DBSCAN [10] 94.77 44.12 60.21 77.87
ARO [28] 99.34 62.83 76.98 88.83

GCN-D [53] 98.05 52.54 68.42 71.47
STAR-FC [36] 96.77 94.00 95.36 94.93

STAR-FC++ [37] 99.14 97.43 98.27 97.50

Ours 99.81 98.52 99.16 99.42

Table 4. Method comparison on face clustering performance on
the WebFace42M dataset. All methods are trained with 4M face
images and evaluated with the 4M test data from WebFace42M.

ing results. For example, we improve the FP from 93.22
to 94.22 compared with the recent high-performance work
MHC. Moreover, the inference time of our method is com-
parable with most of the recent high-performance methods.
Benefiting from the full graph operation and parallel matrix
computing, the proposed CLIP-Cluster can perform infer-
ence with 280s, which demonstrates the efficiency of the
proposed method. For a fair comparison, this reported in-
ference time does not include the time of KNN graph con-
struction, which takes about 15s with GPU acceleration. In
Table 5 we further show the face clustering performance
on larger-scale test sets, with 1.74M unlabeled data con-
sisting of Part0 ∼ Part3, 2.89M consisting of Part0 ∼
Part5 and so on. Results in Table 5 show that although
the inference becomes more challenging with larger-scale
test data, the proposed CLIP-Cluster can keep superior face
clustering performance, and our method consistently sur-
passes other clustering baselines under different scales of
test sets. Particularly, compared with the recent representa-
tive clustering approach ADA-Nets [45], our method boosts
the FP significantly from 83.99 to 87.99 and improves the
FB from 83.28 to 85.85 on 5.21M unlabeled data.

4.4. Face Clustering on WebFace42M

In this subsection, we evaluate the face clustering
performance on the million-scale face benchmark Web-
Face42M [64] for more sufficient method comparisons.
Following the practice in STAR-FC [36], 4M images from
the WebFace42M dataset are used for training and the in-
ference is performed on 4M test data. There is no identities
overlap between the training set and the testing set. The face
clustering performance is shown in Table 4. It can be seen
that under such large-scale training and large-scale testing
experiment setting, the proposed CLIP-Cluster once again
outperforms other approaches on both FP and FB .

4.5. Face Recognition with Pseudo labels

Since an important application of face clustering is data
annotation, to verify the effectiveness of the proposed
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#unlabeled 1.74M 2.89M 4.05M 5.21M

Method / Metrics FP FB FP FB FP FB FP FB

K-Means [23] 73.04 75.20 69.83 72.34 67.90 70.57 66.47 69.42
HAC [39] 54.40 69.53 11.08 68.62 1.40 67.69 0.37 66.96
DBSCAN [10] 63.41 66.53 52.50 66.26 45.24 44.87 44.94 44.74
ARO [28] 8.78 12.42 7.30 10.96 6.86 10.50 6.35 10.01
CDP [57] 70.75 75.82 69.51 74.58 68.62 73.62 68.06 72.92
L-GCN [47] 75.83 81.61 74.29 80.11 73.70 79.33 72.99 78.60
GCN-D [53] 83.76 83.99 81.62 82.00 80.33 80.72 79.21 79.71
GCN-V+E [51] 84.04 82.84 82.10 81.24 80.45 80.09 79.30 79.25
Clusformer [27] 84.60 84.05 82.79 82.30 81.03 80.51 79.91 79.95
STAR-FC [36] 88.28 86.26 86.17 84.13 84.70 82.63 83.46 81.47
ADA-Nets [45] 89.33 87.98 87.50 86.03 85.40 84.48 83.99 83.28
STAR-FC++ [37] 90.00 88.15 88.32 86.12 87.04 84.83 85.89 84.39

Ours 91.44 89.44 89.95 87.75 88.93 86.78 87.99 85.85

Table 5. Method comparison on face clustering when training with 0.5M face images (Part0) and testing with different numbers of
unlabeled face images (the 1.74M unlabeled data consists of Part1 ∼ Part3 and so on) from MS1M. Although the inference becomes
more challenging with larger-scale test data, the proposed CLIP-Cluster can keep superior face clustering performance, and our method
consistently surpasses other clustering baselines under different scales of test sets.
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Figure 4. Rank-1 face identification accuracy on MegaFace with
1M distractors, with the horizontal axis indicating the ratio of un-
labeled to labeled data. The point where the ratio is 0 indicates
that only a split of labeled data is used for training.

method from this dimension, we further test the perfor-
mance of the cluster labels on the face recognition task.
Specifically, pseudo-labels are assigned to unlabeled data
based on the face clustering results. Then we utilize these
pseudo-labeled data to train face recognition models and in-
vestigate the performance gain brought by these extra anno-
tated training data. Following the setting in [51, 53], we
use labeled data from Part0 and the remaining unlabeled
data with pseudo-label to train the face recognition mod-
els and then evaluate the trained models on MegaFace [16].
Figure 4 plots the rank-1 face identification accuracy on
MegaFace with 1M distractors, where the horizontal axis

represents the ratio of the amount of pseudo-labeled and
the labeled data used for training. The upper bound is
trained using data with ground-truth labels. From this curve
graph, it can be seen that with the increase of pseudo-label
training data, the performance of face recognition has been
continuously improved. And the proposed CLIP-Cluster
achieves superior recognition results owing to the more ac-
curate cluster labels compared with other face clustering
baselines. Our method boosts the face recognition perfor-
mance on MegaFace from 58.2% to 80.5% eventually de-
pending on the extra 5.21M pseudo-labeled data.

5. Conclusion

In this work, we have proposed an attribute hallucina-
tion framework named CLIP-Cluster to narrow the intra-
class variance caused by different face attributes for better
face clustering. The CLIP-Cluster first hallucinates multi-
ple representations for different attributes based on the well-
aligned image-language CLIP space. Furthermore, a cross-
attention-based neighbor-aware proxy generator is devel-
oped to fuse the features describing various attributes into a
proxy feature to build a bridge among different sub-clusters
and reduce the intra-class variance. Extensive experiments
show that our proposed approach outperforms state-of-the-
art face clustering methods with high inference efficiency.
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