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Abstract
Palmprint recently shows great potential in recognition

applications as it is a privacy-friendly and stable biomet-
ric. However, the lack of large-scale public palmprint
datasets limits further research and development of palm-
print recognition. In this paper, we propose a novel real-
istic pseudo-palmprint generation (RPG) model to synthe-
size palmprints with massive identities. We first introduce
a conditional modulation generator to improve the intra-
class diversity. Then an identity-aware loss is proposed to
ensure identity consistency against unpaired training. We
further improve the Bézier palm creases generation strategy
to guarantee identity independence. Extensive experimental
results demonstrate that synthetic pretraining significantly
boosts the recognition model performance. For example,
our model improves the state-of-the-art BézierPalm by more
than 5% and 14% in terms of TAR@FAR=1e-6 under the
1 : 1 and 1 : 3 Open-set protocol. When accessing only
10% of the real training data, our method still outperforms
ArcFace with 100% real training data, indicating that we
are closer to real-data-free palmprint recognition.

∗Equal contribution.
†Corresponding authors.

1. Introduction

Palmprint is an excellent biometric in terms of privacy,
willingness, convenience, and security. Since the palmprint
locates on the inner side of the palm, obtaining the palm-
print without one’s permission is nearly impossible, which
is more privacy-friendliness over the face. Compared to
iris and fingerprints, palmprint has fewer usage restrictions,
which makes palmprint more user-friendly. Furthermore,
Palmprints and palm veins can be collected simultaneously
to form a highly secure dual-modal system.

Due to these advantages, big companies such as Ama-
zon [1] and Tencent [69] begin to apply palmprint recogni-
tion in their payment services. However, for the same rea-
son, palmprints are rare in public and expensive to collect.
To our best knowledge, publicly available datasets [2, 21,
29, 30, 36, 41, 52, 57, 68] only contain thousands of iden-
tities and tens of thousands of images in total. Meanwhile,
face recognition has several million-level publicly available
datasets [4, 9, 27, 38, 44, 62] that contain tens to hundreds
of thousands of identities. The lack of large-scale public
dataset seriously inhibits the research on palmprint recogni-
tion.

To solve this problem, one way is to collect a large-
scale palmprint dataset. However, this way is very time-
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Figure 1: Synthetic Bézier palm creases are used as the
identity control condition to guide the generator to produce
diverse synthetic data. Recognition models are pretrained
with pseudo-data and then finetuned on real data, achiev-
ing significant performance boosts. Besides, even if only
accessing 10% of the real training data for generation and
recognition model, our method still gets comparable perfor-
mance to 100% of real data direct training.

consuming and expensive. In addition, collecting biometric
data causes more and more privacy and ethical concerns [7]
and is strictly restricted by legislation in many countries.
Another way is to augment the training dataset with syn-
thetic palmprints. To better benefit palmprint recognition
applications, the synthetic method should support gener-
ating massive identities with inter-class and intra-class di-
versity, and the gap between synthetic palmprints and real
palmprints should be small.

Recently, BézierPalm [69] synthesizes fake palmprint
images by generating palmprint creases with several pa-
rameterized Bézier curves for recognition model pretrain-
ing. BézierPalm first shows the ability to output massive
new identities without using real palmprints and signifi-
cantly improves the performance of the palmprint recog-
nition models. However, BézierPalm has some problems
unsolved. Firstly, synthetic palmprints have a large gap to
real ones, resulting in non-neglectable finetune data require-
ments in real-world applications. Secondly, the curve pa-
rameter difference of each identity cannot ensure inter-class
independence when generating massive data. Thirdly, the
intra-class diversity only contains small curve deformation
in BézierPalm, while real palmprints have diverse textures,
lighting and et al.

