
BlendFace: Re-designing Identity Encoders for Face-Swapping

Kaede Shiohara1* Xingchao Yang2 Takafumi Taketomi2
1The University of Tokyo 2CyberAgent AI Lab

shiohara@cvm.t.u-tokyo.ac.jp {you koutyo,taketomi takafumi}@cyberagent.co.jp

Abstract

The great advancements of generative adversarial net-
works and face recognition models in computer vision have
made it possible to swap identities on images from sin-
gle sources. Although a lot of studies seems to have
proposed almost satisfactory solutions, we notice previ-
ous methods still suffer from an identity-attribute entan-
glement that causes undesired attributes swapping because
widely used identity encoders, e.g., ArcFace, have some
crucial attribute biases owing to their pretraining on face
recognition tasks. To address this issue, we design Blend-
Face, a novel identity encoder for face-swapping. The
key idea behind BlendFace is training face recognition
models on blended images whose attributes are replaced
with those of another mitigates inter-personal biases such
as hairsyles. BlendFace feeds disentangled identity fea-
tures into generators and guides generators properly as an
identity loss function. Extensive experiments demonstrate
that BlendFace improves the identity-attribute disentangle-
ment in face-swapping models, maintaining a comparable
quantitative performance to previous methods. The code
and models are available at https://github.com/
mapooon/BlendFace.

1. Introduction

Face-swapping aims to replace target identities with
source identities in images while preserving the target at-
tributes, e.g., facial expression, hair, pose, and background.
This task is receiving considerable attention because of its
potential applications in various fields, such as films and
metaverses. Recent advances in generative adversarial net-
works (GANs) [7, 25, 34, 36, 51, 58, 89] have enabled the
photo-realistic image generation in various conditions, e.g.,
attribute [29], identity [9], and expression [83], as well as
unconditional image generation. Moreover, the advance-
ment in face recognition models provides powerful iden-
tity encoders for face-swapping, which boosts the trans-
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Figure 1: Examples of attribute leakages. The direct
use of face recognition models, i.e., ArcFace [17] as an
identity guidance causes attribute leakages, especially on
head shapes and hairstyles due to attribute biases inherent
in the face recognition models whereas our identity encoder
BlendFace address these problems. Best viewed in zoom.

ferability of identities from source inputs to generated im-
ages and leads to successful one-shot face-swapping mod-
els [9, 14, 22, 45, 50, 72, 74–76, 90] with reasonable quality.

However, despite these impressive efforts, a critical is-
sue still remains. Previous state-of-the-art methods suf-
fer from identity-attribute entanglements because of biased
guidance from face recognition models used as identity en-
coders. Fig. 1 presents the failure cases of a traditional face
recognition model ArcFace [17]. As shown in the figure,
ArcFace-based face-swapping models tend to swap unde-
sired attributes, e.g., hairstyles and head shapes. This is
because images of the same identity have strong correla-
tions for some attributes; therefore, face recognition models
accidentally learn to recognize the attributes as identities,
which causes misguidances in training face-swapping mod-
els. Though certain studies in the field of face recognition
propose effective approaches to mitigate biases between
individuals, they cannot be solutions for biases in face-
swapping models as they do not consider intra-personal bi-
ases.

In this paper, we propose BlendFace, a novel identity en-
coder that provides well-disentangled identity features for
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Figure 2: Overview of face-swapping models. Identity
encoder Eid is used to extract identity features from source
images and to guide generators as an identity distance loss.
We replace ArcFace with our identity encoder BlendFace to
achieve more disentangled face-swapping.

face-swapping. First, we analyze the widely used identity
encoder ArcFace [17] on VGGFace2 [12] dataset. The com-
parison of identity similarity distributions using pseudo-
swapped images clarifies that attributes such as hairstyles,
colors, and head shapes strongly affect their similarities be-
cause of attribute biases in ArcFace, which is expected to
prevent face-swapping models from disentangling identity
and attribute. Based on the observation from the prelimi-
nary experiment, we design BlendFace by simply training
ArcFace with swapped images so that the model does not
focus on attributes of faces, which bridges the gap between
similarity distributions of swapped faces and real faces. We
then train a face-swapping model using BlendFace that per-
forms as a source feature extractor and identity guidance
in the loss function. As shown in Fig. 2, by replacing the
traditional identity encoder in the source feature extraction
and loss computation with BlendFace, face-swapping mod-
els are trained to generate more disentangled face-swapping
results. Importantly, our work is compatible with previous
face-swapping studies; BlendFace can be applied to various
learning-based face-swapping models.

