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Abstract

Large-scale noisy web image-text datasets have been
proven to be efficient for learning robust vision-language
models. However, to transfer them to the task of video re-
trieval, models still need to be fine-tuned on hand-curated
paired text-video data to adapt to the diverse styles of video
descriptions. To address this problem without the need
for hand-annotated pairs, we propose a new setting, text-
video retrieval with uncurated & unpaired data, that uses
only text queries together with uncurated web videos during
training without any paired text-video data. To this end, we
propose an approach, In-Style, that learns the style of the
text queries and transfers it to uncurated web videos. More-
over, to improve generalization, we show that one model
can be trained with multiple text styles. To this end, we
introduce a multi-style contrastive training procedure, that
improves the generalizability over several datasets simulta-
neously. We evaluate our model on retrieval performance
over multiple datasets to demonstrate the advantages of our
style transfer framework on the new task of uncurated & un-
paired text-video retrieval and improve state-of-the-art per-
formance on zero-shot text-video retrieval. '

1. Introduction

Vision-language retrieval refers to the task of retrieving
an image or a video from a large data pool given a textual
description of the content. Especially the field of text-image
retrieval has seen remarkable progress, mainly spurred by
the combination of image and text models trained on large-
scale web collections [47, 31] of image-text pairs. While
advances in video retrieval also rely on pre-trained image-
language models, which serve for better task transfer, most
systems still require a fine-tuning on downstream data. This
requires hand-annotated text-video pairs, namely a trimmed
segment of a larger video that is precisely described by the
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Figure 1: Training data for supervised and uncurated & un-
paired settings for text-video retrieval. Left: standard super-
vised text-video retrieval, aligned and paired data is given for each
target setting of the same distribution as target test set; Right: our
uncurated & unpaired text-video retrieval setting. No paired data
is available during training, only text queries, whereas to support
training, we use uncurated web videos.

corresponding text pair, for the training and testing of each
target downstream dataset. Collecting such aligned pairs of
text and videos can be time and cost intensive, and particu-
larly gathering videos that comply with national regulations
and copyright can be a challenge. Also, in case of relying on
free web content, some videos can become unavailable over
time while the respective curated annotations stay available
for download but do not have matching videos.

To address this problem, we propose a new setup, fext-
video retrieval with uncurated & unpaired data, assum-
ing the availability of text queries only and without related
videos during training (Figure 1). The setting is motivated
by the fact that it can be considered easier to collect or gen-
erate text data, e.g. by producing topic-specific text queries,
rather than providing a video to match a specific context.
To allow the training of a text-video retrieval system based
on the given text, we assume to have access to an uncurated
video collection as the only source of available videos.

As different domains and datasets contain diverse styles
of textual descriptions of videos, we propose a novel
method, In-Style, to transfer the caption style of given text
queries to uncurated web videos, which can be from a devi-
ating distribution compared to the given text queries. To
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transfer the style of the text queries, we leverage large
image-language models [31, 47] by creating pseudo pairs
that correspond to the given text queries and videos from
the uncurated collection by matching them in the shared
embedding space [47]. Thus, we identify a subset of videos
that have more similarity to the text queries than the rest
of the videos. We then adopt an image-to-text captioning
model (captioner) to mimic the style of our text queries by
training with these pseudo pairs. The stylized captioner is
now capable of producing relevant video descriptions in the
desired style; therefore, we re-annotate the web videos with
the captioner to obtain aligned paired data; we call them
generated pairs. Finally, we show that generated pairs help
to adapt models pre-trained on large-scale web data [31, 52]
to the desired single or multiple styles of given text queries.

We evaluate our model on text-video retrieval over
5 benchmark datasets. Specifically, we demonstrate the
advantages of the In-Style method on the new task of
uncurated & unpaired text-video retrieval with image-
language [31] and video-language [52] pre-trained back-
bones. We show the generalization of the proposed ap-
proach by training a single model for multiple datasets at
once leading to an improved state-of-the-art zero-shot text-
video retrieval performance.

We summarize our contributions in the following: (i)
we introduce a new task of fext-video retrieval with un-
curated & unpaired data where during training, only text
queries are available, whereas for standard text-video re-
trieval task, paired text-video data is used; (ii) we propose a
novel method, In-Style, to transfer the style of text queries
in an unsupervised way, showing that style is an important
component for language-based retrieval tasks; therefore, we
repurpose large pre-trained image-language models to gen-
erate pseudo-captions of the same style for uncurated web
videos; (iii) we demonstrate the advantages of our In-Style
method for the new task over 5 different datasets with in-
dividual models for each dataset as well as one generalized
model and we achieve state-of-the-art performance on zero-
shot text-video retrieval.

2. Related Work

Text-Video Retrieval. Text-video retrieval methods usu-
ally focus on learning modules that are able to capture
relations between features from text and video modali-
ties [63, 34, 17,9, 12, 15, 57]. Currently, many approaches
leverage pre-training on large-scale video-text [3, 41, 40] or
image-text [29, 31] datasets with a further adaptation of the
backbone to individually downstream datasets. In this con-
text, ClipBERT [29] proposed sparse sampling instead of
using dense full-length videos that allow lightweight train-
ing. However, foundation models [5] such as CLIP [47],
combining the success of transformer architectures [14] us-
ing a contrastive objective [43] and being trained on large

collections of text-image pairs from the web, providing a
strong zero-shot [38, 46] baseline on downstream tasks that
outperforms many previous methods. Therefore, more re-
cent approaches focus on adapting text-image CLIP pre-
trained models for text-video retrieval [20, 4, 16, 18, 35].
X-pool [20] introduces cross-modal attention to reason be-
tween text and frames of a video, TS2-Net [35] proposes
dynamic adjustments over temporal and spatial token di-
mensions, which allows fine-tuning spatial model on video
data without architecture changes. Another way to lever-
age foundation models is to enhance training data [58, 65].
Cap4Video [58] generates auxiliary captions for available
curated training videos by using ZeroCap [54] that op-
timizes GPT-2 [48] text generation using a CLIP-based
loss [47]. LaViLa [65] proposes to generate additional nar-
rations for a dense coverage of long videos from the Ego4D
dataset [1 1, 21] by fine-tuning a pre-trained large language
model [48] on existing annotated text-video paired data. In
contrast, we propose to exclude pre-annotated text-video
paired data from the training and, relying on text descrip-
tions only, generate text-video pairs leveraging uncurated
web videos while transferring the style of original captions.

Large-scale Multimodal Pre-training. Representation
learning [47, 31, 10, 23, 65, 6, 62] aims to obtain general
representations that improve performance on downstream
tasks such as retrieval [38, 46, 62, 31], classification [10,

, 0], segmentation [6], question-answering [3 1, 62] and
captioning [31, 62]. While some methods rely only on one
modality such as images [0, 23] or text [48], there is also
increasing interest in multi-modal representations [47, 30,

, 32, 37, 52] which require multi-modal aligned pairs.
However, the acquisition of human-annotated paired data
is expensive; therefore, noisy web data [47, 41] allows to
significantly scale such datasets. Many methods success-
fully utilize web image-text pairs [47, 25, 62], whereas un-
curated video-text pairs are not only harder to collect but
are also more prone to misalignments. Therefore, efforts
are made to align ASR (automatic speech recognition) with
video frames via contrastive learning [4 1, 40, 60, 64] or in
an unsupervised way [22]. To overcome those issues, we
propose to generate synthetic video descriptions with the
desired caption style and train models on those captions in-
stead of raw ASR text.