In this paper, we propose a realistic pseudo-palmprint

generation (RPG) model. As shown in Fig.1, the RPG
model takes synthetic Bézier palm creases as an identity
(ID) condition and outputs realistic pseudo-palmprints with
a bidirectional mapping from the Gaussian noise domain to
the palmprints domain. Since there is no correspondence
between synthetic Bézier palm creases and real palmprints,
the generation model can only use unpaired data and will
lose intra-class identity consistency easily during training.
To solve this problem, we introduce an identity-aware loss
that restrains the identity consistency between palmprints
generated from the same Bézier palm creases. In addition,
we design a conditional modulation generator to generate
diversified intra-class textures and lighting conditions us-
ing a latent control vector encoded from random noises. To
further reduce the distribution gap between synthetic palm
creases and real-world palmprints, we refined the synthetic
palmprint creases generation strategy with a more reason-
able parameter design and identity independence check.

The contributions of this paper are as follows:

• We propose a realistic pseudo-palmprint generation
(RPG) model with a conditional modulation genera-
tor to improve the intra-class diversity and an ID-aware
loss to help the RPG model ensure identity consistency
under unpaired training.

• We improve the Bézier palm creases synthetic method
to get more reasonable palm creases and independent
identities.

• Extensive experimental results on 13 public datasets
demonstrate that recognition models pretrained with
our synthetic pseudo-palmprints achieve state-of-the-
art recognition accuracy.

• With our RPG pretraining, even if accessing only 10%
of the real data, the recognition model performance
still outperforms 100% real data direct training. Show-
ing we are closer to real-data-free palmprint recogni-
tion.

2. Related Work

2.1. Palmprint Recognition Methods

Palmprint recognition methods can be divided into two
categories: traditional-based and deep-learning based [18].
Traditional methods extract various kinds of local or global
features to make different palmprints more discriminative.
Local-based methods [19, 28, 34, 40, 43, 57, 70] manually
design effective local features for recognition. Global-based
methods [3, 20, 32, 42, 51, 59] extract low-dimensional fea-
tures from the whole image to distinguish different palm-
prints. Deep Learning based methods [16, 25, 35, 58] train
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modified neural networks to extract features with classifica-
tion or pair-wise loss [14, 55, 71]. However, the lack of
large-scale public palmprint datasets limits the potential of
existing palmprint recognition methods.

2.2. Generation Model for Image Transformation

With the development of image generation models, such
as generative adversarial network (GAN)-based models [26,
37] and diffusion-based models [47, 48], image-to-image
generation/translation methods have achieved impressive
performance [11, 12, 33]. However, many typical models,
e.g., conditional generation model pix2pixHD [61], multi-
domain transformation model StarGAN [12], dual-domain
mapping model BicycleGAN [74] and recent conditional
diffusion model [50, 60], rely on paired training data, which
is unavailable in many applications. Therefore, some un-
paired image-to-image translation models have been pro-
posed [39, 54, 64, 72], which usually adopt cycle consis-
tency loss to train the models without paired data. How-
ever, these models are not designed for recognition tasks,
and thus ignore the ID preservation in the generation pro-
cess. Overall, there is still a lack of research on generat-
ing diversified and realistic palmprints with ID consistency
from limited unpaired samples.

2.3. Data generation for Recognition Tasks

In order to improve the recognition performance, data
generation can be used to expand the depth (diversity of
each identity) and width (total number of identities) of train-
ing data. For example, in face recognition field, several fa-
cial image generation methods [15, 24, 45, 46, 65, 22, 23]
have been proposed to generate facial samples based on
the priors of facial attributes, facial structures and 3D faces
[6]. Also, in field of fingerprint recognition, some methods
based on hand-crafted or learning-based approaches [5, 17,
63] have been proposed to generate high-fidelity fingerprint
images.

For palm recognition tasks, BézierPalm [69] use Bézier
curves to synthesize fake palm creases by changing the
Bézier control parameters. PalmGAN [53] improves the
cross-domain recognition performances by using Cycle-
GAN to transfer the styles between normal and multispec-
tral palmprints. However, PalmGAN doesn’t create virtual
identities, and the BézierPalm suffers from the domain gap
between palmprint images and geometry curves. By intro-
ducing the new generation model and ID-aware loss, our
method can expand the inter-class diversity and intra-class
diversity of palmprint dataset simultaneously.

