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Abstract

Visible-infrared person re-identification (VI-ReID) aims
to match a specific person from a gallery of images cap-
tured from non-overlapping visible and infrared cameras.
Most works focus on fully supervised VI-ReID, which re-
quires substantial cross-modality annotation that is more
expensive than the annotation in single-modality. To re-
duce the extensive cost of annotation, we explore two practi-
cal semi-supervised settings: uni-semi-supervised (annotat-
ing only visible images) and bi-semi-supervised (annotating
partially in both modalities). These two semi-supervised
settings face two challenges due to the large cross-modality
discrepancies and the lack of correspondence supervision
between visible and infrared images. Thus, it is diffi-
cult to generate reliable pseudo-labels and learn modality-
invariant features from noise pseudo-labels. In this paper,
we propose a dual pseudo-label interactive self-training
(DPIS) for these two semi-supervised VI-ReID. Our DPIS
integrates two pseudo-labels generated by distinct models
into a hybrid pseudo-label for unlabeled data. However,
the hybrid pseudo-label still inevitably contains noise. To
eliminate the negative effect of noise pseudo-labels, we in-
troduce three modules: noise label penalty (NLP), noise
correspondence calibration (NCC), and unreliable anchor
learning (UAL). Specifically, NLP penalizes noise labels,
NCC calibrates noisy correspondences, and UAL mines
the hard-to-discriminate features. Extensive experimen-
tal results on SYSU-MM01 and RegDB demonstrate that
our DPIS achieves impressive performance under these two
semi-supervised settings.

*Equal contribution.
†Corresponding author.
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Figure 1. The figure illustrates the differences between fully super-
vised, uni-semi-supervised, and bi-semi-supervised learning set-
tings, which mainly lie in the availability of labeled data.

1. Introduction

Person re-identification (ReID) aims to retrieve a person
corresponding to a given query across multi-disjoint cam-
era views[11, 43, 30]. ReID has recently gained increas-
ing attention due to its wide range of applications in au-
tomated tracking and surveillance systems[16]. The exist-
ing ReID methods might fail to achieve encouraging results
under poor illumination environments, which limits the ap-
plicability of ReID in a real-world scenario. To overcome
this problem, the visible-infrared person re-identification
(VI-ReID) has been proposed, which aims at retrieving in-
frared person images of the same identity as the given visi-
ble query and vice versa.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

11218



Though significant studies [42, 41, 37] have been made
in supervised VI-ReID, they are built upon substantial la-
beled data. It is challenging to manually annotate every im-
age due to the enormous number of identities. Furthermore,
some images are difficult for humans to recognize, espe-
cially the color information is lost in the infrared images.
For example, the scale of existing VI-ReID datasets (e.g.,
SYSU-MM01 [36] and RegDB [25]) is relatively small due
to the difficulty of annotating cross-modality images, which
limits the development of VI-ReID. In this paper, we argue
that it is also necessary to study a VI-ReID model trained
with a small number of labels. We explore two practi-
cal semi-supervised settings: uni-semi-supervised (annotat-
ing only visible images) and bi-semi-supervised (annotating
partially in both modalities). The instructions for these two
settings are shown in Fig. 1 (b) and (c). Our goal is to train
a VI-ReID model with limited labeled data to achieve com-
parable performance with the fully supervised methods.

Several pseudo-label-based methods [33, 4] involve
pseudo-label generation and self-training, which show ef-
fectiveness in VI-ReID. But, all of them only focus on how
to generate reliable pseudo-labels or mitigate the negative
impacts of noise pseudo-labels while ignoring how to cali-
brate noise pseudo-labels.

In this paper, we propose a dual pseudo-label interac-
tive self-training (DPIS) framework. Our DPIS consid-
ers both the generation of reliable pseudo-labels and the
calibration of noise pseudo-labels. We employ two dis-
tinct models to generate two pseudo-labels, i.e., Clustering
[4] and OTLA [14]. Then, we integrate the two pseudo-
labels to obtain a more accurate hybrid pseudo-label. OTLA
[33] is a classifier with optimal transport, which considers
both accuracy and even distribution of prediction results.
This prevents most unlabeled images from being classified
into a few categories, ultimately resulting in a high pro-
portion of noise in the generated pseudo-labels. Cluster-
ing [4] is a pseudo-label refinement module designed for
specific modality characteristics. Despite all this, there are
inevitable noise labels in the hybrid pseudo-labels. In or-
der to learn knowledge from noise pseudo-labels, we intro-
duce three modules: noise label penalty (NLP), noise corre-
spondence calibration (NCC), and unreliable anchor learn-
ing (UAL). Specifically, following the work [38], we intro-
duce a two-component Gaussian Mixture Model (GMM) to
compute confidence for each pseudo-label and divide them
into reliable and unreliable anchors (these anchors will be
used to construct triplet [43]). Then, we penalize the noise
labels according to confidence, which eliminates the neg-
ative effects. Finally, for reliable anchors, NCC calibrates
false positive samples for corresponding anchors to remove
the detrimental effects of noise correspondence. For un-
reliable anchors, UAL utilizes the unreliable anchors that
were discarded by NCC to mine hard-to-discriminate fea-

tures through unsupervised contrastive learning.
To summarize, our contributions are three-fold:

• We propose a dual pseudo-label interactive self-
training framework for semi-supervised visible-
infrared person ReID, which leverages the intra- and
inter-modality characteristics to obtain hybrid pseudo-
labels for unlabeled data.

• We introduce three modules: noise label penalty
(NLP), noise correspondence calibration (NCC), and
unreliable anchor learning (UAL). These modules help
to penalize noise labels, calibrate noisy correspon-
dences, and exploit hard-to-discriminate features.

• We provide comprehensive evaluations under these
two semi-supervised VI-ReID. Extensive experiments
on two popular VI-ReID benchmarks demonstrate that
our DPIS achieves impressive performance.

2. Related Work
Visible-infrared Person ReID. Visible-infrared person

ReID is more challenging than conventional person ReID
only focuses on the visible modality. Most existing works
have attempted to narrow the discrepancy between cross-
modality images for visible-infrared ReID. A number of
representation learning-based methods [32, 35, 42] de-
signed various network structures to exploit feature discrim-
ination. Several generation learning-based methods [6, 20]
attempted to excavate modality-invariant information by
image generation. In addition, many metric learning-based
methods [44, 23, 52] introduced various triplet losses to
mine hard samples, both cross-modality and intra-modality,
which significantly improved the visible-infrared ReID per-
formance. However, the above methods all solve the
visible-infrared ReID by using the labels of two modality
images as the supervision information, which limits the ap-
plications of VI-ReID. In this work, we explore two semi-
supervised VI-ReID that have important implications for
real-world VI-ReID deployments.

Learning with Noisy Labels. Recently, many methods
have been proposed to learn deep networks with noisy la-
bels, which can be categorized into three major types. The
first type performs loss adjustment, which adjusts the loss
using model predictions [27, 48]. The second type tries to
separate clean samples from corrupted samples and trains
the model on clean samples [19, 22, 15]. The third type at-
tempts to reweight samples, which designs automatic learn-
ing to assign weights to training samples [19, 28]. These
methods focus on the classification task. Excitedly, a few
studies recently extended the learning with noise labels to
other fields. The works [40, 39] demonstrated that it may
not be true that negative pairs in contrastive learning cor-
relate and designed a noise-robust contrastive loss to deal

11219



Unlabeled 
IR-Modality

B
lock1

B
lock2

Backbone

Backbone

Shared

GAP

GAP

IR Features

RGB Features

Clustering

OTLA

Pseudo Labels

Interaction
Noise

Labeled 
RGB-Modality

*

ID(1)
ID(2)

.

.

.
ID(n)

Noise Label Penalty

-
+

-

-

+

+

+
Margin

Noise Correspondence Calibration

Similarity
Ranking

0.8
0.7
0.6
0.4
0.4
0.2

Unreliable Anchor Learning

0
1

Pseudo ID 1 

Pseudo ID 3 

Reliable Anchor

Pseudo ID 2 

+ False Positive

Uneliable Anchor

+ Positive 

Negative-

Clear

Hybrid Labels

Margin

Alignment

Figure 2. Framework of the proposed method. Two modality-specific block layers are utilized to capture modality-specific information
for different modalities and backbone-shared layers focus on learning a multi-modality shareable space to bridge the gap between two
heterogeneous modalities. Clustering is used to generate unaligned pseudo-labels of infrared (IR) images and optimal-transport label
assignment (OTLA) predicts aligned pseudo-labels based on both labeled visible (RGB) and unlabeled infrared (IR) images. We align two
pseudo-labels and integrate them into a hybrid label. To reduce the detrimental effects of ineluctable noise pseudo-labels, we introduce
three modules: noise label penalty (NLP), noise correspondence calibration (NCC), and unreliable anchor learning (UAL). In brief, we
first introduce a Gaussian Mixture Model (GMM) to compute the confidences of the generated pseudo-labels and divide all samples into
reliable and unreliable anchors. Then, NLP uses these confidences to penalize the noise labels. Finally, for reliable anchors, NCC further
rectifies noise correspondence to construct correct triplets, for unreliable anchors, UAL selects certain samples with the lowest similarity
as negative samples for unreliable anchors.

with the problem. NCR [18] released that the correspon-
dence of cross-modal pair may be false and proposed a
novel triplet loss to handle the noisy correspondence. How-
ever, the aforementioned methods mainly focus on utilizing
the high-confidence anchors to construct the triplet while
abandoning the low-confidence anchors. Our DPIS also
uses low-confidence anchors to construct the triplet using
the paradigm of contrastive learning.