For contrastive-based vision-language representation
learning methods, dual-encoder architectures are a common
choice as it features two parallel branches for two modali-
ties which are contrasted against each other to learn a joint
embedding space [47, 53, 32, 37]. Recently, BLIP [31]
and CoCa [62] propose a unified multi-task contrastive-
generative framework that combines contrastive and cap-
tioning objectives. These methods rely on both, curated
image-text and uncurated web image datasets, with BLIP
additionally iteratively applying the generation and filtering
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of synthetic captions. Compared to those works, we adopt
pre-trained image-language models for uncurated & un-
paired text-video retrieval by transferring the caption style
directly on uncurated videos without any aligned data dur-
ing training.

3. Uncurated & Unpaired Text-Video Retrieval

In this section, we introduce the proposed uncurated &
unpaired text-video retrieval training setup. Typically, mod-
els for text-video retrieval are trained on paired text-video
data. Given a set of pairs of captions ¢; and corresponding
videos v;: {(t;,v;)} € D, where D is a data distribution,
the goal is to learn a similarity function s(¢;,v,) that calcu-
lates the similarity between the caption ¢; and the video v;.
The training can be done from scratch, but typically pre-
trained image-language [47, 31] or video-language mod-
els [37, 41] are fine-tuned on the target paired text-video
data and then evaluated on the test set from the same distri-
bution D [35, 16]. If the evaluation is performed on multi-
ple datasets, the model is usually fine-tuned for each dataset
individually.

In contrast, we propose a text-video retrieval with uncu-
rated & unpaired data, where only target text queries are
available during training without any videos. More pre-
cisely, given a set of text descriptions {¢;} from data dis-
tribution D, we aim to learn useful information about the
similarity s(¢;,v;) in D relying only on the clean textual
descriptions. We further assume that a large set of freely
accessible web videos V' = {v;} € D' without any paired
text is available to support the training (such as videos of
the HowTo100M dataset [41]). We note that the data distri-
bution D’ in the support video dataset can deviate from the
distribution D.

Finally, to avoid to train different models individually
for each target dataset, we further consider learning a gen-
eralized model that maintains the performance of individual
models over a set of K datasets of different caption styles
and coming from different data distributions D, ..., Dx.

4. In-Style Method

To address the task of uncurated & unpaired text-video
retrieval, we aim to transfer the style of the text queries (the
only available curated information) to an uncurated web
video dataset. To this end, we rely on web-scale pre-trained
image-language models as a supervisory signal and lever-
age them as a matching module and pre-trained captioning
model that we adapt throughout the training process. The
steps of the proposed In-Style method are shown in Fig-
ure 2. The first step is Pseudo Matching, described in Sec-
tion 4.1, which matches the given text queries to the most
relevant videos from the set of all uncurated web videos.
The following Style Transfer step (Section 4.2) adapts the

pre-trained captioning model (captioner) to the target text
style by training it on the previously obtained pseudo pairs.
The captioner is then used to generate new style-adapted
captions for all available web videos, which are then filtered
to avoid too noisy pairs; we refer to the resulting filtered
web videos with style-adapted video descriptions as gener-
ated pairs. Finally, we adapt a pre-trained vision-language
model for the task of text-video retrieval on the generated
pairs (Section 4.3). Moreover, in Section 4.3, we propose
the training of a generalized model on multiple styles of text
queries at the same time and introduce a new contrastive
objective, In-Style, that improves training on more than one
text style at once.

4.1. Pseudo Matching

First, we obtain pseudo video-text pairs, with each pair
containing one of the available text queries and the most
relevant uncurated video from the web collection. For
pseudo matching, we leverage image-language models such
as CLIP [47] or BLIP [31] that excel in zero-shot retrieval
performance [38]. Such models usually follow a dual-
encoder architecture: encoders f; and f, projects text ¢ and
image x into a common multimodal embedding space. The
similarity of text and image is computed as a cosine sim-
ilarity in this common space: sim(t,x) = %
We use this metric to match the available text queries to the
closest video.

Since available videos can vary in overall duration (for
example, five or more minutes) and cover a lot of differ-
ent actions, we divide all videos into non-overlapping clips
of s-seconds. We denote V' = {v}} as a set of all such
video clips. Then we calculate a multimodal representation
for each video clip U} as an average representation of m
uniformly sampled frames of a video (see supplement). Us-
ing precomputed embeddings, we connect every caption t;
with a video v" with maximum similarity from available set
of videos V”, such as:

. /
v = arg max sim(t;, v}). (1)
U;EV’

To increase the diversity of matched videos, we don’t al-
low multiple captions to match the same video clip; there-
fore, when video clip vf is matched, we exclude it from
V'. Thus, we obtain a set of pseudo text-video pairs P, =
{(t;,v?)}. In Section 5, we show that this step allows us
to introduce a weak supervision that may not find the exact
match but provides a basis for further style transfer.

4.2. Style Transfer

We aim to transfer style of the given text queries to other,
unrelated web videos by generating new captions with the
desired style. Inspired by the ability of language models
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Figure 2: The proposed In-Style method. First, in the pseudo matching step, pseudo pairs P, which consist of text queries and the
most related web videos from the support set, are created. Style Transfer: captioner is tuned with the obtained pseudo pairs P, to adapt it
to the style of the given text queries. Next, stylized new captions are generated for all videos in the support set and then filtered to avoid
noisy captions; the resulting set of generated pairs P,.,, contains web videos and aligned captions of the desired style. To complete the
retrieval task, we adapt the dual video-text encoder model with the generated pairs FPy.,, and evaluate on curated paired text-video test sets.

conditioned on visual input [31] to generate plausible de-
scriptions for diverse visual inputs, we propose to adapt
the pre-trained image captioner g using the obtained set of
noisy pseudo text-video pairs F,s. By doing this, we adapt
the captioner to both, the style of the captions as well as
the style of the web videos. This allows us to generate new
stylized captions Py, for the full support set of videos V"’
using this captioner.

Captioner. More specifically, we follow the BLIP [31] cap-
tioner architecture, which we extend for video captioning
by conditioning the model not only on a single image, but
on a number of video frames. To this end, we apply the
image encoder on each frame individually and inject a joint
set of visual tokens into the text decoder model, which pro-
duces text in an autoregressive manner. We provide further
details in the supplement. To train the captioner g on the
pseudo text-video pairs F,,, we utilize the common lan-
guage model loss that optimizes cross-entropy loss between
ground truth and predicted probabilities of the next token
given a correct set of previous tokens in the sentence. Fol-
lowing BLIP, we also use label smoothing with parameter
0.1 while calculating cross-entropy.

Stylization of Captions. For each video v; € V', we gen-
erate a caption tY = g(v}) with a captioner g trained on
pseudo pairs by using a nucleus sampling [24]. Nucleus
sampling was shown to generate more diverse and detailed
captions than a beam search [55, 31].