3. Method

3.1. Overall Framework

Fig.2 illustrates the whole framework of the proposed
realistic pseudo-palmprint generation (RPG) model, which
includes a training stage and a forward palmprint gener-
ation stage. In the training phase, palmprint B is first
mapped from the palmprint image domain to the latent vec-
tor Q(z|B) in the Gaussian noise domain through the en-
coder E. Then, the generator G utilizes the unpaired palm
creases A as condition, and remaps the encoded noise vec-
tor Q(z|B) back to the palmprint image domain. In order
to increase the diversity and randomness of the generated
palmprints, a conditional modulation structure is designed
for G, which uses the input noise vector to control the mod-
ulation of intermediate features.

In order to constrain the ID consistency of the generated
pseudo palmprints, an ID-aware loss is presented to enforce
the generator to maintain the ID information of input palm
creases. As shown in Fig.2 (a), a siamese generator G is
used to produce another palmprint B′′ with the same palm
creases A. Then, a pretrained palmprint recognition dis-
criminator is used to measure the ID consistency between
B′ and B′′.

In the forward pseudo-palmprint generation stage, syn-
thetic Bézier creases are input into the generatorG to obtain
corresponding palmprint images for virtual identities. Mo-
tivated by BézierPalm [69], we improve the random Bézier
curves generation strategy to obtain a more reasonable lay-
out of principal lines and wrinkle lines. Then, a classic
palmprint recognition method RLOC [34] is applied to en-
sure the inter-class difference.

In the following, we will introduce the details of gener-
ator G, encoder E, ID-aware loss, and the improved Bézier
palm creases synthesis strategy.

3.2. Conditional Modulation Palmprint Generator

The proposed generatorG takes Gaussian noise vector as
input, palm creases image A as condition, and reproduces
the pseudo-palmprint image B′. As a typical image gener-
ation task, the common UNet [49] architecture is adopted.
The detailed structure of G is illustrated in Fig.3 (a). To
generate diversified results, a conditional adaptive instance
normalization module (CAdaIN) is introduced to modulate
the generated details in each down-block and up-block.

In the CAdaIN module, the input noise vector N(z) is
first encoded into a latent control vector w(z) through two
fully-connected (FC) layers. Note that the parameters of
these two FC layers are shared for the whole generator G,
so that the generated style can be consistent by means of
the same w(z). Then, two other FC layers are used to mod-
ulate the mean and variance of intermediate feature maps
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Figure 2: Framework of the proposed realistic pseudo-palmprint generation model, (a) training stage, (b) forward pseudo-
palmprint generation stage.

Figure 3: The network structure of the proposed method, (a) structure of generator G, (b) structure of encoder E.

respectively, which can be calculated as,

Xo = fc1(w(z))Xi + fc2(w(z)) + n0, (1)

where Xi and Xo denote the input and output features
of CAdaIN, and fc1, fc2 represent two FC layers. By us-
ing a latent control vector encoded from random noise, the
CAdaIN can modulate the features to produce different dis-
tributions, resulting in diversified palmprint images. In ad-
dition, in order to further improve the diversity, random
noise n0 with the same spatial resolution as the feature map
is added to the modulated features to inject more random-
ness.

For producing realistic results, the loss L1 and adversar-
ial lossLD are used to restrain the learning ofG, as follows,

LG = λ1L1(B,B
′) + λ2LD(B,B′), (2)

where λ1 and λ2 are weights. The L1 is a commonly used
pixel-wise loss, which can ensure the numerical similarity
between the generated image and real palmprint. But note
that the palm creases imageA is not matched with palmprint
B, so that too strong pixel-wise constraint may cause wrong
overfitting to the details in B. Hence, adversarial loss LD

is also used to relax the constraint and restrain the semantic
similarity between B and B′. For the discriminator in LD,
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we adopt the PatchGAN [13], which determines patch-wise
authenticity by mapping the image to a 70× 70 grid.