In the experiment part, we compare our model with state-
of-the-art face-swapping models on FaceForensics++ [60]
dataset following the convention. The comparison demon-
strates that the proposed method is superior to or on par with
the competitors in identity similarity and attribute preserva-
tion, i.e., expression, pose, and gaze, while improving vi-
sual consistency of swapped results compared to previous
models. In addition, our ablation study and analysis prove
the advantages of BlendFace from various perspectives for
face-related research.

2. Related Work

Face-Swapping. Face manipulations, particularly face-
swapping, is an area of significant research in computer
vision owing to its potential applications such as realis-
tic digital avatar creation. Early methods employ tradi-
tional image processing [10] and 3D morphable models
(3DMMs) [11, 15, 55]. The brilliant successes of genera-
tive adversarial networks (GANs) [7, 25, 34, 36, 51, 58, 89]
in computer vision has driven the extensive exploration
of learning-based face-swapping models. FSGAN [54]
realizes subject-agnostic face-swapping via four encoder-
decoder networks, i.e., reenactment, segmentation, inpaint-
ing, and blending networks. Sophisticated face recogni-
tion models [17, 41, 49, 68] that learn rich identity infor-
mation from large-scale facial datasets [6, 12, 26, 79, 91]
improves the identity preservation in face swapping. Sim-
Swap [14] proposes a weak feature matching loss between
each generated image and target image in the discrimina-
tor’s feature space to balance the preservation of the source
identity and target attribute. FaceShifter [45] proposes a
two-stage framework including AEI-Net that blends the
features extracted from source and target images in mul-
tiple scales and HEAR-Net that learns to reconstruct oc-
clusions using objects datasets [8, 13, 21]. InfoSwap [22]
introduces information-theoretical loss functions to disen-
tangle identities. HifiFace [72] incorporates a 3DMM [18]
to its identity extraction to retrain the source appearance
and shape. Smooth-Swap [40] develops a smooth identity
encoder to stably GAN-training using self-supervised pre-
training [39]. Recently, some studies [74,75,90] reveal pre-
trained StyleGANs [35–37] provide strong priors to gener-
ate photo-realistic facial images at megapixel resolution for
face-swapping. MegaFS [90] generates swapped faces by
replacing high semantic features of target images with those
of source images. RAFSwap [74] integrates semantic-level
features with a face-parsing model [80]. FSLSD [75] trans-
fers multi-level attributes via side-outputs from StyleGAN.
StyleSwap [76] proposes iterative identity optimization that
effectively preserves source identities. StyleFace [50] and
UniFace [73] unify face-swapping into de-identification and
reenactment, respectively. In this paper, we re-design iden-
tity encoders independently of these state-of-the-art ap-
proaches; our encoder can be easily incorporated into pre-
vious learning-based face-swapping models.

Face Recognition. The task of face recognition is a
fundamental problem in the research field. Recent ap-
proaches have mainly been conducted using deep convo-
lutional networks. In particular, margin-based loss func-
tions (e.g., [17, 49, 68]) significantly enhance the perfor-
mance of face recognition. However, some studies [33,
59, 63, 64, 67, 82] have found such identity encoders con-
tain biases of attributes, e.g., pose, hairstyles, color, races,
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Figure 3: The pipeline for pseudo-positive samples. We
first generate masks Mij and M̃ij corresponding to Xij and
X̃ij , respectively, then generate a smooth mask M̂ij by blur-
ring the intersection mask Mij ⊙M̂ij . Finally we blend Xij

and X̂ij with M̂ij to generate the blended image X̂ij .

and gender; therefore debiasing face recognition models
have been a concern topic in the field. IMAN [70] pro-
poses information-theoretical adaptation networks. RL-
RBN [69] adapts the margin of ArcFace by reinforcement
learning. GAC [24] proposes adaptive layers comprising
demographic-group-specific kernels and attention modules.
DebFace [23] disentangles gender, age, race, and identity
using feature disentangling blocks and aggregation blocks
in an adversarial learning.