Filtering. As the captioner g is adapted on pseudo pairs and
shifts the model closer to a vocabulary of given text queries
D, some of the generated captions 7 might be noisy and not
descriptive for the web videos. Therefore, we further filter
the generated pairs based on a similarity score s(¢7, v}) uti-
lizing the large pre-trained image-language dual encoders
the same way as it was used for creating pseudo text-video
pairs (Section 4.1). Leaving only pairs with similarity
higher a threshold s(t%, v}) > th, we obtain a paired set of

web videos and stylized related captions Py, = {(t?, vg)}
In Section 5.7, we show that even a noisy set of pseudo pairs
is enough to adapt a captioner for generating captions in a
desired text style and that stylized captions combined with
the following filtering provide a strong learning signal to
boost the performance of retrieval in target distribution D.

4.3. Training and Retrieval

Single-Style Training. To allow for text-video retrieval
based on the stylized captions and the paired video data,
we train a dual-encoder architecture [31] on the set of gen-
erated pairs P,.,, with the contrastive loss [43]. We show
that Py, provides better supervision than P, or even a
combination Py, + P,s. Practically, we consider several
pre-trained models: the image-text model BLIP [3 1], which
we adapted for video as described in Section 4.1, as well
as video-text model EAO [52], which is pre-trained on the
HowTo100M dataset with ASR-video pairs, which serve as
noisy supervision. Following previous works, we use sym-
metric contrastive loss, which brings together text ¢/ and
video v; from a text-video pair (¢/,v;) € Py, (a positive
pair) in shared video-text embedding space, and contrasting
them on video and text from different pairs (negatives), that
are pushed apart:

B s(td v;) s(vg,td)
1 exp(——) exp( =)
L=—— I T 1 T
2B Z ( 8 B s(t?,v;) +log B s(vs,t9) )7
=t > exp(——) exp(— )
= i=1
(2

where 7 denotes a temperature parameter, and B is a num-
ber of pairs.

For the fine-tuning of the the BLIP model, we follow
the original setup and utilize the extension of contrastive
training with a momentum encoder and a queue that keeps
more negatives, as well as soft labels. For the fine-tuning
of the EAO model, we follow the respective setup without a
momentum encoder or soft labels.
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Standard

Figure 3: Multi-dataset training. Left: Standard contrastive
training with multiple datasets. Right: Ours In-Style training pro-
cedure. Each batch consists of text queries that belong only to the
same style. Note that we use only web videos from the support
set; therefore, all videos are from the same distribution.

Multi-Style Training.  Finally, we consider training a
generalized model on multiple sources of text queries com-
ing from different data distributions D1, ..., Dg. Let’s de-
note Pglen, ey ng\én set of generated pairs for the captions
from Dy, ..., Dy respectively. Here, different sources can
have various styles that might highlight different aspects
of videos in their captions (Table 3). As an example,
captions in the YouCook?2 dataset [66] are more “action”-
oriented, e.g. ‘“‘combine macaroni sauce and cheese” or
“stir in crushed tomatos”, while captions of the LSMDC
dataset [49] are third-person descriptions, e.g. “Some-
one gazes at the beautiful animal” or “Someone chews the
sweet’. In standard training [31], all different styles with
their matching videos would be present in contrastive loss
together, which can lead to a mixture of different visual top-
ics and text styles, which are easy to separate and which
might include only few hard negatives per sample. To avoid
this possibly noisy setting, we propose to modify the train-
ing procedure and to select video-caption pairs with cap-
tions from the same data source for contrastive loss. For-
mally, during training, we iterate over generated sets of pair
Py, P, sampling a minibatch {(t,v;)}2, from a
single set Pyen, € {Pj.,,..., Py, } and calculating loss
L({(t?,v;)}B ,) performing one optimization step with a
minibatch (Figure 3). We note that for BLIP training we
keep separate queues for each set Pyc,,.

We show in Section 5.4 that this setting can be beneficial
for learning a generalized model. Our intuition is that text
queries with the same style provide stronger negatives for
the model, allowing the model to concentrate on the content
of the captions rather than a style.

5. Experimental Evaluation

We evaluate the proposed uncurated & unpaired text-
video retrieval approach on five popular benchmark
datasets: MSR-VTT [61], YouCook2 [66], MSVD [&],
LSMDC [49], and DiDeMo [2]. All datasets cover different
styles of captions and videos, which includes YouTube and

Flickr videos on various topics and video clips from movies.
As a source of support videos, we use the large-scale web
dataset HowTol100M [41]. We additionally test our model
with text queries from the VATEX dataset [560] as well as
with third-party text queries (not video captions), specifi-
cally with the recipe steps from Food.com dataset [39] and
task descriptions from WikiHow dataset [27] datasets.

5.1. Dataset Details

MSR-VTT [61] contains in total 10k videos on various top-
ics and 200K captions. More precisely, every 20 captions
describe the same video in different words. We use split
9K+1K [17] in evaluation, resulting in 180K captions for
training and 1K text-video for testing.

YouCook2 [66] is a dataset of 14K cooking instructional
video clips, where each clip is annotated with a short cook-
ing recipe step. Following[41, 52], we use a 10K+3.5K
training-testing split, leveraging 10K captions for training.
MSVD [&] contains 2K video snippets, where each is asso-
ciated with approximately 40 sentences. The standard split
consists of 1200 videos for training, 100 for validation, and
670 for testing. The training set contains 48K captions.

LSMDC [49] is a collection of 202 movies sliced into 118K
movie-clips with one description per clip with about 100K
for training, while 7408 and 1000 text-video paired samples
are used for validation and testing, respectively.

DiDeMo [?] is a fine-grained text-video dataset. 10K Flickr
videos are paired with multiple detailed sentences (40K sen-
tences in total). During training, we use the single sentences
(33K captions), whereas for evaluation on the test set, we
follow [3] and concatenate all the descriptions for video into
one paragraph, acting as a video-paragraph retrieval task
(we do not use ground truth time-stamp annotations).

VATEX [56] dataset contains 35K video clips with multi-
ple annotated captions for a video, covering 600 different
human activities. The training set contains 260K captions.

Food.com [39] is a text dataset that contains more than
230K recipe texts with over 2.2M recipe steps crawled from
websites. We use recipe steps as text queries in our training.

WikiHow [27] is a large-scale text dataset using the online
WikiHow knowledge base. The dataset contains more than
230K articles covering a variety of topics/tasks and descrip-
tions of steps to solve these tasks. We use only headline
steps as text quires, which gives us 1.7M captions.

