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Abstract

Non-exemplar class-incremental learning (NECIL) re-
quires deep models to maintain existing knowledge while
continuously learning new classes without saving old class
samples. In NECIL methods, prototypical representations
are usually stored, which inject information from former
classes to resist catastrophic forgetting in subsequent in-
cremental learning. However, since the model continuously
learns new knowledge, the stored prototypical representa-
tions cannot correctly model the properties of old classes in
the existence of knowledge updates. To address this prob-
lem, we propose a novel prototype reminiscence mechanism
that incorporates the previous class prototypes with arriv-
ing new class features to dynamically reshape old class fea-
ture distributions thus preserving the decision boundaries
of previous tasks. In addition, to improve the model gen-
eralization on both newly arriving classes and old classes,
we contribute an augmented asymmetric knowledge aggre-
gation approach, which aggregates the overall knowledge
of the current task and extracts the valuable knowledge of
the past tasks, on top of self-supervised label augmentation.
Experimental results on three benchmarks suggest the supe-
rior performance of our approach over the SOTA methods.

1. Introduction
In recent years, deep neural networks have achieved

great success on various tasks. In dynamic and open en-

vironments, deep models also require the ability to continu-

ously learn new tasks as the input stream is updated. Hence,

class-incremental learning (CIL), which aims to learn a uni-

fied classifier that can classify all seen classes under pro-

gressive changes in the classes to be learned, has attracted

extensive attention [30, 41, 16, 47, 31, 28].

As new data becomes available, it is computationally ex-

pensive to jointly retrain the model with new and old class
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Figure 1. Idea illustration. (a) Joint training with abundant sam-

ples. (b) Baseline: Updating the model with the memorized pro-

totype and new data, which narrows the decision boundary of the

old classes. (c) Gaussian Noise Augmentation [66]: The decision

boundary of the old class is retained, but it introduces an over-

lap between the old and new class distributions due to the change

in representation space. (d) With prototype reminiscence, newly

learned information can be injected while reshaping the feature

distribution of past data to reduce overlap and resist forgetting.

samples. Worse still, the old class samples could not be

fully accessible. In this case, an alternative is to fine-tune

the model on new data, yet catastrophic forgetting [38, 15]

will be a serious challenge. The decision boundary of the

unified classifier would be significantly changed and biased

towards the new classes. Conversely, another direction is to

fix the feature embedding space of a trained model, which

suffers from frustrating generalization ability and thus per-

forms poorly on new tasks, i.e., the plasticity of the model

is greatly degraded.

To overcome the catastrophic forgetting issue, many CIL

methods [42, 8, 6, 56, 2, 53] store a fraction of the old

data in memory and replay them in subsequent incremen-

tal phases to maintain the existing knowledge. Unfortu-

nately, storing data poses privacy concerns and comes at

a sharp cost to memory and computation. In this paper, we

follow a paradigm holding for more extensive applications,
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termed non-exemplar class-incremental learning (NECIL)

[66, 67], which solves the catastrophic forgetting problem

in CIL scenario without preserving old class samples.

For NECIL, a natural substitute for storing data is to gen-

erate pseudo-samples of previous classes by deep generative

models [62, 54, 46, 49, 57] such as GAN [4, 17]. However,

it is unstable and ineffective to train generative models for

non-stationary data streams [65]. Catastrophic forgetting

can also have a negative impact on the generative model

resulting in a simultaneous decrease in the effectiveness of

both models. Instead of focusing on old data, some works

turn to estimating model parameters that are important for

previous tasks and constraining their changes [23, 61, 3].

Nevertheless, the constraints on the model parameters lead

to poor generalization ability to long-sequence tasks. Be-

sides, several studies propose to dynamically expand the

network structure during the process of incremental learn-

ing [44, 58, 59, 37, 64]. Although this strategy can effi-

ciently handle long sequences of tasks and ultimately main-

tain the performance of the old classes, the computational

resource requirements associated with creating and storing

additional network components and reasoning about multi-

ple forward propagations are frustrating.

Recently, some prototype-based NECIL methods have

achieved impressive performance [66, 67, 60, 50]. They use

prototypical representations (typically the class mean in the

deep feature space) memorized for each old class to model

the feature distribution of past data and inject information

from the previous classes in subsequent incremental learn-

ing. Rather than storing samples, this strategy is more mem-

ory efficient and privacy secure. Nevertheless, as shown in

Fig. 1 (b), direct training with saved prototypes and current

data struggles to prevent the collapse of decision bound-

aries, due to the lack of old class features. Some works

augment the prototypes by adding Gaussian noise [66] or

over-sampling [67] to enrich old class features. However,

updates of the model on continuous data streams could lead

to inevitable changes in the representation of old classes,

making the saved prototypes increasingly outdated.