Although these methods effectively mitigate the biases
between identities, they however do not focus on inter-
personal biases. Therefore, existing identity extractors
cause undesired attributes swapping because images of each
identity in datasets used for face recognition have strong
correlations in some attributes, e.g., hairstyles, colors, and
head shapes. To solve this problem, we design an debiased
encoder that extracts disentangled identity features from fa-
cial images by training a face recognition model with syn-
thetic images that have swapped attributes, which enables
well-disentangled face-swapping.

3. Attribute Bias in Face Recognition Models

Given source and target images, face-swapping aims to
generate a facial image where the target identity is replaced
with the source identity while preserving the attributes of
the target image. First of all, we rethink the identity en-
coding for face-swapping by conducting a preliminary ex-
periment with ArcFace [17] adopted by most face-swapping
models, e.g., [14, 22, 45, 72, 75, 90]. The key observation is
replacing attributes of one individual with those of another
causes a degradation of the identity similarity, which indi-
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Figure 4: Analysis of ArcFace on VGGFace2. ArcFace
tends to underestimate the identity similarities between an-
chor images and swapped faces.

cates attribute biases inherent in ArcFace.

3.1. Identity Distance Loss

One of the difficulties in face-swapping is the absence
of ground truth images. Given two images of different
identities for source and target inputs during the training,
generated images are constrained by some feature-based
losses, e.g., appearance [17, 32, 85], 3D face shapes [18],
and segmentation [80] to preserve identities of source and
attributes of target. Notably, most of the previous meth-
ods adopt ArcFace [17] trained on large-scale face recogni-
tion datasets [6, 12, 26, 79, 91] to extract identity informa-
tion from source inputs and measure the identity distance
between a source image Xs and swapped image Ys,t as fol-
lows:

Lid = 1− cos⟨Eid(Xs), Eid(Ys,t)⟩, (1)

where Eid denotes ArcFace encoder and cos⟨u, v⟩ is the
cosine similarity of vectors u and v.

3.2. Analysis of Identity Similarity

Here, we explore the attribute biases of ArcFace [17]
on VGGFace2 [12] dataset from a perspective of face-
swapping. As shown in Fig. 3, we first randomly sample
the j-th image of the i-th identity which is presented as
Xij , and then compute cosine similarities between Xij and
all the images of the same identity {Xi1 , Xi2 , · · · , Xini

},
where ni denotes the number of images of the identity i.
Subsequently, inspired by Face X-ray [46], we search for
an image X̃ij with the closest facial landmarks to Xij from
randomly sampled 100 images whose identities are not i for
each Xij . After transferring the color statistics µ and σ in
the Lab space of Xij to that of X̃ij , we replace the face
of X̃ij with that of Xij by blending them with a mask M̂ij

generated by multiplying the inner mask Mij of Xij by M̃ij
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of X̃ij :

X̂ij = Xij ⊙ M̂ij + X̃ij ⊙ (1− M̂ij ), (2)

where ⊙ denotes the point-wise product, X̂ij represents the
synthetic swapped image, and M̂ij = Blur(Mij ⊙ M̃ij ).
We then compute the cosine similarities between Xij and
replaced images {X̂i1 , X̂i2 , · · · , X̂ini

}. In addition, we cal-
culate cosine similarities between Xij and the closest im-
ages X̃ij . We repeat this procedure for all identities and
plot the similarity distributions in Fig. 4a.

The key observations of this experiment are as follow:
1) The similarities are equal to one only for identical image
comparisons; otherwise, the similarities are almost lower
than 0.85 even if two images have the same identity. 2) The
similarities between anchor images and synthetic positive
images are lower than those between actual positive pairs,
indicating that the color distribution of faces and attributes
of outer face region strongly affect the similarities. This
is because face recognition models tend to recognize cer-
tain attributes, e.g., hairstyles and head shapes as identities
because an image set of each identity of face recognition
datasets used for training often has correlations in their at-
tributes.