HowTol100M [41] is a dataset of instructional videos that
cover a large variety of topics. The dataset consists of more
than 1M videos that were collected by querying on YouTube
23,000 different “how to” tasks. In our default setup, we use
8-second non-overlapping clips from a 100K random subset
of the dataset (no more than 15 clips per video) as a support
video dataset, resulting in ~1.4M video clips.
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Pre-trained Method Supervision MSR-VTT YouCook2 DiDeMo MSVD LSMDC Mean

Model PEIVISION| R1 RS RI10 MR| Rl RS RI0 MR|RI R5 RI0 MR|RI R5 RI0O MR|RI RS RI0 MR| Rl R5 RI0 MR
Zero-shot none  [34.1 60.2 70.6 3 | 6.0 162 23.1 70 282 52.0 627 5 [38.8 64.8 740 2 |145 293 36.4 325|243 445 534 225

BLIP [31] In-Style (ours) ~only text |36.2 61.8 71.9 3 | 8.6 21.6 30.0 37 [32.1 61.9 712 3 |44.8 72.5 81.2 2 |16.1 33.6 39.7 25 | 27.6 503 588 14
GT fine-tuning T-V pairs {429 69.7 789 2 |12.6 32.0 43.6 15 |40.2 70.6 79.3 2 |48.1 76.6 85.0 2 |23.8 41.1 509 10 |33.5 580 675 6.2
Zero-shot none | 9.9 240 32.6 28 [19.8 429 551 8 | 6.6 19.0 268 42 |18.0 404 523 9 |36 8.5 13.0 177|116 270 360 5238

EAO[52] In-Style (ours) only text |16.4 35.8 48.9 10 |20.3 46.4 58.8 7 |13.2 31.6 44 15 (234 50 624 5 |49 123 167 94 |15.64 3522 46.16 26.2
GT fine-tuning TV pairs |22.8 47.8 60.3 6 |26.7 559 68.6 4 |19.2 43.1 544 8 [25.1 53.6 657 5 |89 21.2 294 40 | 20.5 443 557 126

Table 1: Text-video retrieval with style transfer. Comparison between upper bound, where the retrieval model trained with ground truth
aligned text-video pairs (T-V pairs), zero-shot respective models (no style transfer or tuning) and our In-Style method, where we follow
our new setting of uncurated & unpaired text-video retrieval for style transfer based only on input text queries.

Training Dataset MSR-VTT YouCook2 DiDeMo MSVD LSMDC Mean

R1 R5 RI0 MR‘RI R5 RI10 MR‘ R1 R5 RI0 MR‘ R1 R5 RI0 MR‘ Rl R5 RI10 MR| Rl R5 RI0O MR
MSR-VTT 362 61.8 719 3 |7.6 18.8 259 62 |29.0 545 654 4 |43.3 70.7 799 2 |152 285 353 31 |26.3 469 557 204
YouCook?2 31.5 555 644 4 |86 21.6 300 37 |25.1 539 652 4 |41.1 673 76.8 2 |14.2 288 369 30 |24.1 454 547 154
Didemo 34.0 585 689 3 |68 172 245 69 [32.1 61.9 71.2 3 |43.7 71.6 80.5 2 |16.6 30.5 384 28 |26.6 479 56.7 21
MSVD 36.0 594 695 3 |64 164 236 70 [27.0 549 650 4 44.8 725 81.2 2 |14.5 274 348 32 |25.7 46.1 54.8 222
LSMDC 339 603 699 3 |7.1 18.1 25.6 68 |31.7 59.9 69.1 3 |44.6 71.7 80.0 2 |16.1 33.6 39.7 25 |26.6 48.7 56.8 20.2
Target dataset (mean over diagonal) | - - - - - - - - - - - - ‘ - - - - - - - - 1275 503 588 14
All five datasets — standard training | 36.4 62.1 71.8 3 |8.7 21.4 294 44 |314 625 712 3 |44.7 729 81.5 2 |163 319 39.5 25 |27.5 50.2 58.7 154
All five datasets — In-Style (ours) 36.7 61.9 72.3 3 (8.5 21.8 30.4 38.5|32.6 61.8 71.2 3 ‘44.7 731 82.0 2 |16.6 322 39.8 26 |27.8 50.2 59.1 145

Table 2: Generalization performance of different models over all datasets. Mean denotes an

average of R1, RS, R10, MR over 5

datasets, correspondingly. Top: the proposed In-Style method with the input text queries only from one respective training dataset.

Bottom: training with 5 different text query styles. Comparison between standard multi-dataset training and proposed In-Style procedure.

5.2. Implementation Details

Model. We leverage the pre-trained dual-encoder CLIP
(ViT-B/32) model [47] in the matching module and the
filtering module. Captioner weights are initialized with
BLIP (ViT-B/16) captioner [3 1] which is pre-trained on five
different image-text datasets, including LAION [50] with
129M images. For retrieval, we consider two architectures:
dual encoder image-text initialized with BLIP (ViT-B/16),
and dual encoder video-text architecture initialized from
EAO [52] pre-trained on HowTo100M with noisy ASR nar-
rations. We follow [52] and use a model with a S3D [59]
feature extractor and weights that were pre-trained with a
video-text-audio triplet, but only utilize the video-text en-
coder and report all results without audio.

Training. For training, we uniformly sample m = 8
frames per video with a resolution of 224 x 224, augmented
with RandAugment [13]. For the captioner training and
BLIP-architecture retrieval model, we use AdamW opti-
mizer [36] with a weight decay of 0.05 and a batch size of
128, and a learning rate 1.0e —05 for captioner and 1.0e—06
for retrieval. Following [52], for the EAO model, we used
Adam optimizer [26] without weight decay. More training
details can be found in the supplement.

Evaluation. For testing, we use m = 64 frames for the
fine-grained DiDeMo dataset, and m = 12 for all others,
following [38]. For text-video retrieval, we report standard
recall metrics for R1, R5, R10, and the median rank (MR).

5.3. Text Query Style

We consider text style as a set of attributes and proper-
ties of the text shared across a text corpus. Such properties
might be the usage of stop words, sentence construction,
sentiment, text length, etc. To highlight those differences,
we show three text examples from the different datasets
in Table 3. The respective word clouds for these datasets
with and without stop words can be found in Figure 2 in
the supplement. It shows that the sentence structure and
most frequent words change across datasets. For example,
the YouCook?2 test queries always start with an action verb,
while in other datasets, the subject+verb+object structure
is mostly used. While in the MSR-VTT dataset, frequent
words are third person nouns like “man”, “woman”, “per-
son”, “people”, the DiDeMo uses more words about cam-
era position like “camera”, “left”, “right”, “screen”, “view”,
and the LSMDC mostly describes a subject as “someone”.
While the MSR-VTT and the MSVD datasets might look
similar, Table 3 shows that sentences in the MSR-VTT are
1.5 times longer than in the MSVD on average. We consider
such properties as style properties of the text.

5.4. Uncurated & Unpaired Text-Video Retrieval

Single Dataset Training. First, we demonstrate the effi-
ciency of the proposed style transfer method in uncurated &
unpaired text-video retrieval on five different downstream
datasets in Table 1. We present results for the image-text
pre-trained BLIP [31] model as well as for the video-text
pre-trained EAO [52] model. We consider three evalua-
tion scenarios: 1) zero-shot performance; 2) the perfor-
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Dataset ‘ Examples
1) The peoples are sharing their view on this car of
MSR-VTT | different models

(~43 symbols |2) Someone is showing the ingredients for a dish

in a text) they are going to make
3) A man is playing an instrument
YouCook?2 1) Combine macaroni sauce and cheese

(~39 symbols |2) Grate and cube potatoes

in a text) 3) Stir in crushed tomatos
1) A dog runs down a hill and stop behind a shrub.
Dog sniffs and chews at patch of grass on rock. the
DiDeMo dog approaches, then begins to sniff the cluster of

(~147 symbols | plants first time hand is seen petting dog.

in a text) 2) Only big screen is visible the camera first pans
to the large screen. The view shifts from the bas-
ketball court to the fans in the seats across the sta-
dium. Camera goes to the bigscreens the dancers
are shown on the jumbotraun.
3) A bus stops. The bus stops at the end of the drive-
way. A kid is coming out of a school bus. School
bus doors open.