3.3. Palmprint Encoder

The encoder E is used to map the palmprint image to
the Gaussian noise domain. Its structure is shown in Fig.3
(b), which is a straightforward ResNet structure. The orig-
inal size of the feature map is 256 × 256, and it gradually
decreases to 16 × 16 through several residual blocks (RB).
Then, a FC layer is used to estimate the target mean µQ and
variance σ2

Q from flattened features. Finally, the noise vec-
torQ(z|B) is sampled from Gaussian spaceN (µQ, σ

2
Q) via

reparameterization trick [74].
In the training stage, we constrain the KL divergence be-

tween Q(z|B) ∼ N (µQ, σ
2
Q) and noise vector N(z) ∼

N (0, 1) sampled from Gaussian space, so that the target do-
main of E can keep approximating to the standard normal
distribution. This loss can be computed as,

LKL = −1

2
(1 + log σ2

Q − σ2
Q − µ2

Q). (3)

In this paper, E and G are combined to learn a domain-
to-domain mapping from unpaired training data, instead
of using a fully supervised manner. Firstly, this structure
can avoid the dependence on manual labeling of paired
data. Secondly, conditional bidirectional domain-to-domain
mapping can reproduce random and realistic images and
keep the information of palm creases condition as well.

3.4. ID-aware Loss

For training recognition models, the generated palm-
prints not only need to be diversified, but also have to pre-
serve ID information. For a synthetic palm creases imageA,
the generated palmprints should have the same ID informa-
tion. Therefore, an ID-aware loss LID is added to restrain
the generator. As shown in Fig.2 (a), a siamese generator
G is used to produce another palmprint image B′′ with the
same creases A and random noise vector N(z). Then the
LID restricts the ID consistency of two generated results of
B′ and B′′, as follows,

LID = 1− DMB(B
′) ·DMB(B

′′)

||DMB(B′)|| × ||DMB(B′′)||
, (4)

where “·” denotes the vector dot product operation, DMB

is a pretrained palmprint recognition model using Mobile-
FaceNet [10] and extracts the 512 × 1 feature of B′ and
B′′. That is, LID calculates cosine similarity between the
extracted features of two generated images for the same ID.
Owing to the ID-aware loss, increasing the randomness and
diversity of the generator will not destroy the intra-class ID
consistency.

The total loss of entire model, as follows,

Ltotal = λDLD + λ1L1 + λKLLKL + λIDLID, (5)

Figure 4: Examples of some synthetic palm creases in
BézierPalm [69] and our method.

where LD denotes GAN loss, L1 denotes absolute error
loss, LKL denotes KL divergence loss, and LID denotes
ID-aware loss. We will add the total loss in final version.

3.5. Improved Bézier Palm Creases Synthesis

In the forward stage, only the generator G is used to
produce palmprint images from synthetic palm creases, as
shown in Fig.2 (b). Motivated by BézierPalm [69], we
also adopt the two-level Bézier curves to synthesize palm
creases image that contains three principal lines and random
wrinkle lines. The parametric control points of the Bézier
curve can be adjusted randomly within a preset range to ob-
tain a large number of fake palm creases for virtual ID.

However, we have observed that randomly adjusted
Bézier curves may lead to some unreasonable results. As
shown in Fig.4, the layout of some randomly generated
creases is quite different from that of the real palmprints.