These results leads us to assume that minimizing the
identity loss in Eq. 1 using traditional face recognition mod-
els, e.g., ArcFace [17] conflicts with the presevation of tar-
get attributes because face recognition models have attribute
biases, which constrains generators excessively to transfer
not only identities but also attributes from source images.

4. BlendFace
We propose a novel identity encoder BlendFace to solve

the problem of the identity-attribute entanglement owing
to the attribute biases in face recognition models as dis-
cussed in Sec. 3.2. First, we introduce a pre-training strat-
egy to train debiased identity encoders using synthetically
swapped faces. We then incorporate our identity encoder
into a face-swapping model disentangling attributes and
identities for high-fidelity face-swapping.

4.1. Pre-training with Swapped Faces

As discussed in Sec. 3.2, traditional face recognition
models trained on real face datasets, e.g., MS-Celeb-
1M [26] learn accidentally attribute biases because images
of each identity are highly correlated with each other in
some attributes, e.g., hairstyles and makeup; this produces
poor results for source and target images with large attribute
differences. To tackle this problem, we develop a debiased
identity encoder BlendFace that can be achieved by train-
ing a face recognition model with synthetic facial images
whose attributes are swapped. We adopt ArcFace [17] as

our base model and train it with blended images that have
synthetically swapped attributes. For each sample during
the training, we swap attributes of input images in the same
manner as in Sec. 3.2 with probability p. The loss function
of ArcFace [17] is as follows:

L = − log
es cos(θyi+m)

es cos(θyi+m) +
∑K

k=1,k ̸=yi
es cos θk

, (3)

where θyi represents the angle between the deep feature
vector and weight vector of the encoder. K, s, and m de-
note the number of classes, scale, and margin, respectively.
We observe that our pretraining bridges the gap between the
distribution of “Swapped” and that of “Same” (see Fig. 7b).
We conduct ablations for p and M̂ij in Sec. 5.4.

4.2. Face-Swapping with BlendFace

To validate the effectiveness of BlendFace, we con-
struct a face-swapping model with BlendFace. We denote
source, target, and generated images as Xs, Xt, and Ys,t

(= G(Xs, Xt)), respectively. We adopt a state-of-the-art
architecture AEI-Net [45] with some modifications. We re-
place ArcFace used in encoding source identities and com-
puting the distance loss Lid (Eq. 1) with BlendFace. We
incorporate a blending mask predictor into the attributes en-
coder inspired by previous studies (e.g., [72,74,76]). A pre-
dicted mask M̂ is supervised by the binary cross entropy
loss Lmask with the ground truth mask M from a face-
parsing model [80] as follows:

Lmask = −
∑
x,y

{Mx,y log M̂x,y+(1−Mx,y) log(1−M̂x,y)},

(4)
where x and y are the spacial coordinates of image. We
feed different images that share the same identity for source
and target inputs rather than feeding the same image when
activating the reconstruction loss as follows:

Lrec =

{
∥Xt − Ys,t∥1 if ID(Xt) = ID(Xs),
0 otherwise.

(5)

We sample the same identity for source and target images
with p = 0.2. We use the cycle consistency loss instead
of the attributes loss used in the original FaceShifter as fol-
lows:

Lcyc = ∥Xt −G(Xt, Ys,t)∥1 . (6)

We use the same adversarial loss term Ladv as in Gau-
GAN [56]. The total loss L is formulated as:

L = Ladv + Lmask + λ1Lid + λ2Lrec + λ3Lcyc, (7)

where the coefficients λ1, λ2, and λ3 are hyper-parameters
that balance the loss functions. Please see the supplemen-
tary material for a more detailed description of the architec-
ture of our face-swapping model.
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Model
Identity Distance Attribute Distance

