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Abstract

Contrastive learning has become an important tool in
learning representations from unlabeled data mainly rely-
ing on the idea of minimizing distance between positive data
pairs, e.g., views from the same images, and maximizing
distance between negative data pairs, e.g., views from dif-
ferent images. This paper proposes a new variation of the
contrastive learning objective, Group Ordering Constraints
(GroCo), that leverages the idea of sorting the distances
of positive and negative pairs and computing the respec-
tive loss based on how many positive pairs have a larger
distance than the negative pairs, and thus are not ordered
correctly. To this end, the GroCo loss is based on differen-
tiable sorting networks, which enable training with sorting
supervision by matching a differentiable permutation ma-
trix, which is produced by sorting a given set of scores, to a
respective ground truth permutation matrix. Applying this
idea to groupwise pre-ordered inputs of multiple positive
and negative pairs allows introducing the GroCo loss with
implicit emphasis on strong positives and negatives, leading
to better optimization of the local neighborhood. We eval-
uate the proposed formulation on various self-supervised
learning benchmarks and show that it not only leads to im-
proved results compared to vanilla contrastive learning but
also shows competitive performance to comparable meth-
ods in linear probing and outperforms current methods in
k-NN performance. 1

1. Introduction
Self-supervised learning has become a topic of grow-

ing interest over the last years as it allows models to learn

representations from large-scale data without the need for

human annotation. Many approaches rely on the idea

of contrastive learning and were able not only to nar-

row the gap to the supervised learning performance in vi-

sion [23, 14, 60, 30, 3, 63], but also to train state-of-the-art

vision-language [52, 56] and multimodal models [40]. All

1https://github.com/ninatu/learning_by_sorting

Figure 1. The idea of the proposed group ordering constraints loss

compared to pairwise contrastive losses: GroCo arranges positive

and negative data points so that the largest distance to positives

must be smaller than the smallest distance to negative points. To

this end, the loss implicitly minimizes the amount of necessary

swap operation to achieve the ordering constraint. Thus, it focuses

on overlapping positives and negatives compared to standard con-

trastive losses that minimize resp. maximize all pairwise distances.

of these methods rely on the concept of the pairwise con-

trastive loss, which is based on the idea that a so-called

positive pair, e.g., an image serving as an anchor and an

augmentation of the same image, should be closer to each

other in an embedding space than a so-called negative pair,

e.g., a pair made up of an anchor image and a different im-

age, should be far away from each other. However, it has

been noted that the idea of a pairwise contrastive loss also

has some limitations, such as the alignment of the embed-

ding space based on individual pairs. Several attempts have

been made to address this issue, e.g., combining the con-

trastive idea with concepts based on local neighborhoods,

such as clustering (SwAV [11]), or minimizing distances be-

tween multiple positive pairs for the same instance together

(Whitening [24]). Another limitation of the contrastive loss

is that is that the embedding space is optimized with re-

spect to all negatives, i.e., even negatives that are far away

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. Overview of the proposed loss: Distances of positives and negatives are computed with respect to an anchor. The concatenated

distances are sorted via a differentiable sorting network that computes the swapping probability. The result is a differentiable permutation

matrix, in which the column values can be considered as the probabilities of sorting the elements to the corresponding positions. To enforce

only the relationships between groups, we sum over the positive and negative rows of the permutation matrix. The loss is then computed

as the BCE between the row-wise entries and the ground truth.

from the anchor will contribute to the optimization of the

representation. Other methods were proposed to address

this issue, such as hard negative selection by controlling the

hardness of examples [53] or negative selection by sparse

support vectors [57]. Nevertheless, these methods still re-

quire manual selection of the hardness level [53] or incur an

additional optimization cost [57].

To shift away from the concept of minimizing resp. max-

imizing all pairwise distances, this paper proposes a varia-

tion of the contrastive learning formulation, namely Group

Ordering Constraints (GroCo). The idea of GroCo is that

positive and negative distances should be sorted in a way

that any positive should be closer to an anchor image than

any negative, thus forming a group of positive pairs and a

group of negative pairs. The idea is illustrated in Figure 1.