As a result, this paper improves the Bézier curves synthe-
sis strategy based on real palmprint prior from the following
three aspects. Firstly, we observe and adjust the rough range
of the parameter points (i.e., start point, control point, and
end point) of three principal lines according to real palm-
prints. So that the layout of synthetic principal lines be-
comes more similar to that of real palms. Secondly, we ad-
just the synthesis rules to generate more wrinkle lines with
moderate length and more uniform distribution. Thirdly, a
similarity constraint based on RLOC [34] is added, which
makes the principal lines of different IDs sufficiently distin-
guishable. RLOC is a classic palmprint recognition method
that can measure the similarity of two creases images. In or-
der to avoid very similar principal lines being generated for
different IDs, we filter out some creases images which ex-
ceed the RLOC inter-class similarity threshold. We ablate
the threshold of RLOC with 0.1, 0.5, 0.9, 0.95 and experi-
mentally set it as 0.9. More details of improved Bézier palm
creases can be found in supplementary materials.

Finally, the improved random Bézier curves are input
into the generator G to obtain corresponding palmprint im-
ages. This generation process can be repeated until a large-
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scale realistic pseudo-palmprint dataset is established.

4. Experimental Settings
We adopt the same experimental datasets and Open-set

evalutation protocol following BézierPalm [69]. The iden-
tities of the training and test set are isolated. TAR(True Ac-
ceptance Rate) @FAR(False Accept Rate) is used to evalu-
ate model performance. Details about Open-set and evalua-
tion protocol can be found in supplementary materials.

4.1. Datasets

We adopt 13 public datasets in our experiments as in
BézierPalm [69], including 3, 268 IDs and 59, 162 palm-
print images. Detailed descriptions of these datasets are
shown in Tab.1. We follow the detect-then-crop protocol
in [67] to extract the Region Of Interests(ROIs).

Name #IDs #Images Device
MPD [68] 400 16,000 Phone
TCD [68] 600 12,000 Contactless
IITD [41] 460 2,601 Contactless
CASIA [57] 620 5,502 Contactless
CASIA-MS [29] 200 7,200 Contactless
COEP [2] 167 1,344 Digital camera
MOHI [30] 200 3,000 Phone
WEHI [30] 200 3,000 Web cam
GPDS [21] 100 2,000 Web cam
XJTU UP [52] 200 30,000 Phone
XJTU A [52] 114 1,130 CMOS camera
PolyU-MS [66] 500 24,000 Contactless
PolyU(2D+3D) [36] 400 8,000 Web cam

Table 1: Details of the 13 public palmprint datasets.

4.2. Implementation Details

Generation Model Training. We generate 4000 iden-
tities and 100 samples for each identity by default follow-
ing BézierPalm [69]. For training the generation model, the
weights of L1, LD and LKL are set as 10.0 1.0 and 0.01 ac-
cording to [74]. We ablate the weight of LID with 1.0, 5.0,
10.0 and experimentally set it as 5.0. The resolution of input
and output images is 256×256. The learning rate is 0.0002
in the first 30 epochs and linearly decays to 1e-8 in the last
30 epochs. The generation model is trained using Adam
optimizer with parameters (0.5, 0.99). For comparative ex-
periment, we use the source codes of pix2pixHD [61], Cy-
cleGAN [73] and BicycleGAN [74] in their original papers.

Recognition Model Training. For our recognition
model, we use ResNet50 [31] and MobileFaceNet [10] as
the backbone with the input resolution of 224 × 224. The
model is first pretrained on synthesized data for 25 epochs
and then finetuned on real datasets for 50 epochs. For the
baseline model, we train the model on real datasets for 50

epochs. The feature extractor in ID-aware Loss uses the
same training setting as the baseline. We use Arcface [14]
with margin m = 0.5 and scale factor s = 48 for the pre-
training, finetuning and baseline training supervision. We
use the cosine learning rate schedule with a warmup start
for one epoch. The maximum learning rate is 1e-2 and the
minimum learning rate is 1e-6 for pretraining and finetun-
ing. All recognition models are trained with a mini-batch
SGD optimizer. We use 4 NVIDIA Tesla V100 GPUs for
training with total batch size of 128.