Arc Arc-R Blend Blend-R Shape Shape-R Expr Expr-R Pose Pose-R Gaze Gaze-R

Deepfakes [1]∗ 0.5388 0.4048 0.3704 0.2859 0.3339 0.4327 0.2037 - 0.0374 - 0.2891 -
FaceSwap [2]∗ 0.5916 0.4594 0.4653 0.3606 0.3355 0.4546 0.1824 - 0.0189 - 0.2273 -
FSGAN [54] 0.7188 0.5043 0.6640 0.4464 0.3918 0.5410 0.1419 0.4212 0.0173 0.1835 0.1772 0.4120
FaceShifter [45]∗ 0.3826 0.3197 0.3143 0.2607 0.3190 0.4516 0.1720 - 0.0162 - 0.1840 -
SimSwap [14] 0.3594 0.3012 0.3710 0.2992 0.3309 0.4761 0.1582 0.4809 0.0139 0.1512 0.1599 0.4052
HifiFace [72]∗ 0.3593 0.2940 0.3488 0.2771 0.3119 0.4405 0.1730 0.5066 0.0161 0.1702 0.1663 0.4183
MegaFS [90] 0.5905 0.3802 0.6112 0.3869 0.3499 0.4221 0.2057 0.5408 0.0377 0.2455 0.1607 0.4066
InfoSwap [22] 0.4308 0.3056 0.4708 0.3223 0.2962 0.3963 0.2007 0.5719 0.0192 0.1978 0.1748 0.4250
FSLSD [75] 0.7952 0.4954 0.7853 0.4623 0.3706 0.4639 0.2023 0.5385 0.0231 0.2407 0.2598 0.5405

Ours 0.4630 0.3987 0.2574 0.2316 0.3542 0.5107 0.1537 0.4665 0.0125 0.1395 0.1301 0.3514

Table 1: Comparison with state-of-the-art methods. Bold and underlined values correspond to the best and the second-
best values, respectively. Gray values are excluded from the evaluation because of the use of the same encoders in their
training. ∗ denotes officially released generated videos. Our method outperforms previous state-of-the-arts in pose and gaze,
and achieves the second best results in expression.

5. Experiment
We validate the effectiveness of our method through ex-

tensive comparisons with previous methods, ablations and
analyses. The results demonstrate that BlendFace improves
the fidelity of identity similarity and attribute preservation
compared with previous models.

5.1. Implementation Detail

Pretraining of BlendFace. We adopt MS-Celeb-1M [26]
dataset to train BlendFace. The batch size and the number
of epochs are set to 1024 and 20, respectively. We train
our encoder on the loss in Eq. 3 for 20 epochs using SGD
optimizer with learning rate 0.1. We set the probability p of
replacing attributes to 0.5.

Training of face-swapping model. We adopt VG-
GFace2 [12] dataset to train our face-swapping model. We
align and crop the images following FFHQ [36] prepro-
cessing. We use ADAM [42] optimizer with β1 = 0,
β2 = 0.999, and lr = 0.0004 for our generator and dis-
criminator. We train our model for 300k iterations with a
batch size of 32. The coefficients of the total loss in Eq. 7
are empirically set to λ1 = 10, λ2 = 5, and λ3 = 5.

5.2. Experiment Setup

Setup. Following the conventional evaluation proto-
col, we evaluate face-swapping models on FaceForen-
sics++ (FF++) [60] dataset which includes 1000 real
videos and 1000 generated videos each of Deepfakes [1],
Face2Face [66], FaceSwap [2], NeuralTextures [65], and
FaceShifter [45]. We follow the setting of pairs of source
and target defined by the original FF++ dataset. And we
use the same source frames as in HifiFace [72].

Metric. To evaluate the fidelity of generated images,

we consider six metrics: ArcFace (Arc) [17], BlendFace
(Blend), face shape [18], expression (Expr) [18], head
pose [18], and gaze [3]. We measure the distances be-
tween source and swapped images for identity metrics, i.e.
ArcFace, BlendFace, and shape, and between target and
swapped images for attribute metrics, i.e., expression, pose,
and gaze. We calculate the cosine distances of extracted
feature vectors for ArcFace and BlendFace, L1 distances
of predicted 3DMM parameters for shape, expression, and
pose, and L1 distances of predicted Euler angles for gaze.
We further compute the relative distances [40] that consider
both source and target in all the metrics, which are denoted
as “-R”.