The feature distribution simulated by the above strate-

gies cannot accommodate such changes due to the missing

consideration of knowledge updates. It could result in over-

lap between the distributions of different classes, especially

between new and old classes, as shown in Fig. 1 (c). Conse-

quently, combining newly acquired information with stored
prototypes to dynamically model past data distributions is
crucial to resist catastrophic forgetting in NECIL.

To address this challenge, we propose a prototype remi-

niscence mechanism to track the evolution of the old class

representations by injecting new knowledge from the up-

dating network while reshaping the feature distribution.

Specifically, we perform a random bidirectional interpola-

tion operation between the extracted new class features and
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Figure 2. We introduce self-supervised label augmentation to learn

generalizable and transferable representations. The knowledge of

the self-supervised classifier is aggregated and transferred to an-

other classifier to take full advantage of it.

the saved old class prototypes to enrich old class features.

As shown in Fig. 1 (d), it expands the prototype to pro-

tect the decision boundaries of old classes and to counter-

act catastrophic forgetting. Since the feature distribution of

past tasks is dynamically adjusted to the current represen-

tation space, the overlap between the old and new classes

is reduced. Thus, the discrimination and balance between

the old and new classes are maintained. Cooperating with

the well-known knowledge distillation (KD) [20, 19], the

mismatch between the preserved prototypes and the contin-

uously updated network is alleviated.

In addition to dealing with catastrophic forgetting, when

new data arrives, performance on the current task is also

of great concern, necessitating the plasticity of the incre-

mental learner. This mainly involves two aspects: learning

generalizable and transferable representations, fully utiliz-

ing the information from new data. Previous works [66, 55]

have achieved good progress on the first aspect by self-

supervised label augmentation [27], however they ordinar-

ily disregard the second. The new task contains abundant

information that the network has never encountered and

will have a stronger influence on model updates. Improv-
ing the plasticity of the model from continuous data streams
requires a simultaneous approach from both aspects.

To solve this bottleneck, we contribute an augmented

asymmetric knowledge aggregation approach to enhance

the plasticity of the model noninvasively. Taking inspira-

tion from [24, 27], we first augment the new classes with
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rotation as self-supervision, which requires the model to

acquire task-agnostic representations to improve its gener-

alization ability. Furthermore, as illustrated in Fig. 2, we

selectively aggregate the valuable knowledge in the aug-

mented classifier—valid weights of past tasks are extracted,

and the information captured on the current task is suf-

ficiently exploited. This asymmetric knowledge aggrega-

tion scheme can condense the knowledge learned via self-

supervised label augmentation (SLA) to make the classifier

more purified. It further improves the incremental learner’s

performance on the new tasks without discrimination scari-

fication on old classes.

To summarize, our main contributions are as follows:

• We propose a simple yet effective method of proto-

type reminiscence for NECIL, which models feature

distribution for the past data in a continuously updated

representation space to resist catastrophic forgetting.

• We contribute augmented asymmetric knowledge ag-

gregation, which learns task-agnostic representations

and fully captures the newly acquired knowledge to

improve the plasticity of incremental learners.

• Extensive experiments on three benchmarks demon-

strate that our method achieves state-of-the-art perfor-

mance. We also provide a detailed ablation study to

analyze the influence of each component.

2. Related Work
2.1. Class-Incremental Learning

Current CIL methods can be roughly divided into three

categories: rehearsal-based methods, regularization-based

methods and structure-based methods.

Rehearsal-based methods maintain the distribution of

old classes by saving exemplars of fixed memory size to

jointly train the model with current data. Based on the saved

samples, some works investigate knowledge distillation to

prevent forgetting [56, 42, 13], while others try to combine

regularization of gradients and rehearsal to make more effi-

cient use of the preserved data [43, 34, 11]. In addition, sev-

eral papers have studied the impact of memory management

schemes [5, 22, 33]. Regularization-based methods identify

the key model parameters for the previous tasks, penalizing

their changes when learning the current task [23, 61, 3, 40].