Unsupervised Domain Adaptation Person ReID. The
objective of unsupervised domain adaptation (UDA) is to
enhance the learning of the target domain by using the la-
beled source domain, whose distribution is distinct from
the target domain. For the visible-infrared person ReID,
this application of UDA can be viewed as an open-set cat-
egory in which the classes of the two domains are incon-
sistent. The existing UDA methods could be divided into
the following three groups: i) metric learning-based meth-
ods [45, 54, 55] tried to uncover the relationship between
the source domain and the target domain in order to nar-
row the feature distribution discrepancy; ii) unsupervised
clustering methods [10, 13, 49] have been adopted to make
use of unlabeled target knowledge; iii) generation learning-
based methods [8, 34, 53] would like to learn domain in-
variant information by mutually generating images from the
source and target domains. The difference is that UDA only
focuses on the performance of the target domain, while the
visible-infrared person ReID is concerned with promoting

the discrimination of features extracted from two modali-
ties. In addition, the domain discrepancy between visible
and infrared images is larger than UDA.

3. Methodology

In this paper, we provide a unified framework for semi-
supervised person VI-ReID, which can be applied to uni-
semi-supervised and bi-semi-supervised settings. We focus
on the more challenging uni-semi-supervised setting and
illustrate our method using this example. We propose a
dual pseudo-label interactive self-training (DPIS) for semi-
supervised VI-ReID as shown in Fig. 2. Our DPIS generate
hybrid pseudo-label for unlabeled data. In addition, to elim-
inate the negative effects of noise pseudo-labels, we intro-
duce three main components: a noise label penalty (NLP),
a noise correspondence calibration (NCC), and an unreli-
able anchor learning (UAL). In brief, our DPIS first gen-
erates hybrid pseudo-labels and confidences for unlabeled
data. Next, we divide all pseudo-labels into clear and noise
labels. Subsequently, NLP utilizes the confidence to penal-
ize the noise labels. Finally, NCC selects clear labels as
anchors and rectifies noise correspondence to construct cor-
rect triplets, while UAL selects noise labels as anchors to
exploit the hard-to-discriminate features in a unsupervised
contrastive learning paradigm. We provide the training pro-
cess of our method, as shown in Algorithm 1.
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3.1. Problem Formulation

Suppose we have a cross-modality person ReID dataset.
Let V = {vi}Nv

i=1 denote the visible images with Nv sam-
ples, and I = {ri}Nr

i=1 denote the infrared images with Nr

samples. In the uni-semi-supervised setting, we are only
able to access the labels of visible images, and hence only vi
corresponds to an identity label yvi ∈ [1, 2, . . . , Np], where
Np is the total number of person identities. Our goal is to
train a cross-modality person ReID model without the labels
of infrared images.

3.2. Dual Pseudo-label Interactive Self-training
Framework

Unlike the unsupervised visible ReID problem, visible-
infrared heterogeneous images have large appearance varia-
tions. Therefore, clustering methods [9, 29] are not directly
suitable for grouping infrared images with visible images
in the semi-supervised setting. We only use infrared im-
ages for clustering to obtain pseudo-labels ŷcr that are not
aligned with visible images.

ŷcr = {ŷcri }
Nr
i=1 = {Cluster(ri)}Nr

i=1, (1)

where Cluster(·) represents the clustering method [4].
It is challenging to construct a robust VI-ReID model

without aligned infrared and visible data. One possible so-
lution is to predict pseudo-labels for infrared images using a
classifier trained on labeled visible images. Unfortunately,
this method leads to the degeneration of the classifier, where
most infrared samples are predicted to only a few identities,
ultimately resulting in a high proportion of noise in the gen-
erated pseudo-labels. Following the method [33], we em-
ploy optimal-transport label assignment (OTLA) to predict
pseudo-label ŷor for unlabeled infrared images, which for-
mulates the pseudo-label generation as an optimal-transport
problem. Specifically, given Nr suppliers (infrared images)
and Np demanders (pseudo-labels). Suppliers supply in-
frared images to demanders described as a vector α, and de-
manders own infrared images from the suppliers described
as a vector β. The purpose of the optimal-transport problem
is to find an optimal transport plan P ∗ ∈ RNr×Np to mini-
mize transport cost, which satisfies the following equation:

P ∗ = min
P
⟨P,− log (M)⟩+ 1

τotla
KL

(
P∥αβT

)
,

s.t. P1Nr
= 1Nr

· 1

Nr
,

PT
1Np

= 1Np
· 1

Np
,

(2)

where Mij denotes the cost transported from supplier i to
demander j, and we adopt the softmax matrix of the iden-
tity classifier trained by visible images as the cost matrix

4

2

1

Clustering label OTLA ID 1 OTLA ID 2 OTLA ID 3

Matching Count
Ranking

Figure 3. The alignment of matching count priority strategy. The
triangles represent labels generated by clustering, and the dia-
monds represent pseudo-labels generated by OTLA. Since the
identity of the pseudo-label is known and clustering only groups
similar samples together, thus the labels can be aligned accord-
ing to the matching degree of the two pseudo-labels. Specially,
we align the clustered labels to pseudo-labels generated by OTLA
based on the label pairs of maximum matching count.

M . Pij is the plan transported from supplier i to demander
j. KL(·) and ⟨·, ·⟩ are the KL-divergence and the Frobe-
nius dot-product, respectively. 1Nr

and 1Np
denote the all-

one vector of Nr and Np dimension, respectively. Follow-
ing [33], hyper-parameter τotla is set to 25.

OTLA predicts pseudo-labels for unlabeled infrared im-
ages that are not only associated with labeled visible data
but also ensure the approximately even distribution of
pseudo-labels. We use the iterative Sinkhorn-Knopp [7] al-
gorithm to address the optimal transport plan P ∗. We can
obtain pseudo-label ŷor of infrared images via:

ŷor = {ŷori }
Nr
i=1 = {Argmax (P ∗

i·)}
Nr
i=1, (3)

where P ∗
i· denotes that the i-th row of the matrix P ∗.

To obtained ỹcr aligned with visible data, we adopt a
matching count priority scheme to align ŷcr with ŷor as
shown in Fig. 3. However, as both two pseudo-labels are
prone to containing noise, there is a risk that the same sam-
ple may have two different labels. We draw inspiration
from the work [2], which has shown that deep neural net-
works tend to learn simple patterns before fitting noise la-
bels. Thus, we compute the confidences of two pseudo-
labels based on their classifier loss. Specifically, we intro-
duce the two-component Gaussian Mixture Model (GMM)
to fit the loss distribution from Eq. (4, 5) as follows:

Li
cid = logP (ỹcri | C (f (ri))) , (4)

Li
oid = logP (ŷori | C (f (ri))) , (5)

p(Lid | θ) =
K∑

k=1

πkϕ(Lid | k), (6)

where f(·) and C(·) are a function for extracting the fea-
tures of images from different modalities and an identity
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classifier, respectively. Lid is either Loid or Lcid. πk and
ϕ(Lid | k) are the mixture coefficient and the probability
density of the k-th component, respectively. We compute
the posterior probability as the confidence of the i-th sam-
ple as follows:

wci = p
(
k | Li

cid

)
, (7)

woi = p
(
k | Li

oid

)
, (8)

where k and p
(
k | Li

)
are the Gaussian component with

smaller mean and the responsiveness of Li at the k-th com-
ponent, respectively.

We generate a hybrid pseudo-label by integrating ŷcr and
ŷor and update the confidence as follows:

ŷri =

{
ỹcri , wci ≥ woi

ŷori , otherwise
(9)

ŵi =

{
1 , ỹcri = ŷori

max
(
woi, wci

)
, otherwise

(10)

3.3. Noise Label Penalty

Benefiting from dual pseudo-label interaction, we have
obtained hybrid pseudo-label ŷr and corresponding confi-
dence ŵ for unlabeled infrared images. We apply Lnlp loss
with confidence ŵ to penalize the noise labels as follows:

Lnlp =− 1

Nr

Nr∑
j=1

ŵj logP
(
ŷrj | C (f(rj))

)
− 1

Nv

Nv∑
i=1

logP (yvi | C (f(vi))) .

(11)

Triple loss [43] is a popular method for visible-infrared
person ReID, which aims to decrease the distance between
positive pairs and increase the distance between negative
pairs. However, the correspondences might be false since
the correspondences are constructed by resorting to the
pseudo-label in semi-supervised learning. To overcome the
problem, we divide pseudo-labels into a clear label set Sc =
{ri | wi ≥ τcn} and noise label set Sn = {ri | wi < τcn},
where the threshold τcn = 0.5 in our work. Let’s assume
that Nc clean labels and Nn noise labels are obtained. Sub-
sequently, for the clear labels, the noise correspondence cal-
ibration module (NCC) is proposed to relieve the detrimen-
tal effects of noise correspondence. For the noise labels,
the unreliable anchor learning module (UAL) is proposed
to exploit the hard-to-discriminate features.