5.3. Comparison with Previous Methods

Baselines. We compare our method with publicly available
state-of-the-art models, i.e., FSGAN [54], SimSwap [14],
MegaFS [90], InfoSwap [22], and FSLSD [75]. We also
adopt generated videos of Deepfakes [1], FaceSwap [2], and
FaceShifter [45] from FF++ dataset and HifiFace [72] from
the official project page [4].

Result. The quantitative result is presented in Table 1.
Our model outperforms previous methods in terms of ab-
solute and relative metrics of pose and gaze, and achieves
the second-best result in absolute and relative metrics of ex-
pression. Although it is difficult to compare our model with
previous methods in identity similarity using face recog-
nition models because evaluations using the same encoder
as in training tends to be overestimated, our model outper-
forms Deepfakes [1], FaceSwap [2], and FSGAN [54] in
ArcFace at least. We also show some generated images in
Fig. 5. We omit examples of Deepfakes, FaceSwap, and
FaceShifter because these results are generated by different
source frames. We can see that previous approaches suffer
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Source Target FSGAN SimSwap MegaFS InfoSwap HifiFace FSLSD Ours

(a)

(b)

(c)

(d)

(e)

(f)

Figure 5: Qualitative comparison on FF++. Our model performs consistent face-swapping while preserving target at-
tributes, e.g., hairstyles, expression, pose, and gaze. More results are included in the supplementary material.

from attribute leakages, particularly in changing hairstyles,
(e.g., (a) and (d)) and head shapes, (e.g., (c) and (e)),
whereas our method succeeds in generating robust results
qualitatively. In addition, we observe that the StyleGAN2-
based methods, i.e., MegaFS [90] and FSLSD [75] are vul-
nerable to unseen domain because the models sometimes
fail in the inversion of source identities. We include more
generated results in the supplementary material due to the
space limitations. Because our method limits face shape
changes to maintain consistency between the inside and out-
side of faces, the similarities of face shapes between gener-
ated images and source images are slightly lower than those
of other methods, which is one of the limitations of our ap-
proach discussed in Sec. 6.

5.4. Ablation and Analysis

Choices of source encoder and loss. We found that the per-
formance of face-swapping models strongly rely on choices
of identity encoders to extract source features and compute
the identity loss. We train four face-swapping models with
ArcFace and BlendFace set to source encoder or loss. Then

Setting Distance

Source Loss Arc Blend Pose Gaze

ArcFace ArcFace 0.3314 0.2918 0.0139 0.1450
BlendFace ArcFace 0.4254 0.2730 0.0128 0.1376
ArcFace BlendFace 0.4123 0.2700 0.0131 0.1377

BlendFace BlendFace 0.4630 0.2574 0.0125 0.1301

Table 2: Choices of source encoder and loss. Our method
achieves the best results in distances of BlendFace, pose,
and gaze.

we evaluate these models in the same protocol as Sec. 5.3.
Note that our model in Sec. 5.3 sets BlendFace both to iden-
tity encoder and loss. The result is given in Table 2. It can
be observed that using ArcFace both in the source encoder
and loss computation brings the worst results in distances
of BlendFace, expression, pose, and gaze, which implies
the identity-attribute entanglement of ArcFace. Our method
meanwhile achieves the best preservation in pose and gaze
though worst identity distance on ArcFace because ArcFace
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Source Target Arc-Arc Blend-Arc Arc-Blend Blend-Blend

Figure 6: Choices of encoder and loss. The notation “A-
B” indicates using encoders A and B for source feature ex-
traction and loss computation, respectively. Our model pro-
duces reasonable results in the identity similarity and at-
tribute preservation. Best viewed in zoom.

tends to underestimate well-disentangled swapped results.
We also show the generated images in Fig. 6. We can ob-
serve computing the identity loss with ArcFace produces in-
consistent blending boundaries and attributes because of the
entanglement of identities and attributes, while BlendFace
produces consistent results. These results clearly indicate
that our BlendFace outperforms ArcFace quantitatively and
qualitatively in face-swapping.