The difference between these methods is the association

of each network parameter with importance weights stored

in incremental learning. Structure-based methods dynami-

cally modify the network architecture to maintain existing

knowledge and adapt to new tasks. They usually expand the

network structure in depth or width when facing a new task

[59, 21, 29, 58], or mask parts of the network for different

tasks [45, 36, 1].

Recently, some works have researched the use of class

prototypes to implement non-exemplar class-incremental

learning [66, 60, 67, 50], which somewhat reduces the is-

sues of data privacy security and memory constraints. Yu et
al. [60] approximate and compensate for the semantic drift

of previous tasks during the training of the new task. Based

on this, Toldo et al. [50] propose to jointly exploit semantic

drift and feature drift to update the representations of past

classes. Apart from investigating the evolution of proto-

types as incremental learning occurs, there are some studies

that focus on the ways to model past data distributions by

prototypes [66, 67]. Note that this strategy is orthogonal to

the above methods for drift estimation, and our method falls

into this category. Zhu et al. [66] introduce Gaussian noise

to augment the prototype to restrain the decision boundaries

of old classes. Zhu et al. [67] propose a prototype selection

mechanism that uses samples of the new data similar to the

old classes for distillation to reduce confusion between the

newly added classes and the original classes.

2.2. Self-supervised Learning in CIL

The objective of self-supervised learning (SSL) is to

acquire transferable representations that are applicable for

other tasks. This coincides with the need for IL to in-

hibit task-level overfitting phenomenon and rapidly adapt

to new tasks. Hence, some works explore improving the

quality of the learned representations by SSL in the CIL

setting [66, 55, 7, 14]. Wu et al. [55] learn class-

independent knowledge and multi-perspective knowledge

by SSL to make a trade-off between gaining new infor-

mation and maintaining old knowledge. Fini et al. [14]

attempt to seamlessly convert the existing self-supervised

loss function into distillation mechanisms plugged into the

CIL framework. It also points out that simply introducing

SSL can approach or outperform supervised learning in the

CIL setting, while this is not always the case for other set-

tings (data-incremental and domain-incremental). Zhu et al.
[66] provide better initialization for learning the next task

by using rotation as self-supervised information for label

augmentation to reduce forgetting from model updates.Our

SLA is implemented in the same way as the SSL in [66].

On top of [66], we further improve the upper bound of the

incremental learner’s understanding of new tasks.

3. Methodology
Problem Statement. In this paper, we consider non-

exemplar class-incremental learning (NECIL), where no

samples from old classes are stored. The training data for

the incremental task t ∈ {1, . . . , T} is denoted as Dt =
{Xt, Yt} =

{
xi
t, y

i
t

}nt

i=1
, where nt, x

i
t and yit ∈ Ct repre-

sent the number of training samples, an input sample and its

corresponding label for task t, respectively. Ct is the class

set of task t and all the incremental classes are disjoint, i.e.,
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Figure 3. Illustration of our method for NECIL. The classes of current task are augmented by rotation transformation [27]. We expand the

stored prototype by prototype reminiscence in the deep feature space to generate the same number of old class features as the batch size

each time. During the evaluation, only the current feature extractor Ft and the refined classifier Go are used.

C1∩. . .∩Ci = ∅. We represent the model with two compo-

nents: a feature extractor F with parameters θ and a unified

classifier G with parameters ϕ. The goal is to find a clas-

sification model minimized for some loss function L(·, ·):

argmin
θ,ϕ

Ct∑
t=1

E(xi
t,y

i
t)∼Dt

[L (
yit,G(F(xi

t; θ);ϕ)
)]

. (1)

As other class-incremental methods, the algorithm has no

access to the task label t and is expected to classify all ob-

served classes Ctotal = {C1, . . . , Ct} at any given point.

Overview of Framework. Fig. 3 shows an overview of

our method. The classes of the current task are augmented

by rotation transformation [27] and the augmented data is

fed to the feature extractors. For each old class, we mem-

orize a class-representative prototype. Then the prototype

reminiscence uses the extracted new class features and the

stored old class prototypes to generate old class features for

joint training. We aggregate the knowledge from the classi-

fier GS learned with SLA and transfer it to another classifier

GO that only recognizes classes without augmentation. At

test time, the current feature extractor Ft and the refined

classifier GO are used for evaluation.