MSVD 1) The cats are fighting
(~31 symbols |2) The lady sliced a vegetable

in a text) 3) A man is eating a pizza
1) SOMEONE goes to the kitchen, wets a towel,
LSMDC comes back to the bed, kneels it, places the towel

(~46 symbols | on SOMEONE’s brow.
in a text) 2) He slaps SOMEONE again.
3) SOMEONE moves off through the crowd.

Table 3: Three random examples of text descriptions in dif-
ferent datasets. With the dataset name, we also report the
median length of a text in the dataset.

mance of our style transfer method in the text-video re-
trieval task with uncurated & unpaired data where only text
queries are available during training; 3) training with the
ground truth aligned text-video pairs, which can be consid-
ered as an upper bound for our task. It shows that the pro-
posed In-Style method significantly outperforms zero-shot
performance even without using any aligned training sam-
ples from the target distribution. This supports the hypoth-
esis that the style of the text queries is an important compo-
nent of text-video retrieval. Moreover, we observe that the
gap between training with ground truth aligned pairs and
the style transfer can be remarkably small, especially on the
MSVD dataset, indicating the benefits with respect to a po-
tential annotation cost reduction in the proposed setup.

Multi-Dataset Training. Second, we evaluate the pro-
posed multi-dataset training procedure with the In-Style
method in Table 2. Here, a minibatch is compiled from
a single text source as shown in Figure 3. This is fa-
vorable compared to the standard training, where data
points in a minibatch are randomly sampled from all data

sources together. It shows that the proposed procedure
leads to improved retrieval performance compared to in-
dividually trained models and better generalization across
all datasets compared to the standard multi-dataset training.
We attribute the performance increase compared to standard
multi-dataset training to the fact that considering the cap-
tions of only the same style in contrastive loss provides a
model with a cleaner learning signal with stronger text neg-
ative counterparts. As an example, “add sliced cucumber”
in YouCook?2 style would be a stronger negative in compar-
ison to a correct “add sliced tomato” query than a “a person
in a video puts sliced cucumber in a salad” in MSR-VTT
style. More discussions of generalization can be found in
the supplement.

5.5. Comparison with SOTA

We further compare the proposed method with zero-shot
retrieval baselines in Table 4. We report the performance
of BLIP and CLIP backbones trained with text queries from
the VATEX dataset, thus text queries do not follow distri-
bution of any of the test datasets. The closest counterpart
to our model is Nagrani et al. method [42], which uti-
lizes the pre-trained image-text CLIP backbone, which is
further trained with the VideoCC3M dataset [42] — a video-
text dataset collected by automatic transferring image cap-
tions from text-image CC3M dataset [51]. The conceptual
difference between [42] and our method is that [42] pro-
poses to transfer image captions from the image-caption
dataset by pairing images to videos, while the proposed In-
Style method adapts the model to the video captions. While
noting that a direct comparison to different state-of-the-art
methods is limited due to different pre-training datasets, it
can be observed that the proposed In-Style method achieves
the best results on four out of five datasets, underperforming
only in YouCook?2, which might benefit from HowTo100M
pretraining. We additionally validate the statement that text
queries can be used without any corresponding videos by
using texts from WikiHow [27] and Food.com [39] datasets
that contain descriptions of different actions/steps to solve
tasks or cook meals. In Table 4, we show that style transfer
from both datasets especially benefits YouCook?2 retrieval
performance that we attribute to the similarity in text styles
(see the supplement). However, style transfer from the Wik-
iHow, which is more diverse and covers a larger variety of
topics, also improves the performance over the baselines on
the DiDemo, MSVD, and LSMDC datasets.

5.6. Efficiency of Style Transfer

Training Pairs. In Table 5, we compare the performance
of the models trained either with pseudo pairs P,, or
with generated pairs P,.,, or with a combination of them
Pps + Pyen. All setups boost the performance of text-
video retrieval by a large margin compared to zero-shot

21987



MSR-VTT

YouCook2 DiDeMo MSVD

Method fmage-Text Datasets Video-Text Datasets Rl R5 RI0 MR|RI RS RI0O MR|RI RS RI0 MR|RI R5 RI0 MR| Rl RS RI0 MR
HowTol0OM [41] - HowTol00M 75 212296 38 |61 173 248 46| - - - - | - - - - |- - - -
SupportSet [45] - HowTol00M 87 230 311 31| - - - - | - - . - |89 20379 18] - - - -
VATT[1] HowTol00M+AS - - 297 49| - - 455 13| - - - |- - o oo -
EAO! [52] HowTol00M 9.9 240 326 28 |19.8 429 55.1 8 | 6.6 190 268 42 [180 404 523 9 |36 85 13.0 177
Nagrani et al. [42] - VideoCC3M 19.4 39.5 50.3 - - - - - - - - - - - - - - - - -
Frozenin Time [3] ~ CC+COCO WebVid-2M 247 469 572 7 | - - - l2r 460562 7| - - - - |- - o -
CLIP-straight [46] ~ WIT - 312537 642 4 | - - - - | - - - - (370 641 738 2 |113 227 292 56.5
CLIP4CLIP [38] WIT HowTol00M 320570 669 4 | - - - - |- - 385 669 768 2 |15.1 285 364 28
Nagrani etal. [42]  WIT VideoCC3M 37579679 - | - - - - |- o o oo oo oo L L
BLIPI [31] CC+COCO+3more* - 333 573 67.5 35|58 150 21.9 76 |246 50.4 597 53 |37.0 633 726 3 |152 282 359 35
In-Style (ours) (CLIP) WIT HowTol00MT+VATEX! |35.0 59.6 704 3 |51 140 203 103[26.6 505 626 5 |386 663 77.9 3 |160 316 38.5 265
In-Style (ours) (BLIP) CC+COCO+3more* HowTol00M'+VATEX? [36.0 619 715 3 | 68 167 245 63 |29.4 592 68.6 3.5|d4.9 727 8L1 2 |164 30.1 38.7 28
In-Style (ours) (BLIP) CC+COCO+3more* HowTol00M'+WikiHow [34.2 59.6 69.0 3 | 7.3 19.2 27.1 46 |29.7 562 674 4 |428 702 79.1 2 |17.0 30.8 39.6 27
In-Style (ours) (BLIP) CC+COCO+3more* HowTol00M'+Food.com [32.8 54.9 65.8 4 | 7.2 19.8 27.0 47 |257 528 63.1 5 |39.5 64.9 749 2 |14.5 289 37.2 30.5
In-Style (ours) (BLIP) CC+COCO+3more” HowTol0OM!+Target’ [36.2 618 719 3 | 8.6 21.6 30.0 37 [32.1 61.9 712 3 [44.8 725 812 2 |16.1 336 397 25
In-Style (ours) (EAO) - HowTol0OM+Target: | 16.4 35.8 489 10 |203 464 588 7 |132 31.6 440 15 |234 50.0 624 5 | 49 123 167 94