3.4. Noise Correspondence Calibration

In this module, we select clear label samples from Sc as
anchors. Significantly, we refrain from selecting noise label

Algorithm 1: Training Process of DPIS
Input: Initialized model parameters W , unlabeled

infrared data I and labeled visible data V
Output: Optimized model parameters W

1 for epoch=1:max epoch do
2 ŷor ← OTLA(V, I) and ŷcr ← Cluster(I);
3 Generate wc and wo using Eq. (7) and Eq. (8);
4 Generate hybrid pseudo-labels ŷr using Eq. (9);
5 Update the confidence ŵi using Eq. (10);
6 Sc = {ri | wi ≥ 0.5}, Sn = {ri | wi < 0.5};
7 for batch=1:max batch do
8 Calculate Lnlp using Eq. (11);
9 if anchor ∈ Sc then

10 Calculate Lncc using Eq. (12);
11 else
12 Calculate Lual using Eq. (13);
13 end
14 Ltotal = Lnlp + Lncc + Lual ;
15 Optimize the model parameters W by

Ltotal.
16 end
17 end

samples as anchors due to the potential inaccuracies of their
pseudo-labels. Thus, we don’t choose corresponding posi-
tive and negative samples for unreliable anchors. We define
the correspondences yap = 1 to indicate that the anchor a
and the sample p have the same identity, thereby forming a
positive pair. The correspondences yan = 0 denote that the
anchor a and the sample n have different identities and form
a negative pair. NCC is designed for calibrating false corre-
spondences. Specifically, if sample j comes from Sn, NCC
will calibrate the positive pair to the negative pair. Thanks
to the noise correspondence calibration, we can directly use
corrected correspondences to train the visible-infrared per-
son ReID model with Lncc loss that is similar to the triplet
loss[43]. The loss Lncc is defined as minimizing the dis-
tance between the feature representations of the anchor and
positive samples while increasing the distance between the
anchor and negative samples to a certain margin, as follows:

Lncc =

Nc∑
i=1

[
∥f (xa

i )− f (xp
i )∥

2
2−

∥f (xa
i )− f (xn

i )∥
2
2 + τtri

]
+
,

(12)

where xa
i represents anchor. xp

i and xn
i are positive and

negative samples of anchor xa
i , respectively. x can represent

infrared images or visible images, i.e., x ∈ [v, r]. [·]+ =
max(·, 0) and the margin τtri is a hyper-parameters.
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3.5. Unreliable Anchor Learning

The noise label samples cannot serve as anchors in NCC.
However, abandoning all unreliable anchors is not always
feasible, as it may limit the applicability of VI-ReID in chal-
lenging scenarios. In this paper, we argue that the unreliable
label samples from Sn also act as anchors. We design an un-
reliable anchor learning module (UAL) to reasonably utilize
the unreliable anchors abandoned by NCC. We regard UAL
as unsupervised contrastive learning, which encourages the
model to exploit hard-to-discriminate features. Contrastive
learning (CL) has made significant progress in unsupervised
learning. Unfortunately, unsupervised CL can’t be directly
applied to person VI-ReID since conventional CL defines
samples from different instances as negative samples that
contain the same identity with the corresponding anchor.

To adapt CL to VI-ReID, UAL improves the selection of
negative samples for unreliable anchors. In detail, we first
compute the similarity between mini-batch samples and un-
reliable anchors. Then, we rank the similarity and observe
that it may be difficult to determine all negative samples,
but we can select a proportion of negative samples. Based
on this, we select τsam visible and infrared samples with the
lowest similarity as the visible negative samples and the in-
frared negative samples for unreliable anchors, where τsam
is a hyper-parameter that determines the number of negative
samples to be selected. For positive samples, UAL is sim-
ilar to most contrastive learning methods, we just take the
argument of the anchor sample as the positive sample.

The Lual loss is to mine the hard-to-discriminate fea-
tures by utilizing unreliable anchors as follows:

Lual =

Nn∑
i=1

τsam∑
j=1

[
∥f (ruai )− f (xup

i )∥22−∥∥f (ruai )− f
(
xun
ij

)∥∥2
2
+ τtri

]
+
,

(13)

where ruai represents unreliable anchor from Sn. xup
i and

xun
i are positive and negative samples of unreliable anchor

ruai , respectively.
The total loss Ltotal of proposed method is defined as:

Ltotal = Lnlp + Lncc + Lual. (14)

4. Experiments
In this section, we conduct extensive experiments to

evaluate the effectiveness of our method in terms of two
semi-supervised settings. Actually, the uni-semi-supervised
learning (USSL) setting is essentially a special unsuper-
vised domain adaptation (UDA) problem, where we only
provide labels for visible images. Therefore, we compare
our approach with several state-of-the-art methods in dif-
ferent label-efficient VI-ReID, i.e., full-supervised learning

(SL), unsupervised domain adaptation (UDA), uni-semi-
supervised learning (USSL), and bi-semi-supervised learn-
ing (BSSL).