3.1. Prototype Reminiscence

At each incremental phase of task t, only Dt is available

in the NECIL setting. Following [66, 60], when learning a

new task, we compute and memorize one prototype in the

deep feature space for each class:

Pt,knew
=

1

Nt,cnew

Nt,cnew∑
n=1

F (Xt,cnew ; θt) , (2)

where cnew ∈ Cnew = Ct is one class of the current task.

To alleviate the catastrophic forgetting, the model is trained

jointly on the memorized prototypes {P 1
old, . . . , P

|Cold|
old }

and current data Dt, where Cold = C1 ∪ . . . ∪ Ct−1 de-

notes the set of past classes.

Whereas prototypes can inject information of past

classes in training, the decision boundaries are narrowed

due to the lack of rich old class features. Moreover, as

the model continuously learns new data, the deep repre-

sentation space is changing, which poses a challenge to

reproduce the properties of old classes. To this end, we

propose a prototype reminiscence strategy to dynamically

model the feature distribution of past data in an updating

representation space. Our strategy is based on a simple yet

effective interpolation operation. In general, as shown in

Fig. 3, we randomly select a prototype of the old classes

Pn
old ∈ {P 1

old, . . . , P
|Cold|
old } and a feature of the new classes

Fm
new ∈ {F 1

new, . . . , F
B
new}, where B is the batch size.

Then we perform a random bidirectional interpolation op-

eration between Pn
old and Fm

new:

Fn
old =

{
(1− λ) (Pn

old) + λ (Fm
new) , pe < 0.5

(1 + λ) (Pn
old)− λ (Fm

new) , otherwise
(3)

where Fn
old is the feature generated in the current repre-

sentation space that has the same label as Pn
old and pe

is randomly sampled from [0, 1). Considering the de-

sign principle of mixup [63, 52], we ensure that the coef-

ficient summary of the two terms for the prototype rem-

iniscence is equal to 1. Different from them, our proto-

type reminiscence introduces an extrapolation operation,

which avoids the generated features being concentrated on

one side of the decision boundary. Meanwhile, we choose
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λ ∼ Beta(0.5, 0.5) ∈ [0, η], where η is a threshold value

to control the maximum distance between the generated old

class features and the corresponding prototype for avoiding

outliers. To make a fair comparison, as in [66], we generate

the same number of old class features as the batch size for

each batch of new data.

3.2. Augmented Asymmetric Knowledge Aggrega-
tion

While counteracting forgetting, incremental learners

also need to adapt to new tasks. We design an augmented

asymmetric knowledge aggregation scheme that endows the

model with stronger plasticity. First, we augment the cur-

rent classes as in [27]. For the current task, the N-way clas-

sification problem is extended into a 4N-way classification

problem. Specifically, the input data for each class is ro-

tated by 90°, 180°, and 270° to produce three new classes:

x̃i
t = {xi,j

t }3j=0 =
{
rotate(xi

t, j × 90◦)
}3

j=0
, (4)

and we allocate new labels ỹit to the augmented data:

ỹit =
{
yit × 4 + j

}3

j=0
. (5)

Compared to the widely used 4-way self-supervised task,

the above approach removes unnecessary invariant prop-

erties when learning both the original task and the self-

supervised task simultaneously, thereby reducing the loss

of discriminative information while obtaining generalizable

and transferable representations [27].

However, for NECIL, the self-supervised label augmen-

tation can only be applied to new classes (past data is not

available). Borrowing from some works [39, 48], the classi-

fication weight wc,j is denoted as a proxy, where c ∈ Ctotal,

and j represents different rotation transformations. In the

subsequent incremental learning, the proxies for the aug-

mented classes (90°, 180°, 270°) of the previous tasks grad-

ually fail, leading to redundancy within the classifier. When

using the cross-entropy loss for optimization, all augmented

classes are viewed independently, and the relationship be-

tween them is not explored. Moreover, only the predictions

of the non-augmented classes (0°) are considered valid dur-

ing testing [66], which leads to a large amount of informa-

tion valuable for the current task being discarded.