In comparison to pairwise contrastive losses, the GroCo

loss combines the distance information of groups of posi-

tive and negative pairs and optimization mainly depends on

incorrectly “sorted” pairs. To enforce the group ordering

constraints in the projection space, we propose the idea of

learning by sorting: we suggest sorting positives and neg-

atives by distance to the anchor image in a differentiable

way and swapping them if they are in the wrong order. This

leads to a more holistic approach considering all relation-

ships between data points, thereby better utilizing and op-

timizing the embeddings (esp. for multiple positive pairs),

and leading to improved down-stream performance. To cre-

ate an end-to-end training pipeline, we leverage recent ad-

vances in differentiable sorting [21, 28, 44, 45, 46, 47, 48].

Specifically, we utilize a differentiable sorting algorithm to

obtain a differentiable permutation matrix for sorting a list

of distances to the positive and negative images, as shown in

Figure 2. If we would know the full ground truth orderings

among positives and negatives (such as which positive sam-

ple should be closer to the anchor than another positive sam-

ple), we could create a ground truth permutation matrix, and

calculate how much the predicted permutation matrix would

deviate from the ground truth one [28, 21, 45, 47]. Because

we do not know the ground truth distance ordering within

the positive or the negative groups, we propose the GroCo

loss as a relaxed formulation of the original sorting super-

vision that captures how many negative elements appear in

the positive positions and vice versa. The proposed GroCo

loss alleviates some aspects of vanilla contrastive learning:

first, it treats positive and negative pairs as groups instead

of individual pairs, and second, the resulting group order-

ing focuses on optimizing the local neighborhood around an

anchor image by mainly optimizing too close negative and

too distant positives, rather than optimizing all data points

at once. Thus, it implicitly also focuses on the strongest

positive (furthest from the anchor) and strongest negative

(closest to the anchor) examples.

To show the capabilities of the proposed approach, we

evaluated it on various competitive self-supervised learning

benchmarks, namely in the context of linear probing, k-NN

classification, transfer learning, as well as image retrieval.

The evaluation shows that the model trained via group or-

dering constraints outperforms contrastive learning frame-

works in linear probing and transfer learning and excels

in the context of shaping local neighborhoods on the tasks

such as k-NN classification and image retrieval.

The contributions of this work are summarized as follows:

• We advance the concept of contrastive learning by in-

troducing Group Ordering Constraints (GroCo) that treat

positive and negative elements as groups rather than in-

dividual pairs as in conventional contrastive learning.

• To derive a loss that optimizes the proposed constraints,

we harness recent differentiable sorting methods and ob-

tain a loss that suggests sorting positive and negative ele-

ments and swapping them if they are in the wrong order

— thus, we introduce a new contrastive learning method

called learning by sorting.

• The proposed method provides embeddings that achieve
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competitive performance in linear probing and are espe-

cially suitable to model the local neighborhoods and out-

perform contrastive learning frameworks on a wide range

of nearest-neighbor tasks.

2. Related Work
2.1. Self-supervised Representation Learning
Contrastive methods: Over the last years, self-supervised

learning methods that enforce the model to be robust to

different image distortions achieved great performance im-

provements in self-supervised learning [14, 30, 15, 16].

Such methods generally rely on sampling two augmented

views of the image—a positive pair—and minimize the

distance between those in the embedding space. To pre-

vent the model from learning a trivial solution for any in-

put, contrastive methods introduce the concept of a neg-

ative pair, i.e., two different images, to contrast positive

against negative pairs. While earlier contrastive methods

relied on the triplet loss [55], the probably most promi-

nent method in many self-supervised learning scenarios is

the InfoNCE loss, which is often referred to as a con-

trastive loss [14, 30, 51, 1], which requires accumulating

strong negatives via a memory bank [30] or a large batch

size [14]. Many extensions have been proposed to further

improve the performance of this idea: data augmentation

strategies [14, 62], projection head design [15], hard nega-

tive sampling [53], increasing the richness of positives with

nearest neighbours [23], or mitigating the effect of false

negatives [32]. The variation of the contrastive method pro-

posed in this work should not be considered as opposed but

rather as orthogonal to other approaches relying on positive

and negative pairs because it changes the loss function itself

and can therefore be used, e.g., on top of other techniques.

Alternative methods: There are also methods [17, 27] that

do not rely on negatives and only maximize agreement be-

tween positive views. Such methods prevent collapsing of

the representation space by using asymmetric architectures

applied to different views [17, 27], an additional teacher

network [27, 12], stop gradient [17, 27, 12], feature whiten-

ing [24], or information maximization [65, 4]. Another

set of methods [11, 10, 2] utilizes clustering of latent em-

beddings. ReSSL [67] leverages relations in an embed-

ding space in a self-labeling way, namely aligning the sim-

ilarities between weakly-augmented images to the similari-

ties to the similarities between strongly augmented images.