4.1. Experimental Setting

Dataset. We evaluate our DPIS on two public datasets
SYSU-MM01 [36] and RegDB [25]. SYSU-MM01 is a
challenging visible-infrared ReID dataset. It is collected
from six camera views (four visible and two infrared), in-
cluding both indoor and outdoor scenes. This dataset con-
tains 287,628 visible images and 15,792 infrared images
with 491 identities. Among them, 22,258 visible images
and 11,909 infrared images with 395 identities are used for
training. 3,803 infrared images are used for query and 301
visible images are randomly selected to make up the gallery
set. RegDB contains 412 identities, each of whom has 10
visible images and 10 infrared images. RegDB is randomly
divided, with half for training and the remaining for test-
ing. Note that on both two datasets, only the ground-truth
labels of visible images are utilized for training in the uni-
semi-supervised setting and we can utilize labels of differ-
ent rates for each identity on both modalities in the bi-semi-
supervised setting.
Evaluation Protocols. Cumulative matching characteris-
tics (CMC) [44] and mean average precision (mAP) are
adopted as evaluation metrics. For fair comparisons, we re-
port the results of all-search mode and indoor-search mode
with the official code on SYSU-MM01. We also report the
results on RegDB by randomly splitting the training and
testing sets 10 times and reporting the average results.

4.2. Implementation Details

Our proposed framework is implemented in PyTorch.
The settings of two modality-specific block layers follow
AGW [43], and we adopt ResNet-50 as shared-backbone
to extract 2048d features, which is initialized with the Im-
ageNet pre-trained weights. In the training stage, training
images are resized as 256×128 and random horizontal flip-
ping is used for data augmentation[41]. The total number of
training epochs is 80. At each training step, we randomly
sample 8 identities, of which 4 visible and 4 infrared images
are selected to formulate a batch. To address the issue of
error accumulation in self-training, we adopt cross-branch
self-training as previous methods[21, 3].

4.3. Results and Analysis

We compare our DPIS with several state-of-the-art meth-
ods under three settings, i.e., uni-semi-supervised (USSL)
full-supervised learning (SL), unsupervised domain adap-
tation (UDA). The quantitative results are shown in Ta-
ble 1. To further evaluate the generality of our DPIS, we
conduct extensive experiments in bi-semi-supervised set-
ting (BSSL) in which the labeled ratio varies from 10%,
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Table 1. Comparisons with state-of-the-art methods in different label-efficient VI-ReID on SYSU-MM01 and RegDB, i.e., full-supervised
learning (SL), unsupervised domain adaptation (UDA), and uni-semi-supervised learning (USSL). All methods are measured by Rank-1
(%) and mAP (%). Methods marked by † denote re-implementations based on public code.

Settings
SYSU-MM01 RegDB

All Search Indoor Search Visible2Thermal Thermal2Visible
Type Method Venue Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

SL

JSIA-ReID [31] AAAI’20 38.1 36.9 43.8 52.9 48.5 49.3 48.1 48.9
DDAG [42] ECCV’20 54.8 53.0 61.0 68.0 69.4 63.5 68.1 61.8
AGW [43] TRAMI’21 47.5 47.7 54.2 63.0 70.1 66.4 70.5 65.9

NFS [5] CVPR’21 56.9 55.5 62.8 69.8 80.5 72.1 78.0 69.8
LbA [26] ICCV’21 55.4 54.1 58.5 66.3 74.2 67.6 72.4 65.5
CAJ [41] ICCV’21 69.9 66.9 76.3 80.4 85.0 79.1 84.8 77.8

MPANet [37] CVPR’21 70.6 68.2 76.7 81.0 83.7 80.9 82.8 80.7
DART [38] CVPR’22 68.7 66.2 72.5 78.2 82.0 73.8 83.6 75.7

FMCNet [47] CVPR’22 66.3 62.5 68.2 74.1 89.1 84.4 88.4 83.9
MID [17] AAAI’22 60.3 59.4 64.9 70.1 87.5 84.9 84.3 81.4
LUPI [1] ECCV’22 71.1 67.6 82.4 82.7 88.0 82.7 86,8 81.3