To precisely utilize the valuable knowledge obtained

from the above self-supervised label augmentation, we pro-

pose an asymmetric knowledge aggregation approach for

NECIL. Concretely, for the past tasks, we take in the knowl-

edge of the proxies associated with the original classes:

Pagg(c|Fold) =
exp

(
wT

c,0Fold

)
∑K

k=1 exp
(
wT

k,0Fold

) , (6)

where K = |Ctotal|, w is the proxy of GS and Fold is the

feature generated by prototype reminiscence. For the cur-

rent task, the conditional probabilities corresponding to all

transformations of each class are aggregated:

Pagg(c| ˜Fnew)=
exp

(
1
4

∑3
j=0 w

T
c,jF

j
new

)
∑K

k=1 exp
(

1
4

∑3
j=0 w

T
k,jF

j
new

) , (7)

where ˜Fnew = {F j
new}3j=0 represents the set of features ex-

tracted from the augmented exemplars x̃i
t by current model

Ft. As presented in Fig. 3, we transfer the aggregated

knowledge to another classifier GO, which only needs to

distinguish between non-augmented classes. The loss func-

tion Lka can be expressed as follows:

Lka = KLD(Pagg(·|F )‖GO(F ;φ)),

= Pagg(·|F ) log
Pagg(·|F )

GO(F ;φ)

(8)

where φ denotes the parameters of GO and KLD(·|·) is the

Kullback-Leibler divergence. The knowledge learned from

the new data is utilized as much as possible and the invalid

weights are discarded to obtain a more refined classifier.

During testing inference, only the classifier GO is used.

3.3. Integrated Optimization Objective

Inspiring ourselves from [66], we employ the well-

known knowledge distillation (KD) [68, 19] to regularize

the feature extractor. Specifically, we minimize the Eu-

clidean distance between the features of new data extracted

by current model Ft and that of previous model Ft−1 to

constrain the feature extractor, which can be formulated as:

Lkd = ‖Ft(x̃i
t; θt)−Ft−1(x̃i

t; θt−1)‖2. (9)

With the assistance of prototype reminiscence, the disparity

between the stored prototype and the updated model can be

significantly mitigated. We also calculate the cross-entropy

loss for GS and GO, respectively. With these considerations

above, the total loss function Ltotal can be expressed as:

Lnew =Lce(GS(Ft(x̃i
t; θt);ϕt))

+ Lce(GO(Ft(x̃i
t; θt);φt)) + Lka,

(10)

Lold =Lce(GS(F
i
old;ϕt))

+ Lce(GO(F
i
old);φt)) + Lka,

(11)

Ltotal =Lnew + αLold + γLkd, (12)

where Lnew is the loss of new data x̃i
t, Lold is the loss of

the feature F i
old generated by prototype reminiscence. The

loss weights α and γ are both set to 15 in our experiments.

4. Experiments
4.1. Experimental Setting

Dataset. To evaluate the performance of our method, we

conduct sufficient experiments on three benchmarks includ-
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Table 1. Quantitative comparisons of the average incremental accuracy (%) with other methods at different task number settings on CIFAR-

100, TinyImageNet, and ImageNet-Subset. E=20 represents exemplar-based methods and storing 20 exemplars for each old class. E=0
represents non-exemplar methods. The relative improvement compared to the SOTA NECIL method is shown by the red footnotes.

CIFAR-100 TinyImageNet ImageNet-Subset
Methods

5 phases 10 phases 20 phases 5 phases 10 phases 20 phases 10 phases

E
=

20

iCaRL-CNN 51.07 48.66 44.43 34.64 31.15 27.90 50.53

iCaRL-NCM [42] 58.56 54.19 50.51 45.86 43.29 38.04 60.79

EEIL [9] 60.37 56.05 52.34 47.12 45.01 40.50 63.34

UCIR [20] 63.78 62.39 59.07 49.15 48.52 42.83 66.16

DER [58] 73.21 72.81 69.97 — —- — 75.36

E
=

0

EWC [23] 24.48 21.20 15.89 18.80 15.77 12.39 20.40

LwF MC [42] 45.93 27.43 20.07 29.12 23.10 17.43 31.18

MUC [32] 49.42 30.19 21.27 32.58 26.61 21.95 35.07

SDC [60] 56.77 57.00 58.90 — — — 61.12

PASS [66] 63.47 61.84 58.09 49.55 47.29 42.07 61.80

SSRE [67] 65.88 65.04 61.70 50.39 48.93 48.17 67.69

Ours 70.02+4.14 68.86+3.82 65.86+4.16 53.32+2.93 52.61+3.68 49.83+1.66 68.98+1.29

ing CIFAR-100 [25], TinyImageNet [26] and ImageNet-

Subset (random seed 1993) [12]. For CIFAR-100 and Tiny-

ImageNet there are three incremental settings (5, 10, and 20

phases) and for ImageNet-Subset there is one (10 phases).

For the sequencing and division of all dataset classes, we

strictly follow the specification in [66].