SwAV [11] additionally proposes sampling more augmenta-

tions in a multi-crop setting, where two full-size augmented

images are sampled together with several smaller crops,

and Whitening [24] utilized more full-resolution samples.

While currently methods relying on positive samples seem

to outperform their classical contrastive counterparts, the

we show that especially local neighborhood learning can

profit from relying on positive and negative samples.

2.2. Differentiable Sorting and Ranking
Differentiable sorting and ranking methods provide a

pipeline that allows training neural networks with order-

ing supervision in an end-to-end fashion with gradient de-

scent [5, 21, 28, 44, 45, 46, 47, 48, 49]. Earlier pairwise

learning-to-rank methods, such as RankNet [8] or Lamb-

daRank [7], and listwise methods, such as SoftRank [59] or

ListNet [9], are mostly based on heuristics and aim to opti-

mize ranking metrics, e.g., NDCG. Many of the latest dif-

ferentiable sorting approaches [21, 28, 44, 45, 47, 48, 49]

focus on obtaining a differentiable relaxation for the sort-

ing operator. The sorting operator can be seen as a function

returning a permutation matrix that indicates the permuta-

tion necessary to sort the sequence of values (the matrix that

multiplied with an input vector returns a sorted output vec-

tor.) In this context, differentiable sorting refers to relaxing

the (hard) permutation matrix to a differentiable permuta-

tion matrix via continuous relaxations. The differentiable

permutation matrix for a given sequence of values, which

can, e.g., be scores predicted by a neural network, can then

be used to compute the loss by comparison to a ground truth

permutation matrix. Recently, multiple methods for relax-

ing the permutation matrix have been proposed, including

an argsort approximation by unimodal row-stochastic ma-

trices [28, 49], a formulation of entropy-regularized opti-

mal transport [21], as well as networks of differentiable

swap operations (differentiable sorting networks) [45, 47].

The latter method composes the full permutation matrix as

a product of permutation matrices that arise from compar-

ing only two elements at a time (usually neighbors) and ei-

ther swapping them or not swapping them. Practically, dif-

ferentiable sorting has been leveraged in various contexts,

including recommender systems [37, 58], image patch se-

lection [20], selection experts in multi-task learning [29],

attention mechanisms [66], and audio representation learn-

ing [13]. To the best of our knowledge, the proposed

method is the first work to leverage ordering supervision

for self-supervised learning of visual representations.

3. Method
Given a dataset of images {xi}Mi=1 ⊆ X , the goal is to

learn an encoder g : X → R
d that extracts image represen-

tations that can later be used for downstream tasks.

3.1. Training Pipeline
As in standard contrastive losses, the proposed method

considers several augmented views of the same image as

positive examples, which should be close together in the

embedding space, and different images as negative exam-

ples, which should be apart in the embedding space. Start-

ing from mini-batches of B images, m ≥ 2 randomly aug-

mented views are generated for each image, resulting in

m ·B data points overall per batch. Note that if m = 2, the
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proposed method is close to the original contrastive learn-

ing setup [32, 14, 17, 4, 65]. The augmented views are pro-

cessed with the encoder network g(·) and an MLP projec-

tion head h(·), that maps images to the latent space where

distances between views are calculated. For each data point

serving as an anchor xa, there are m− 1 positive examples

{xp
i }m−1

i=1 and m · (B−1) negative examples {xn
i }m·(B−1)

i=1 .

The measure of distance between data points is the cosine

distance defined as: d(x, y) = − x�y
‖x‖‖.y‖ .

3.2. Group Ordering Constraints (GroCo)
In order to consider positives and negatives not individ-

ually but instead as a group, the proposed loss extends the

contrastive loss to the idea that the group of positives should

be closer to the anchor image than the group of negatives
in the embedding space resulting in group ordering con-
straints (GroCo). To simplify the notation, the distance be-

tween data point xa and its positive xp
i and negative exam-

ples xn
i is denoted as dpi = d(xa, xp

i ) and dni = d(xa, xn
i ).