Table 4: Zero-shot comparison with other methods. Top: zero-shot retrieval with methods pre-trained on video-language or/and
images-language web or/and curated datasets which exclude target datasets during training. For our In-Style method, the VATEX dataset
is used as a source of text queries. Bottom: uncurated & unpaired text-video retrieval with text queries from the respective target datasets
for comparison purposes. Note that this setting is not zero-shot. T denotes that only videos were used (without paired text) and { — only
text (without videos). ¥For EAO, performance with S3D backbone is reported. llFor BLIP, the performance of dual encoder architecture is

reported (not image-grounded text encoder). *CC [7]+COCO [33]+VG [28]+SBU [44] +LAION [50]. AS denotes AudioSet [19].
Training Data MSR-VTT YouCook2 DiDeMo MSVD LSMDC Average

Rl R5 RI0O MR|RI R5 RI0O MR|RI RS RI0O MR|RI R5 RI0 MR| Rl R5 RI0 MR|RI RS RI0 MR
— (zero-shot) 34.1 602 706 3 |60 16.2 23.1 70 [28.2 52.0 62.7 5 [38.8 64.8 740 2 |14.5 29.3 364 32.5(243 445 533 225
Pseudo pairs Py, 350 614 709 3 |75 19.6 289 43 |33.1 59.8 712 3 |44.3 724 81.0 2 |16.8 32.7 404 25 273 49.2 584 152
Generated pairs Py, [36.2 61.8 719 3 |8.6 21.6 30.0 37 (321 61.9 712 3 |44.8 725 81.2 2 |16.1 33.6 39.7 25 |27.6 50.3 58.8 14.0
Combined Py, + Pyen, [36.0 613 715 3 |89 21.8 29.8 37 |32.6 61.8 702 3 |44.4 722 808 2 |17.1 324 404 26 |27.8 49.9 58.5 142

Table 5: Different types of training pairs for text-video retrieval step. We evaluate text-video retrieval with pseudo pairs P, only,
with generated pairs Pye,, only, and the combination of both Pps + Pgen.

text-video retrieval. The generated pairs Py, achieve a bet-
ter performance than pseudo pairs P, on all datasets except
LSMDC, whereas a combination of P,,;+ Py, does not im-
prove performance on average. We note that the number of
pairs in Py, is significantly larger than in P,, (Table 7b)
for all datasets except LSMDC (a dataset of movies, which
might contain a larger domain shift to YouTube videos com-
pared to other datasets). We assume that in this case Py,
contains better-aligned pairs since each generated text de-
scription is conditioned on the corresponding video, while
in P, a fixed set of descriptions is matched (see exam-
ples in Figure 4) explaining the performance drop with
P, ps + P, gen-

Style Transfer. In Table 6, we consider how much the
text style transfer in the generated pairs Py, influences the
retrieval performance. For this, we considered three sets
of Pgey for the training retrieval model: 1) Py, gener-
ated with zero-shot BLIP captioner; 2) In-Style P, gen-
erated with captioner trained on P, with text queries from
a different non-target dataset (we used the VATEX dataset);
3) In-Style P,.,, with a captioner trained on P,, with text
queries from the target dataset. We observe that training the
model with generated text-video pairs (from uncurated web
videos from the HowTo100M dataset) by a zero-shot image-

pretrained captioner already improves the performance in
all video retrieval datasets. We attribute this to the con-
tent and style adaptation of the image-language model to
the specific appearances in the videos. However, such mod-
els tend to generate “static”” descriptions that do not involve
actions. Thus, text queries from non-target video datasets,
namely the VATEX dataset, improve the retrieval perfor-
mance further. Yet, we notice that YouCook2 does not ben-
efit from the VATEX text queries as from the zero-shot gen-
erated captions. Finally, using training text queries from the
target dataset excels on the considered benchmarks.

5.7. Ablation Study

Matching Method. To obtain generated pairs, we train the
captioner with pseudo pairs that were created by a match-
ing module. In Table 7c, we consider two options for
the matching module: image-text pre-trained dual encoders
from BLIP [31] and CLIP [47], as well as the “Random”
option where text queries are simply matched with the ran-
dom videos. We report the text-video retrieval performance
of our final model using the given option of the matching
module. We observe that matching module based on CLIP
leads to better performance. We attribute that to the robust-
ness of CLIP to the noisy web data as it was trained on
large-scale web image-text pairs, whereas BLIP utilizes ad-
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Training data MSR-VTT YouCook2 DiDeMo MSVD LSMDC Average

Rl R5 RI0 MR|RI R5 RI10 MR|RI R5 RI0 MR|RI R5 RI0 MR|RI R5 RI0 MR|RI R5 RI0 MR
— (zero-shot) 34.1 602 70.6 3 |60 162 23.1 70 (282 52.0 627 5 |38.8 648 740 2 |145 29.3 36.4 32 [243 445 533 225
Pyen with zero-shot captioner | 36.3 61.6 71.8 3 |7.1 18.4 256 65 |28.7 563 650 4 |43.8 71.2 80.1 2 |16.0 29.2 37.7 30 |26.3 47.3 56.1 20.8
In-Style Pye,, (non-target)  [36.0 61.9 715 3 |6.8 16.7 245 63 |29.4 59.2 68.6 3.5|44.9 72.7 81.1 2 |16.4 30.1 387 28 |26.7 48.1 569 19.9
In-Style Pyen (target) 36.2 61.8 71.9 3 (8.6 21.6 30.0 37 |32.1 61.9 71.2 3 |44.8 72.5 81.2 2 |16.1 33.6 39.7 25 |27.6 50.3 58.8 14

Table 6: Source of generated pairs Pger, for text-video retrieval. Comparison between zero-shot BLIP (no adaption of retrieval model),
zero-shot BLIP captioner, and adapted BLIP captioner with our In-Style method with either text queries from VATEX (non-target) or text

queries from the target datasets.

( a man makes juice with a toy \ / the man turns the cloth over \
e . . A
3 ] - - - Ji
g A A o
£ " & R 5% Py ¥ £
°L g W < °4
8 d i A | 8

a man makes juice with a toy

_mj ﬁi éi - Q"

pseudo pair

the man turns the cloth over

pseudo pair

guy adds water to food in a blender

generated pair

ORI S

\_

generated pair

-

Figure 4: Qualitative evaluation of P, and P,.,, on the MSR-VTT (left) and DiDeMo (right) datasets. First, a text query is matched
with one of the videos (a pseudo pair P,s), and then, after the style preservation step, for each video new caption is generated in the same

style but with updated content (a generated pair Pgep ).

Filt. Thr.‘ Rl R5 RI10 MR Dataset #Pseudo #Generated
Pairs Pairs

0.26 439 71.8 80.8 2 MSR-VTT| 180k 495k

0.27 442 722 809 2

028 448 725 812 2 YouCook 10k 168k

. 4 : - - > Didemo 33k 280k

0.29 5.0 72.3 80.9 MSVD 48k 379k

030 [451 72 808 2 ygvmpc | 101k 144k

(a) Filtering threshold (b) Number of P, and Py,

Matching‘ R1 R5 RI10 MR Training pairs | B@4 ROUGE CIDEr
Random |39.1 66.3 75.8 2 — (zero-shot) |0.305 0.519 0.610
BLIP 441 71.4 80.0 2 Pseudo pairs | 0.559 0.628  1.059
CLIP 44.8 725 81.2 2 GTpairs ~ [0.659 0.680 1.296

(c) Matching method (d) Captioning performance

Table 7: Ablations of our In-Style method on the MSVD.

ditional filtering to reduce the noise in the training.
Filtering Threshold. In Table 7a, we consider the effect of
filtering on the quality of the generated pairs P,.,,. We find
threshold th = 0.28 works the best, indicating that filtering
is an important step for our style transfer framework.
Captioning Perforformance Finally, we evaluate the cap-
tioning performance of the captioner trained with pseudo
pairs P,; with the standard NLP metrics BLEU@4,
ROUGE and CIDEr. Table 7d demonstrates that the cap-
tioner trained with pseudo pairs almost doubles the zero-
shot captioner performance, significantly reducing the gap
to the training with ground truth supervision.