Implementation details. Following [66], we use

ResNet-18 [18] as the backbone network. The model is

trained for 100 epochs on each new task. For comparisons

on all datasets, the threshold of our prototype reminiscence

is set to 0.6. During training, the batch size is set to 128

and the model is optimized by the Adam optimizer with

β1 = 0.9, β2 = 0.999 and ε = 1e−8 (weight decay 2e-

4). The initial learning rate is 0.001 and is adjusted with the

cosine annealing algorithm [35] with a period of 32 epochs.

Evaluation metrics. As with [66], we employ average
incremental accuracy [42] and average forgetting [10] as

the evaluation metric. The average incremental accuracy is

defined as the average of the accuracies over seen classes

across all incremental phases (including the first phase),

which reflects the overall incremental performance of the

method. The average forgetting is the average difference

between the peak task accuracy and the final task accuracy

after incremental learning is completed, and the lower value

represents better performance.

4.2. Comparison with SOTA

We compare our method with the state-of-the-art (SOTA)

methods of NECIL (EWC [23], LwF MC [42], MUC [32],

SDC [60], PASS [66] and SSRE [67]) and several clas-

sical exemplar-based CIL approaches (iCaRL [42], EEIL

[9] and UCIR [20]). The results reported for PASS are

obtained with self-supervised learning. We reproduce the

SSRE with label augmentation in the supplementary mate-

rials. As adopted in [67], we memorize 20 samples for the

exemplar-based methods.

Accuracy and forgetting. The quantitative comparisons

Table 2. Results of average forgetting on 5, 10 and 20 phases.

CIFAR-100 TinyImageNet
Methods

5 10 20 5 10 20

iCaRL-CNN 42.13 45.69 43.54 36.89 36.70 45.12

iCaRL-NCM 24.90 28.32 35.53 27.15 28.89 37.40

EEIL 23.36 26.65 32.40 25.56 25.51 35.04

UCIR 21.00 25.12 28.65 20.61 22.25 33.74

LwF MC 44.23 50.47 55.46 54.26 54.37 63.54

MUC 40.28 47.56 52.65 51.46 50.21 58.00

PASS 25.20 30.25 30.61 18.04 23.11 30.55

SSRE 18.37 19.48 19.00 9.17 14.06 14.20

Ours 12.59 14.65 17.39 11.84 13.95 18.51

Ours w/o AKA 7.18 6.42 10.30 4.57 5.10 9.05

of the average incremental accuracy are reported in Tab. 1.

Compared to the suboptimal NECIL method (SSRE), we

improve the accuracy on CIFAR-100, TinyImageNet and

ImageNetSubset by 6.30%, 5.59%, and 1.91%, respectively.

Moreover, our method shows competitive or even better per-

formance than the classical exemplar-based methods. Cer-

tainly, it still slightly inferior to the SOTA exemplar-based

method DER [58]. In Fig. 4 we show the accuracy change

curves on three benchmarks. Our method is superior at al-

most all phases, achieving a better balance between stabil-

ity and plasticity. To further evaluate the above methods, we

provide the results of average forgetting in Tab. 2, where our

method also performs superiorly. In addition, since the pro-

posed asymmetric knowledge aggregation (AKA) improves

the classification accuracy on the current task, the forgetting

metric is increased, however this is harmless to overall per-

formance. We will report more analysis in the following

and supplementary materials. Experimental results show

that our approach can mitigate catastrophic forgetting de-

spite the lack of past task data, which is a more privacy-safe

and memory-friendly manner to achieve CIL.

4.3. Ablation Study

In this section, we conduct several ablation studies on

the proposed method. To better analyze the impact of the

core designs, our approach is divided into three compo-
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Figure 4. Illustration of the classification accuracy changes as tasks are being learned on CIFAR-100, TinyImageNet and ImageNet-Subset,

which contains the complete curves. Precise data of our method is presented in the supplementary materials.

Table 3. Ablation study (in average incremental accuracy) of our method on CIFAR-100 and TinyImageNet datasets.