It should be emphasized that the generation model, the
feature extractor in ID-aware loss, and the recognition
model all ensure that the training and test sets are com-
pletely isolated.

5. Experimental Results
5.1. Open-set Palmprint Recognition

We first test our method under the open-set protocol
with two different training and test ratios 1:1 and 1:3
(trainIDs:testIDs=1634:1632, 818:2448). Details about the
”Open-set” protocol can be found in supplementary materi-
als. The quantitative results are shown in Tab.2. The TAR
v.s. FAR curves of the 1:1 setting are in Fig.5. Our method
outperforms BézierPalm by 5.09% and 14.73% under 1:1
and 1:3 settings @FAR=1e-6 using ‘MB’, which establishes
a new state-of-the-art. Our method achieves more signifi-
cant improvement under 1:3 setting than 1:1 setting, which
demonstrates the effectiveness of our method in scenarios
with only a small amount of real training data.

Figure 5: TAR@FAR curves of different methods under the
open-set 1:1 setting. The backbone of ArcFace, BézierPalm
and our method is MobileFaceNet.

5.2. Palmprint Recognition with Limited Identities

To further verify the performance of our method with
limited real training IDs, we test our method with different
sizes of real training IDs and fix the test set under the 1:1
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Method Backbone
train : test = 1 : 1 train : test = 1 : 3

TAR@
1e-3

TAR@
1e-4

TAR@
1e-5

TAR@
1e-6

TAR@
1e-3

TAR@
1e-4

TAR@
1e-5

TAR@
1e-6

CompCode [40] N/A 0.4800 0.4292 0.3625 0.2103 0.4501 0.3932 0.3494 0.2648
LLDP [43] N/A 0.7382 0.6762 0.5222 0.1247 0.7372 0.6785 0.6171 0.2108
BOCV [28] N/A 0.4930 0.4515 0.3956 0.2103 0.4527 0.3975 0.3527 0.2422
RLOC [34] N/A 0.6490 0.5884 0.4475 0.1443 0.6482 0.5840 0.5224 0.3366
DOC [19] N/A 0.4975 0.4409 0.3712 0.1667 0.4886 0.4329 0.3889 0.2007
PalmNet [25] N/A 0.7174 0.6661 0.5992 0.1069 0.7217 0.6699 0.6155 0.2877
C-LMCL [71] MB 0.9290 0.8554 0.7732 0.6239 0.8509 0.7554 0.7435 0.5932
ArcFace [14] MB 0.9292 0.8568 0.7812 0.7049 0.8516 0.7531 0.6608 0.5825
BézierPalm [69] MB 0.9640 0.9438 0.9102 0.8437 0.9407 0.8861 0.7934 0.7012
Ours MB 0.9802 0.9714 0.9486 0.8946 0.9496 0.9267 0.8969 0.8485
C-LMCL [71] R50 0.9545 0.9027 0.8317 0.7534 0.8601 0.7701 0.6821 0.6254
ArcFace [14] R50 0.9467 0.8925 0.8252 0.7462 0.8709 0.7884 0.7156 0.6580
BézierPalm [69] R50 0.9671 0.9521 0.9274 0.8956 0.9424 0.8950 0.8217 0.7649
Ours R50 0.9821 0.9732 0.9569 0.9347 0.9533 0.9319 0.9016 0.8698

Table 2: Quantitative performances under the open-set protocol where the performances are evaluated in terms of TAR@FAR.
‘MB’ represents the MobileFaceNet [10] backbone and ‘R50’ is resnet50 [31] backbone.

open-set protocol. We synthesize 4000 identities and 100
samples for each identity in all experiments. As shown in
Tab.3, the performance of ArcFace and BézierPalm drops
quickly with the reduction of real data, while our method
still performs well with few real training IDs. Note that
our method with 160(10%) real IDs even outperforms Ar-
cface with 1600 real IDs. Besides, our method signifi-
cantly improves the TAR by 20.81%@FAR=1e-6 against
BézierPalm [69] with 80 training IDs, which shows the su-
periority of our method under few real training IDs.