Probability of replacing attributes. We examine the ef-
fect of the probability p of replacing attributes in pretrain-
ing of the identity encoder. We additionally train our en-
coders with p = 0.25, 0.75, and 1.00, then we conduct
the same experiment as Sec. 3.2 and plot the distributions
in Fig 7. It can be observed that training identity encoders
with swapped faces bridges the gap between the similarity
distributions of actual positive samples denoted as “Same”
and swapped faces denoted as “Swapped” in the figure, even
when p = 0.25. Also, increasing p brings these distribu-
tions closer. We again emphasize that ArcFace [17], which
corresponds to the case of p = 0.0, underestimates swapped
faces as shown in Fig. 4. This result supports that our pre-
training approach removes attribute biases from face recog-
nition models.

Face verification on real face datasets. We validate our
encoders in the task of face verification. We adopt well-
known benchmarks including LFW [30], CFP-FP [61], and
AgeDB [53]. We compare our BlendFace with ArcFace
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(c) p = 0.75
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(d) p = 1.0

Figure 7: Effect of the ratio of synthetic faces. Training
identity encoders with swapped faces brings the distribu-
tions of swapped faces and that of real positive faces closer
together.

Model LFW CFP-FP AgeDB

ArcFace [17] 0.9978 0.9900 0.9838
SynFace [57] 0.9763 0.8731 0.8243
BlendFace (p = 0.25) 0.9983 0.9904 0.9815
BlendFace (p = 0.50) 0.9984 0.9897 0.9813
BlendFace (p = 0.75) 0.9983 0.9891 0.9828
BlendFace (p = 1.00) 0.9977 0.9886 0.9800

Table 3: Face verification result. Our encoders keep the
ability of face verification on real face datasets and outper-
forms SynFace, which support our encoders perform prop-
erly as identity guidance in training face-swapping models.

and SynFace [57], a variant of ArcFace trained on GAN-
synthesized images. We adopt the unrestricted with labelled
outside data protocol to evaluate models, following the con-
vention in the research field of face recognition (e.g., [17]).
We give the results in Table 3. We observe that our encoders
retain the ability of face verification despite the slight per-
formance degradation. This is because the removed fea-
tures, e.g., for hairstyles, face-shapes, and colors, are useful
in verifying real faces.

Blending mask. We examine the effect of blending masks
in pretraining of BlendFace. As described in Sec. 3.2, we
use a mask M̂ij generated from the intersection Mij ⊙ M̃ij

to blend source image Xij and target image X̃ij during pre-
training. We here train BlendFace with Mij or M̃ij instead
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Figure 8: Effect of blending masks. Using intersection
mask Mij ⊙M̃ij contributes to the consistency of generated
images.

of Mij ⊙ M̃ij . Then we train face-swapping models with
these encoders. As shown in Fig. 8, we found the model
with Mij ⊙ M̃ij produces more consistent results than Mij

or M̃ij . This is because blending Xij and X̃ij with Mij

or M̃ij produces artifacts in the blended image X̂ij during
pretraining, which harms face-swapping models.

Saliency Map. To explore the effectiveness of BlendFace,
we visualize the saliency maps of ArcFace and BlendFace.
Inspired by sliding occlusions [84], we measure the av-
eraged sensitivity of identity similarities between the oc-
cluded input images and the reference image over multiple
mask sizes {16, 24, 32, 40, 48, 56}. As shown in Fig. 9, Ar-
cFace focuses on both the inner and outer faces while our
encoder properly does only on inner faces. The result sup-
ports that our BlendFace can swap only inner faces without
the undesired attribute transfer of outer faces.

6. Limitations

Our novel identity encoder BlendFace provides disentan-
gled identity features that are beneficial face-swapping and
other face-related tasks; however, we notice some limita-
tions of our method. First, our model can hardly change
face shapes because we limit the region where identities
are swapped to improve spatial consistencies between in-
side and outside of faces. Therefore when source and target
images that have to different face shapes are input into our
model, the generated image looks like the source subject in
terms of the appearance but may not in terms of the face
shape. Second, similar to previous methods, our method
sometimes fail to preserve hard occlusions such as hands
because of the lack of training samples of extreme scenes.
It can be improved by incorporating HEAR-Net [45] into
our model.