Assuming that K positives xp
1, ..., x

p
K are ordered with re-

spect to their distances to the anchor xa as dp1 ≤ ... ≤ dpK
and N negatives xn

1 , ..., x
n
N as dn1 ≤ ... ≤ dnN , then the

group ordering constraints can be defined as

dp1 ≤ ... ≤ dpK <<< dn1 ≤ ... ≤ dnN . (1)

We note that all elements are considered in the con-

straints and the relevant constraint is the (bold) < in the

center. We remark that, although the constraint is already

fulfilled if the largest positive distance dpK is smaller than

the smallest negative distance dn1 , it is suboptimal to define

loss only on those elements. Comparing only the smallest

negative and largest positive ignores other negatives (e.g.,

the second smallest) and positives (e.g., the second largest)

that might also be misaligned, and such a loss would ignore

them. In the next section, we propose our novel loss that

optimizes the GroCo constraints implicitly.

3.3. Learning by Sorting
To enforce the constraint, the GroCo loss leverages re-

cent advances in differentiable sorting [45, 47], which allow

to derive a loss that fulfills ordering constraints. Namely,

the training procedure can be seen as sorting positives and

negatives in the embedding space with respect to an anchor

image and swapping them if they are in the incorrect order,

which relates to the proposed idea of learning by sorting.

3.3.1 Differentiable Sorting Networks
This section provides a review of the differentiable sorting

algorithm differentiable sorting networks [45] used for the

proposed loss function. Note that “networks” in “sorting

networks” are not “neural networks” but instead refers to a

category of sorting algorithms in the computer science lit-

erature [34] with no trainable parameters.

Figure 3. Overview of a differentiable sorting network with odd-

even sorting: The network compares neighboring elements start-

ing from odd and even indices alternatingly in each step and ap-

plies a differentiable swap operation if elements are in the wrong

order. The swap operations on each step s also define a differen-

tiable permutation matrix Ps. The network output is a differen-

tiable permutation matrix P , defined as the multiplication of ma-

trices of each step.

Differentiable sorting networks, e.g., based on the odd-

even sorting network, sort an input sequence of K +N ele-

ments in non-descending order as shown in Figure 3. They

are defined as the concatenation of functions, e.g., repre-

senting the swap operations in each layer of an odd-even

sorting network, where each function refers to one step of

sorting, and pairs of elements of the input sequence are

compared and swapped if they are in the wrong order via

a conditional swap operation. For the odd-even sorting net-

work, the algorithm compares neighbored elements on odd

and even indices alternatingly and requires K + N steps

to sort a given input sequence of length K + N . By re-

laxing the conditional swap operator to a differentiable one,

sorting networks can be made differentiable [45]. The con-

ditional swap operation for elements (di, dj) where i < j
can be defined as d′i = min(di, dj), d

′
j = max(di, dj), and

the differentiable relaxation [47] of this operation is:

d′i = softmin(di, dj) = dif(dj − di) + djf(di − dj),

d′j = softmax(di, dj) = dif(di − dj) + djf(dj − di)
(2)

with
f(x) =

1

π
arctan(βx) + 0.5. (3)

The hyperparameter β > 0 denotes an inverse temperature.

For β → ∞, the relaxation converges to the discrete swap

operation. The differentiable conditional swap operation for

the elements (di, dj) can be defined as a permutation matrix

Pswap(di,dj) ∈ R(K+N)×(K+N), which is an identity ma-
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trix except for entries Pii, Pij , Pjj , Pji defined as:

Pii = Pjj = f(dj − di),

Pij = Pji = f(di − dj).
(4)

The permutation matrix Ps for step s is the product of matri-

ces corresponding to independent (and thus parallel) swap

operations in this step Ps =
∏

i∈R Pswap(di,di+1), where R
is the set of odd indices if s is odd and the set of even indices

if s is even. The complete permutation matrix P is defined

as P = PK+N · ... · P1. In the discrete case, each column

of a permutation matrix has exactly one entry of 1, indicat-

ing the position where the element that corresponds to this

column should be placed. In the relaxed version, column

values can be seen as a distribution over possible positions

of the element. If the correct order of input values is known,

we can create a ground truth matrix Q and define the loss

as L = 1
(K+N)2

∑
i,j BCE(Pij , Qij) where BCE refers

to binary cross-entropy.

3.3.2 GroCo Loss

If there was a known ground truth order of positives and

negatives, the loss could be calculated directly based on this

ground truth permutation matrix. However, as the algorithm

is based on random augmentations, there are no known or-

ders among positives and among negatives. Thus, the only

information available is whether a pair belongs to the posi-

tive or the negative group.