6. Conclusion

In this work, we address a new task of text-video retrieval
with uncurated & unpaired data, where during training only
text queries are available. Motivated by the fact that differ-
ent domains imply diverse styles of video descriptions, we
introduced the In-Style method that preserves the style of
the given input queries and transfers it to the support set of
unrelated web videos, creating aligned text-video pairs with
the style of input. Utilization of obtained text-video pairs
as supervision leads to a significant performance boost in
text-video retrieval. Moreover, we show the performance
generalization of a single model that we train with multi-
ple styles simultaneously, proposing a training procedure
for multi-dataset training. We evaluate the proposed model
over multiple datasets and show the advantages of the In-
Style method on the task of uncurated & unpaired text-video
retrieval and achieve new state-of-the-art results for zero-
shot text-video retrieval.

Acknowledgements

We would like to thank Stephan Alaniz for his invalu-
able help in this work. Nina Shvetsova is supported by Ger-
man Federal Ministry of Education and Research (BMBF)
project STCL - 011S22067.

21989



References

(1]

(2]

(3]

(4]

(3]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

(14]

[15]

Hassan Akbari, Liangzhe Yuan, Rui Qian, Wei-Hong
Chuang, Shih-Fu Chang, Yin Cui, and Boging Gong. Vatt:
Transformers for multimodal self-supervised learning from
raw video, audio and text. In NeurIPS, 2021. 8

Lisa Anne Hendricks, Oliver Wang, Eli Shechtman, Josef
Sivic, Trevor Darrell, and Bryan Russell. Localizing mo-
ments in video with natural language. 2017. 5

Max Bain, Arsha Nagrani, Giil Varol, and Andrew Zisser-
man. Frozen in time: A joint video and image encoder for
end-to-end retrieval. In ICCV, 2021. 2, 5, 8

Simion-Vlad Bogolin, Ioana Croitoru, Hailin Jin, Yang Liu,
and Samuel Albanie. Cross modal retrieval with querybank
normalisation. In CVPR, 2022. 2

Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Alt-
man, Simran Arora, Sydney von Arx, Michael S Bernstein,
Jeannette Bohg, Antoine Bosselut, Emma Brunskill, et al.
On the opportunities and risks of foundation models. arXiv
preprint arXiv:2108.07258, 2021. 2

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou,
Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In
ICCV, 2021. 2

Soravit Changpinyo, Piyush Sharma, Nan Ding, and Radu
Soricut. Conceptual 12m: Pushing web-scale image-text pre-
training to recognize long-tail visual concepts. In CVPR,
2021. 8

David Chen and William B Dolan. Collecting highly paral-
lel data for paraphrase evaluation. In Proceedings of the 49th
annual meeting of the association for computational linguis-
tics: human language technologies, 2011. 5

Shizhe Chen, Yida Zhao, Qin Jin, and Qi Wu. Fine-grained
video-text retrieval with hierarchical graph reasoning. In
CVPR, 2020. 2

Xinlei Chen*, Saining Xie*, and Kaiming He. An empiri-
cal study of training self-supervised vision transformers. In
ICCV, 2021. 2

Ego4D Consortium et al. Egocentric live 4d perception
(ego4d) database: A large-scale first-person video database,
supporting research in multi-modal machine perception for
daily life activity. 2

Ioana Croitoru, Simion-Vlad Bogolin, Marius Leordeanu,
Hailin Jin, Andrew Zisserman, Samuel Albanie, and Yang
Liu. Teachtext: Crossmodal generalized distillation for text-
video retrieval. In ICCV, 2021. 2

Ekin D Cubuk, Barret Zoph, Jonathon Shlens, and Quoc V
Le. Randaugment: Practical automated data augmentation
with a reduced search space. In CVPR Workshops, 2020. 6
Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In /CLR, 2021. 2
Maksim Dzabraev, Maksim Kalashnikov, Stepan Komkov,
and Aleksandr Petiushko. Mdmmt: Multidomain multi-
modal transformer for video retrieval. In CVPR, 2021. 2

(16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

(29]

(30]

(31]

21990

Han Fang, Pengfei Xiong, Luhui Xu, and Yu Chen.
Clip2video: Mastering video-text retrieval via image clip.
arXiv preprint arXiv:2106.11097, 2021. 2, 3

Valentin Gabeur, Chen Sun, Karteek Alahari, and Cordelia
Schmid. Multi-modal transformer for video retrieval. In
ECCV,2020. 2,5

Zijian Gao, Jingyu Liu, Sheng Chen, Dedan Chang, Hao
Zhang, and Jinwei Yuan. Clip2tv: An empirical study on
transformer-based methods for video-text retrieval. arXiv
preprint arXiv:2111.05610, 2021. 2

Jort F Gemmeke, Daniel PW Ellis, Dylan Freedman, Aren
Jansen, Wade Lawrence, R Channing Moore, Manoj Plakal,
and Marvin Ritter. Audio set: An ontology and human-
labeled dataset for audio events. In ICASSP, 2017. 8

Satya Krishna Gorti, Noél Vouitsis, Junwei Ma, Keyvan
Golestan, Maksims Volkovs, Animesh Garg, and Guangwei
Yu. X-pool: Cross-modal language-video attention for text-
video retrieval. In CVPR, 2022. 2

Kristen Grauman, Andrew Westbury, Eugene Byrne,
Zachary Chavis, Antonino Furnari, Rohit Girdhar, Jackson
Hamburger, Hao Jiang, Miao Liu, Xingyu Liu, et al. Ego4d:
Around the world in 3,000 hours of egocentric video. In
CVPR, 2022. 2

Tengda Han, Weidi Xie, and Andrew Zisserman. Temporal
alignment networks for long-term video. In CVPR, 2022. 2
Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr
Dollar, and Ross Girshick. Masked autoencoders are scalable
vision learners. In CVPR, 2022. 2

Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin
Choi. The curious case of neural text degeneration. In /CLR,
2020. 4

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In ICML, 2021. 2
Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. In ICLR, 2015. 6

Mahnaz Koupaee and William Yang Wang. Wikihow:
A large scale text summarization dataset. arXiv preprint
arXiv:1810.09305, 2018. 5,7

Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. IJCV. 8

Jie Lei, Linjie Li, Luowei Zhou, Zhe Gan, Tamara L Berg,
Mohit Bansal, and Jingjing Liu. Less is more: Clipbert for
video-and-language learning via sparse sampling. In CVPR,
2021. 2

Gen Li, Nan Duan, Yuejian Fang, Ming Gong, and Daxin
Jiang. Unicoder-vl: A universal encoder for vision and lan-
guage by cross-modal pre-training. In AAAI, 2020. 2
Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
Blip: Bootstrapping language-image pre-training for unified
vision-language understanding and generation. In ICML,
2022. 1,2,3,4,5,6,8