Input Reference ArcFace BlendFace

Figure 9: Saliency maps of ArcFace and BlendFace. Arc-
Face pays attention not only to inner faces but also to outer
faces while BlendFace does only to inner faces.

7. Conclusion
In this paper, we present BlendFace, a well-disentangled

identity encoder for more consistent face-swapping. The
key observation behind BlendFace is that traditional face
recognition models trained on real face datasets have biases
in some attributes, e.g., hairstyles and face-shapes, which
leads inconsistent results in face-swapping. To tackle this
problem, we train a face recognition model with blended
images as pseudo-positive samples that have swapped at-
tributes so that the encoder focuses only on inner faces,
which improves the disentanglement of identity and at-
tribute for face-swapping. The comparison with previ-
ous methods on FaceForensics++ dataset demonstrates our
method achieves new state-of-art results especially in pre-
serving target attributes, keeping the visual consistency.
Also our extensive analyses provide the advantages of
BlendFace for subsequent face-related research.

Potential Negative Societal Impacts. Face Swapping
models are at risk of abuse, e.g., deceiving face verifica-
tion systems and synthesizing political speeches, that are
known as “deepfake”. Therefore the vision community has
been working on digital face forensics, which leads to so
many promising deepfake detection approaches [5, 16, 27,
28,46,47,52,62,71,77,86,87] and a wide variety of bench-
marks [19, 20, 31, 38, 43, 44, 48, 60, 88, 92]. The risk can
be mitigated by proactive detection methods [78, 81] and
by strictly gating the release of our model only for research
purpose. In addition, we will release the benchmark dataset
of our model on FF++ for future studies of face forensics.
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[82] Seyma Yucer, Samet Akçay, Noura Al-Moubayed, and
Toby P Breckon. Exploring racial bias within face recogni-
tion via per-subject adversarially-enabled data augmentation.
In CVPRW, 2020. 2

[83] Egor Zakharov, Aliaksandra Shysheya, Egor Burkov, and
Victor Lempitsky. Few-shot adversarial learning of realis-
tic neural talking head models. In ICCV, 2019. 1

[84] Matthew D Zeiler and Rob Fergus. Visualizing and under-
standing convolutional networks. In ECCV, 2014. 8

[85] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018. 3

[86] Tianchen Zhao, Xiang Xu, Mingze Xu, Hui Ding, Yuanjun
Xiong, and Wei Xia. Learning self-consistency for deepfake
detection. In ICCV, 2021. 8

[87] Yinglin Zheng, Jianmin Bao, Dong Chen, Ming Zeng, and
Fang Wen. Exploring temporal coherence for more general
video face forgery detection. In ICCV, 2021. 8

[88] Tianfei Zhou, Wenguan Wang, Zhiyuan Liang, and Jianbing
Shen. Face forensics in the wild. In CVPR, 2021. 8

[89] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A
Efros. Unpaired image-to-image translation using cycle-
consistent adversarial networks. In ICCV, 2017. 1, 2

[90] Yuhao Zhu, Qi Li, Jian Wang, Chengzhong Xu, and Zhenan
Sun. One shot face swapping on megapixels. In CVPR, June
2021. 1, 2, 3, 5, 6

[91] Zheng Zhu, Guan Huang, Jiankang Deng, Yun Ye, Junjie
Huang, Xinze Chen, Jiagang Zhu, Tian Yang, Jiwen Lu,
Dalong Du, et al. Webface260m: A benchmark unveiling
the power of million-scale deep face recognition. In CVPR,
2021. 2, 3

[92] Bojia Zi, Minghao Chang, Jingjing Chen, Xingjun Ma, and
Yu-Gang Jiang. Wilddeepfake: A challenging real-world
dataset for deepfake detection. In ACMMM, 2020. 8

7644