DPIS(Ours) - 68.2 65.7 71.7 77.0 86.3 77.4 82.1 74.7

UDA

MEB-Net† [46] ECCV’20 7.3 6.9 20.4 11.7 5.6 6.9 14.9 14.0
D-MMD† [50] ECCV’20 12.5 10.4 19.0 15.4 2.2 3.7 2.0 3.6

MMT† [12] ICLR’20 13.9 8.7 20.7 15.9 7.3 7.6 16.9 14.9
SpCL(UDA)† [13] NIPS’20 15.1 6.5 19.5 12.1 3.3 4.3 8.4 9.5

GLT† [51] CVPR’21 7.7 9.5 12.1 18.0 2.9 4.5 6.3 7.6

USSL
MAUM-50 [24] CVPR’22 28.8 36.1 - - - - - -

MAUM-100 [24] CVPR’22 38.5 39.2 - - - - - -
OTLA [33] ECCV’22 48.2 43.9 47.4 56.8 49.9 41.8 49.6 42.8

DPIS(Ours) - 58.4 55.6 63.0 70.0 62.3 53.2 61.5 52.7

25% to 50%, and the quantitative results are shown in Ta-
ble 2. If not specified, we conduct analysis experiments on
SYSU-MM01 in the single-shot & all-search mode.

Comparison with Fully-supervised Methods. Surpris-
ingly, our DPIS outperforms several fully-supervised meth-
ods [31, 42, 43, 5, 26] on SYSU-MM01 dataset. The result
demonstrates that our DPIS can exploit information from
unlabeled infrared images. In addition, we have to acknowl-
edge that there is still a large gap between our DPIS and and
many state-of-the-art methods.

Comparison with Unsupervised Domain Adaptation
Methods. We compare our DPIS with five state-of-the-art
UDA methods under the uni-semi-supervised setting, and
UDA results are disappointing. Although marginal im-
provement has been achieved, it still indicates existing UDA
methods cannot help the model alleviate the modality dis-
crepancy. Our DPIS is able to help the model alleviate the
modality discrepancy and achieve superior performances.

Comparison with Uni-semi-supervised Meth-
ods. OTLA [33] is the only one we know of that has the
same experimental setting as ours. However, OTLA was
trained in a simple self-training manner, which would
accumulate the model’s errors. In addition, OTLA focused
on the generation of pseudo-labels, while ignoring the
inevitable calibration of noise labels. Fig. 4 shows the
limitation of OTLA in pseudo-label accuracy. Compared

with OTLA, our DPIS improves Rank-1 accuracy and mAP
by 10.2% and 11.7% on SYSU-MM01 (all-search mode),
respectively. MAUM-50 and MAUM-100 indicate that
MAUM only uses 50 and 100 IR identities to train the VI-
ReID model. Our DPIS requires little data annotation, and
the performance is better than MAUM-50 and MAUM-100.
Comparison with Bi-semi-supervised Methods. Since
our work is to first explore the bi-semi-supervised setting
for VI-ReID, we compare our DPIS with five fully-
supervised methods under the same bi-semi-supervised
setting. We re-implement the results using the official code.
As shown in Table 2, our model achieves 85.58% in Rank-1
and 76.73% in mAP under Visible2thermal modes on
RegDB with 50% labels. Obviously, the results show our
DPIS achieves impressive performance and outperforms
other state-of-the-art methods in the same setting.

The above results demonstrate our DPIS not only
achieves outstanding performance in the uni-semi-
supervised setting but also achieves encouraging results in
the bi-semi-supervised setting.

4.4. Ablation Study

We conduct ablation experiments to evaluate the contri-
bution of each component. We train a model only super-
vised by labels of visible images as our baseline. The ab-
lation experiment is conducted on SYSU-MM01 under the
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Table 2. Comparisons with five advanced methods on SYSU-MM01 and RegDB under the bi-semi-supervised setting, and all methods are
measured by Rank-1 (%) and mAP (%). All results are reimplemented based on public code. The 1st and 2nd best results are indicated by
the red and blue colors, respectively.

Settings
SYSU-MM01 RegDB

All Search Indoor Search Visible2thermal Thermal2visible
Rate Method Venue Year Rank-1 mAP Rank-1 mAP Rank-1 mAP Rank-1 mAP

10%

DDAG [42] ECCV 2020 29.75 27.93 33.56 42.11 44.03 38.64 43.98 37.83
AGW [43] TPAMI 2021 32.43 33.41 37.97 49.22 22.82 18.34 20.85 19.35
CAJ [41] ICCV 2021 35.55 37.16 38.13 47.06 21.31 17.13 21.24 17.06
LbA [26] ICCV 2021 30.31 29.91 32.91 43.17 41.70 36.70 42.09 36.91

DART [38] CVPR 2022 37.90 35.44 40.78 49.13 40.72 33.42 37.66 31.55
DPIS(Ours) - - 57.70 55.00 62.86 69.84 54.95 50.79 55.05 49.64