Components CIFAR-100 TinyImageNet

PR SLA AKA 5 phases 10 phases 20 phases 5 phases 10 phases 20 phases

56.27 51.02 43.98 37.93 32.44 23.98

� 66.21 63.80 57.31 45.85 44.04 35.93

� 61.27 59.59 55.14 46.65 43.88 38.13

� � 68.48 67.56 65.03 52.15 51.67 49.30

� � � 70.02 68.86 65.86 53.32 52.61 49.83
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Figure 5. Influence of the threshold in prototype reminiscence.

nents: prototype reminiscence (PR), self-supervised label

augmentation (SLA) and asymmetric knowledge aggrega-

tion (AKA). As a general trick, KD was used in all experi-

mental settings. To explicitly illustrate the effectiveness of

PR, in the baseline model we save the prototypes and di-

rectly use them for training. As shown in the 1st and 2nd

rows of Tab. 3, PR successfully maintains the discrimina-

tion and balance between the old and new classes and makes

an impressive progress on the baseline model. When SLA

acts on the baseline model alone, it is effective, but there is

still a bias in the classifier, while using it with PR achieves

promising results. AKA and SLA are adopted as a whole.

In addition to the overall performance improvement, AKA

is more about enhancing the model’s understanding of the

new task to satisfy the latest business requirements.

To investigate the sensitivity of the threshold η in our

prototype reminiscence, we plot its fluctuation curve on

CIFAR-100 dataset. As presented in Fig. 5, when η is low,

the generated old class features are restricted to concentrate

around the preserved prototypes thus lacking the ability to

adapt to the changes of the representation space, which re-

sults in poor performance. As the constraint is relaxed (η in-

creases), the effect of PR gradually comes into its own and

peaks in performance at about η = 0.6. When the threshold

continues to increase, the performance gain from PR starts

to diminish because as the constraint fades away, the num-

ber of outlier features generated by PR gradually increases,

which disturbs the learning of the model.

4.4. Analysis

Visualization. To demonstrate the advantages of our

prototype reminiscence, we visualise the 2D embeddings of

feature vectors with t-SNE [51]. In Fig. 6 (c) and (d), the old

class features are generated by the stored prototypes. Com-

pared with fine-tuning, the confusion of old class features

is alleviated in the results of Gaussian noise augmentation.

However, the overlap between the distributions of different
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Figure 7. The comparison of confusion matrix of finetuning,

iCaRL and our method on CIFAR-100 (10 phases).

classes is still significant, and in particular the confusion

between the generated features. Instead, the feature distri-

butions of different old classes reshaped by our method are

relatively dispersed among each other.

Classification bias of the model. To evaluate the per-

formance differences between the old and new classes, we

compared the confusion matrix of finetuning, iCaRL and

our method on CIFAR-100. As shown in Fig. 7, since sam-

ples of old classes are not available, finetuning tends to clas-

sify the samples into new classes. The confusion is allevi-

ated by iCaRL, but still shows a preference for new classes.

The confusion matrix of our method exhibits better overall

performance without favouring old or new classes. Thanks

to PR and AKA, the classification bias between old and new

classes is well handled.

The role of asymmetric knowledge aggregation. To

better illustrate the role of the asymmetric knowledge aggre-

gation, we compare the changes in classification accuracy

for the initial task during subsequent incremental learning,

and the performance on each new task in the presence or ab-

sence of AKA. The results for the three settings on CIFAR-

100 are shown in Fig. 8. On the one hand, the performance

degradation in the initial task caused by the introduction of

AKA is negligible; on the other hand, the discrimination of

new classes is considerably improved. As analyzed in the

introduction, AKA can improve the model’s understanding

of new tasks as non-destructively as possible.
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Figure 8. The first column is the classification accuracy on the ini-

tial task, which changes with the incremental phase. The second

column shows the change in classification accuracy on the new

task. The proposed knowledge aggregation allows better learning

of new tasks with little impact on existing knowledge.

5. Conclusion
In this work, we address the NECIL issue from two per-

spectives of resisting catastrophic forgetting and boosting

plasticity of the model, proposing prototype reminiscence

and augmented asymmetric knowledge aggregation, respec-

tively. In particular, we pay attention to the performance of

the incremental learner on new tasks which often represent

the latest business requirements, and design an asymmetric

knowledge aggregation strategy for better adaptation to new

tasks. Extensive evaluations demonstrate that our approach

outperforms the SOTA NECIL methods and shows strong

competitiveness with classical exemplar-based methods in

the absence of stored samples.

Limitations. For each prototype reminiscence, the pro-

totype and the feature are selected randomly. When the

selected prototype and feature are less similar (i.e., farther

apart in the feature space), there may be outliers in the gen-

erated features of old classes. Exploring the impact of out-

liers on training may be of interest.
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