(32]

(33]

(34]

[35]

(36]

(37]

(38]

[39]

(40]

(41]

[42]

[43]

[44]

[45]

[46]

[47]

Linjie Li, Yen-Chun Chen, Yu Cheng, Zhe Gan, Licheng Yu,
and Jingjing Liu. Hero: Hierarchical encoder for video+ lan-
guage omni-representation pre-training. In EMNLP, 2020.
2

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollar, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. In
ECCV,2014. 8

Yang Liu, Samuel Albanie, Arsha Nagrani, and Andrew Zis-
serman. Use what you have: Video retrieval using represen-
tations from collaborative experts. 2019. 2

Yuqi Liu, Pengfei Xiong, Luhui Xu, Shengming Cao, and
Qin Jin. Ts2-net: Token shift and selection transformer for
text-video retrieval. In ECCV, 2022. 2, 3

Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In /CLR, 2019. 6

Huaishao Luo, Lei Ji, Botian Shi, Haoyang Huang, Nan
Duan, Tianrui Li, Jason Li, Taroon Bharti, and Ming Zhou.
Univl: A unified video and language pre-training model for
multimodal understanding and generation. arXiv preprint
arXiv:2002.06353, 2020. 2, 3

Huaishao Luo, Lei Ji, Ming Zhong, Yang Chen, Wen Lei,
Nan Duan, and Tianrui Li. Clip4clip: An empirical study of
clip for end to end video clip retrieval and captioning. Neu-
rocomputing, 508, 2022. 2, 3, 6, 8

Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and
Julian McAuley. Generating personalized recipes from his-
torical user preferences. In EMNLP, 2019. 5,7

Antoine Miech, Jean-Baptiste Alayrac, Lucas Smaira, Ivan
Laptev, Josef Sivic, and Andrew Zisserman. End-to-end
learning of visual representations from uncurated instruc-
tional videos. In CVPR, 2020. 2

Antoine Miech, Dimitri Zhukov, Jean-Baptiste Alayrac,
Makarand Tapaswi, Ivan Laptev, and Josef Sivic.
Howto100m: Learning a text-video embedding by watching
hundred million narrated video clips. In ICCV, 2019. 2, 3,
5,8

Arsha Nagrani, Paul Hongsuck Seo, Bryan Seybold, Anja
Hauth, Santiago Manen, Chen Sun, and Cordelia Schmid.
Learning audio-video modalities from image captions. In
ECCV,2022. 7,8

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Repre-
sentation learning with contrastive predictive coding. arXiv
preprint arXiv:1807.03748, 2018. 2, 4

Vicente Ordonez, Girish Kulkarni, and Tamara Berg.
Im2text: Describing images using 1 million captioned pho-
tographs. NeurIPS, 24,2011. 8

Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian
Metze, Alexander Hauptmann, Joao Henriques, and Andrea
Vedaldi. Support-set bottlenecks for video-text representa-
tion learning. In ICLR, 2021. 8

Jesis Andrés Portillo-Quintero, José Carlos Ortiz-Bayliss,
and Hugo Terashima-Marin. A straightforward framework
for video retrieval using clip. In Pattern Recognition: 13th
Mexican Conference, 2021. 2, 8

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,

(48]

[49]

(50]

(51]

(52]

(53]

(54]

[55]

[56]

(571

(58]

[59]

(60]

(61]

[62]

21991

Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, 2021. 1,2, 3,6, 8

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario
Amodei, Ilya Sutskever, et al. Language models are unsu-
pervised multitask learners. 2019. 2

Anna Rohrbach, Marcus Rohrbach, and Bernt Schiele. The
long-short story of movie description. In GCPR. 5
Christoph Schuhmann, Richard Vencu, Romain Beaumont,
Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo
Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m:
Open dataset of clip-filtered 400 million image-text pairs.
arXiv preprint arXiv:2111.02114, 2021. 6, 8

Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In ACL,
2018. 7

Nina Shvetsova, Brian Chen, Andrew Rouditchenko, Samuel
Thomas, Brian Kingsbury, Rogerio S Feris, David Harwath,
James Glass, and Hilde Kuehne. Everything at once-multi-
modal fusion transformer for video retrieval. In CVPR, 2022.
2,4,5,6,8

Weijie Su, Xizhou Zhu, Yue Cao, Bin Li, Lewei Lu, Furu
Wei, and Jifeng Dai. VI-bert: Pre-training of generic visual-
linguistic representations. In /CLR, 2020. 2

Yoad Tewel, Yoav Shalev, Idan Schwartz, and Lior Wolf.
Zerocap: Zero-shot image-to-text generation for visual-
semantic arithmetic. In CVPR, 2022. 2

Ashwin K Vijayakumar, Michael Cogswell, Ramprasath R
Selvaraju, Qing Sun, Stefan Lee, David Crandall, and Dhruv
Batra. Diverse beam search: Decoding diverse solutions
from neural sequence models. In AAAI 2015. 4

Xin Wang, Jiawei Wu, Junkun Chen, Lei Li, Yuan-Fang
Wang, and William Yang Wang. Vatex: A large-scale, high-
quality multilingual dataset for video-and-language research.
InICCV, 2019. 5

Xiaohan Wang, Linchao Zhu, and Yi Yang. T2vlad: global-
local sequence alignment for text-video retrieval. In CVPR,
2021. 2

Wenhao Wu, Haipeng Luo, Bo Fang, Jingdong Wang, and
Wanli Ouyang. Cap4video: What can auxiliary captions do
for text-video retrieval? In CVPR, 2023. 2

Saining Xie, Chen Sun, Jonathan Huang, Zhuowen Tu, and
Kevin Murphy. Rethinking spatiotemporal feature learning:
Speed-accuracy trade-offs in video classification. In ECCV,
2018. 6

Hu Xu, Gargi Ghosh, Po-Yao Huang, Dmytro Okhonko,
Armen Aghajanyan, Florian Metze, Luke Zettlemoyer, and
Christoph Feichtenhofer. Videoclip: Contrastive pre-training
for zero-shot video-text understanding. In EMNLP, 2021. 2
Jun Xu, Tao Mei, Ting Yao, and Yong Rui. Msr-vtt: A large
video description dataset for bridging video and language. In
CVPR, 2016. 5

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mo-
jtaba Seyedhosseini, and Yonghui Wu. Coca: Contrastive
captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917,2022. 2



[63]

[64]

[65]

[66]

Youngjae Yu, Jongseok Kim, and Gunhee Kim. A joint se-
quence fusion model for video question answering and re-
trieval. In ECCV, 2018. 2

Rowan Zellers, Ximing Lu, Jack Hessel, Youngjae Yu,
Jae Sung Park, Jize Cao, Ali Farhadi, and Yejin Choi. Mer-
lot: Multimodal neural script knowledge models. NeurIPS,
2021. 2

Yue Zhao, Ishan Misra, Philipp Krihenbiihl, and Rohit Gird-
har. Learning video representations from large language
models. In arXiv preprint arXiv:2212.04501, 2022. 2
Luowei Zhou, Chenliang Xu, and Jason Corso. Towards
automatic learning of procedures from web instructional
videos. In AAAI 2018. 5

21992