5.3. Palmprint Recognition at Million Scale

In order to verify the effectiveness of our method on
large-scale real-world datasets, we test our method on our
internal dataset with millions of palmprint images. Our
dataset contains 19, 286 training identities with 2, 871, 073
images and 1, 000 test identities with 182, 732 images. For a
fair comparison with BézierPalm, we generate 20, 000 IDs
with 100 samples in each ID for pretraining. Quantitative
results are shown in Tab.4. Our method outperforms Arc-
Face and BézierPalm with a clear margin, showing its prac-
tical application value on large-scale datasets.

6. Ablation Study
In this section, we conduct ablation studies to verify dif-

ferent components and design choices of our method. The
MobileFaceNet is used as the backbone for all experiments
under the same Open-set protocol.

6.1. Components and design choices

The main components and design choices of our method
are ID-aware loss, conditional modulation generator and

Method #ID
TAR@FAR=

1e-3 1e-4 1e-5 1e-6
ArcFace

1,600
0.9292 0.8568 0.7812 0.7049

BézierPalm 0.9640 0.9438 0.9102 0.8437
Ours 0.9802 0.9714 0.9486 0.8946
ArcFace

800
0.8934 0.7432 0.7104 0.6437

BézierPalm 0.9534 0.9390 0.9025 0.8164
Ours 0.9783 0.9687 0.9356 0.8741
ArcFace

400
0.8102 0.7050 0.6668 0.3320

BézierPalm 0.9189 0.8497 0.7542 0.6899
Ours 0.9573 0.9324 0.8836 0.8162
ArcFace

160
0.6761 0.5294 0.4783 0.2437

BézierPalm 0.8179 0.6998 0.5826 0.4832
Ours 0.9356 0.8641 0.8063 0.7246
ArcFace

80
0.5384 0.4682 0.3249 0.1173

BézierPalm 0.6547 0.5511 0.4490 0.3743
Ours 0.8974 0.8092 0.6947 0.5824

Table 3: Performance under different real training identi-
ties. The generation model, feature extractor in ID-aware
loss, and the recognition model access the same number of
real training identities. The backbone is MobileFaceNet.

improved strategy for Bézier palm creases synthesis. Tab.5
shows the results of recognition models with or with-
out these components. ‘I’, ‘C’, ‘S’ represent the three
components respectively. For baseline without ‘C’, the
normal UNet [49] as in [74] is used to take place of
‘C’. ID-aware loss achieves the greatest improvement by
11.72%@FAR=1e-6 against the baseline, which reflects its
advantage for preserving intra-class consistency. The con-
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Figure 6: Generated palmprint images of different methods, (a) pix2pixHD [61], (b) CycleGAN [73], (c) BicycleGAN [74],
(d) the proposed method.

Method Backbone
TAR@FAR=

1e-6 1e-7 1e-8 1e-9
ArcFace

MB
0.9770 0.9550 0.9251 0.8833

BézierPalm 0.9803 0.9605 0.9301 0.9015
Ours 0.9871 0.9684 0.9416 0.9194
ArcFace

R50
0.9986 0.9964 0.9931 0.9879

BézierPalm 0.9996 0.9975 0.9943 0.9911
Ours 0.9998 0.9983 0.9972 0.9954

Table 4: Palmprint recognition performance on million
scale dataset.

Figure 7: Diverse synthetic palmprints can be generated by
adjusting the input noise vector N(z).

ditional modulation generator also significantly improves
the performance by 4.49%@FAR=1e-6, which reflects its
advantage for improving the intra-class diversity. The
improved Bézier palm creases bring an improvement by
1.15%@FAR=1e-6.