25%

DDAG [42] ECCV 2020 39.13 36.99 43.52 51.73 52.48 48.09 52.86 47.89
AGW [43] TPAMI 2021 36.88 37.69 43.08 54.34 57.72 49.83 57.14 48.99
CAJ [41] ICCV 2021 48.82 48.02 57.06 64.70 52.57 43.78 48.83 40.90
LbA [26] ICCV 2021 49.37 47.42 54.04 62.58 51.31 43.74 47.52 43.74

DART [38] CVPR 2022 50.22 47.93 53.55 60.98 70.97 59.60 70.24 61.09
DPIS(Ours) - - 65.20 61.75 70.50 75.55 77.28 67.74 75.34 66.27

50%

DDAG [42] ECCV 2020 42.26 38.66 48.96 55.50 59.37 53.22 57.04 51.23
AGW [43] TPAMI 2021 43.99 40.63 48.64 53.80 70.78 62.71 68.20 61.41
CAJ [41] ICCV 2021 59.37 56.99 62.58 64.26 77.43 66.75 74.89 63.05
LbA [26] ICCV 2021 53.36 52.18 58.91 62.64 67.62 61.73 65.78 60.04

DART [38] CVPR 2022 56.92 54.43 61.25 68.27 80.63 69.79 80.34 70.98
DPIS(Ours) - - 67.89 64.16 71.78 76.60 85.58 76.73 81.41 74.13

Table 3. Ablation studies on SYSU-MM01 (all-search & single-
shot mode) under the uni-semi-supervised setting. Here, R indi-
cates Rank.

Method
SYSU-MM01

All Search
Baseline DPI NLP NCC UAL R-1 R-10 R-20 mAP

✓ 3.80 23.15 38.02 6.31
✓ ✓ 36.56 75.40 86.05 35.61
✓ ✓ ✓ 51.90 87.70 93.87 49.38
✓ ✓ ✓ ✓ 53.03 87.93 93.78 50.07
✓ ✓ ✓ ✓ 54.24 88.40 94.59 51.83
✓ ✓ ✓ ✓ ✓ 58.40 90.32 95.72 55.57

uni-semi-supervised setting. The results are summarized in
Table 3, each component is revealed and plays an impor-
tant role in our DPIS. DPI indicates we rain the baseline
method only with hybrid pseudo-labels. Even achieving
good performance using NLP, our NCC and UAL still can
gain 1% ∼ 2% improvement. When both NCC and UAL
are utilized, greater improvements can be achieved. This re-
sult shows that NCC and UAL can complement each other,
which is consistent with our motivation.

4.5. Pseudo-label Analysis

We conduct an analysis experiment to evaluate the accu-
racy of pseudo-labels. The results are summarized in Fig. 4.
Compared with OTLA [33], ours has a better convergence
value, which indicates that we provide a better pseudo-label
constraint strategy.

0 10 20 30 40 50 60 70 80
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16

32

48

64

Ac
cu
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cy

(%
)

DPIS(ours)
OTLA

Figure 4. The comparison of pseudo-label accuracy between our
DPIS and OTLA on the SYSU-MM01 dataset under the uni-semi-
supervised setting. The x-axis represents the training epochs, and
the y-axis reflects the accuracy.

4.6. Analysis of Hyper-parameters

We analyzed hyper-parameters under the condition that
only one hyper-parameter is selected as the variable, while
all other hyper-parameters are kept constant. The Fig. 5 ex-
perimentally analyze the impact of hyper-parameters τsam
and τtri on SYSU-MM01. In Fig. 5 (a), we adjust hyper-
parameter τsam in unreliable anchor learning lossLual from
6 to 14. We observe that our DPIS achieves better perfor-
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Figure 5. Hyper-parameters analysis on SYSU-MM01 dataset.

mance when the τsam a raising and we achieve the best per-
formance when τsam was set to 10. In Fig. 5 (b), we ad-
justed τtri from 0.1 to 0.5 and found that our DPIS achieved
the best performance when τtri was set to 0.3.

5. Conclusions

In this paper, we discuss two novel semi-supervised set-
tings for VI-ReID and propose a dual pseudo-label interac-
tive self-training for these two semi-supervised settings. In
addition, we introduce three modules: noise label penalty
(NLP), noise correspondence calibration (NCC), and unreli-
able anchor learning (UAL) to eliminate the negative effects

brought by the noise pseudo-labels. Our DPIS achieves
promising performance, i.e., 58.40% in terms of Rank-1 ac-
curacy on SYSU-MM01 (all-search mode) under the uni-
semi-supervised setting. The results are equally excellent
under the bi-semi-supervised setting, our DPIS achieves
85.58% in Rank-1 and 76.73% in mAP with 50% labels on
RegDB (visible-to-thermal mode).
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