6.2. Comparison of Generation Methods

Three generation methods pix2pixHD [61], Cycle-
GAN [73], BicycleGAN [74] are used for comparison, and
all of them are retrained on the same training set with un-
paired data. Fig.6 illustrates the generated palmprints of dif-
ferent generation methods. It can be found that pix2pixHD

I C S TAR@FAR=
1e-3 1e-4 1e-5 1e-6

% (UNet) % 0.9399 0.8905 0.8164 0.7210
" (UNet) % 0.9687 0.9571 0.9076 0.8382
" " % 0.9796 0.9689 0.9441 0.8831
" " " 0.9802 0.9714 0.9486 0.8946

Table 5: Ablation of different components in our method.
‘I’, ‘C’ and ‘S’ denote ID-aware loss, conditional modula-
tion generator and improved synthetic creases, respectively.

Method FID↓
train:test=1:1 train:test=1:3

TAR↑
@1e-5

TAR↑
@1e-6

TAR↑
@1e-5

TAR↑
@1e-6

ArcFace [14] - - 0.7812 0.7049 0.6608 0.5825

BézierPalm [69] - - 0.9102 0.8437 0.7934 0.7012

pix2pixHD [61] 97.5801 0.9156 0.8734 0.8052 0.7244

CycleGAN [73] 50.7704 0.9136 0.8703 0.7863 0.7189

BicycleGAN [74] 35.2801 0.8173 0.7254 0.6783 0.5929

Ours 16.4762 0.9486 0.8946 0.8969 0.8485

Table 6: Quantitative recognition results using different
generation methods under the open-set protocol.

and CycleGAN tend to synthesize blurred results. As
marked in blue rectangle, BicycleGAN may generate some
creases that are inconsistent with the input Bézier curves.
Our method can synthesize clearer and sharper principal
lines and faithfully preserve the ID information of the input
Bézier curves. For intra-class diversity, as shown in Fig.7,
our method is able to randomly generate high-fidelity palm-
prints with diverse lighting and skin types by adjusting the
input noise vector N(z).

Quantitative results are shown in Tab.6. Our method
substantially outperforms the existing methods in terms of
TAR@FAR. Also, we use FID [8] to evaluate the quality
of generated results and our method also effectively de-
creases the FID score by more than 50% against other meth-
ods. Besides, we reproduced some other generation meth-
ods [54, 56] for unpaired image-to-image transfer, including
diffusion-based models, but the generated results are unsat-
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isfying. Related details and more subjective results can be
found in supplementary material.

6.3. Number of Synthesized Identities and Images

In this ablation, we investigate the influence of the num-
ber of synthesized identities and images. Specifically, we
generate 4000 identities and 100 samples by default, and
fix one number and vary the other under the open-set pro-
tocol(train:test=1:1). The results are shown in Fig.8. With
the increase of “width” and “depth” of synthetic data, our
method can continuously improve the performance of the
recognition model and achieve a higher upper bound than
BézierPalm. The performance reaches the upper bound
with 80k synthetic identities and 160 samples per identity.

Figure 8: TAR@FAR=1e-6 of recognition models pre-
trained with different numbers of synthetic identities and
samples. The backbone is MobileFaceNet.

7. Conclusion
This paper proposed an ID-aware conditional modula-

tion generation model which can produce realistic and di-
versified palmprint images. Specifically, a conditional mod-
ulation generator was designed, which adopted synthetic
palm creases as condition, and used encoded Gaussian noise
vector to modulate the generated diversity. An ID-aware
loss was proposed to preserve the identity information of
input palm creases during the unpaired training process.
In the forward pseudo-palmprint generation stage, we im-
proved the Bézier curves generation strategy to produce
more realistic synthetic palm creases. From experimen-
tal results, we can obtain the following findings. Firstly,
the generated pseudo-palmprint samples can effectively im-
prove the performance of palmprint recognition models.
Secondly, by using the synthetic palmprints, our method can
effectively reduce the dependence of real data by 90%. In

future work, we hope to implement complete real-data-free
palmprint recognition with synthetic data.
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