To derive a loss to fulfil this group ordering constraint,

we start by ordering positives and negatives first separately

with respect to the computed distances to the anchor image

as dp1 ≤ ... ≤ dpK for positives and dn1 ≤ ... ≤ dnN for nega-

tives. As shown in Figure 3, positive and negative distances

are then concatenated in a list as:

[dp1, ..., d
p
K , dn1 , ..., d

n
N ]. (5)

Even though elements in the positive and negative are or-

dered, it is still open if the constraint dpi < dnj is fulfilled

for any 1 ≤ i ≤ K and 1 ≤ j ≤ N .

A differentiable sorting network is applied to the con-

catenated list and a differentiable permutation matrix is

obtained for sorting the list in non-descending order. As

shown in 3, values in the permutation matrix column can

be seen as probabilities to sort the corresponding element to

the different positions, e.g., P11 would be the probability for

assigning the first element in the list (dp1) to position 1, P21

to position 2, etc. Therefore, the sum of the first K elements

in a column can be considered as a probability being sorted

inside the first K elements. Thus, for a permutation matrix

of size (K + N) × (K + N) the sum of the first K rows

results in probabilities of being sorted in positive places and

the later columns (from K+1 to K+N ) in negative places.

To enforce positives to be sorted in the positive places and

negatives in the negatives places, the respective loss (with �

as the indicator function) is defined as

L =
1

2(K +N)

K+N∑
i=1

(
BCE

(∑K
k=1Pki,�i≤K

)
+ (6)

+ BCE
(∑K+N

k=K+1 Pki,�i>K

))
.

As illustrated in Figure 2, the proposed loss is a relaxation

of the sorting supervision in a way that it considers two

types of swap operations: swap operations within the group

of positive and negative samples, which should not con-

tribute to the loss, and swap operations between the groups,

which violate the positive-negative ordering assumption and

which are used as the optimization criterion.

Role of β. One relevant hyper parameter is the inverse tem-

perature β in differentiable swap operation (Equation 3),

which corresponds to the degree of relaxation of the swap

operation that converges to a discrete case when β → ∞
(Figure 3). Therefore with lower β the swap operation is

more “soft”, which is beneficial for optimization, but the re-

laxation error accumulated by each step is larger, and vice

versa in the case of larger β. With higher β even a small

difference between values results in a high probability for

a swap or not swap operation, resulting in a smaller margin

between the positive and negatives group.

Number of samples. Since the strongest negatives have

the strongest effect on the loss function, the selection can

be limited to only the top-N strongest negatives. Further,

as more negatives also result in more layers in the sorting

network and each layer contributes to the overall differential

permutation matrix, more layers also result in a softer swap

probabilities. Therefore β should be selected based on a

number of elements to sort. An ablation study on this effect

is given in Section 4.5.

Role of Pre-ordering. Practically, positives and nega-

tives are pre-ordered among themselves before concatenat-

ing and forwarding them to the differentiable sorting net-

work. While the loss will still contrast positives to negatives

no matter if the input is ordered or not, it shows that pre-

ordering improves the overall performance of the GRoCo

loss. This can be attributed to the fact that sorting net-

works perform comparisons between neighboring elements

and swap them if they are in the wrong order. If the input

was not pre-ordered and, thus, distances from positive and

negative pairs would be mixed, this would result in addi-

tional swap operations. Using pre-ordered inputs the focus

lies on comparing the strongest positives with the strongest

negatives. In this way, elements are considered as a group,

and the borders of the groups or their overlapping parts are

emphasized in the loss. In Section 4.5 and Figure 4, we

provide additional discussions and illustrate this behavior.
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4. Experimental Evaluation
4.1. Implementation Details

Unless stated otherwise, the following setup is used for

all experiments:

Model. Following previous works [14, 27, 11, 17]

Resnet50 [31] is used as the encoder g(·) and an MLP block

consisting of three fully connected layers with a size of

2048 and followed by a batch normalization layer [33] is

used as the projection head h(·). All batch normalization

layers except the last one are followed by a ReLU activa-

tion. The dimensionalities of the representation space and

the latent space are both 2 048 as in [17].

Training. Following previous works [14, 27, 11, 17], we

use the train set of the ImageNet ILSVRC-2012 dataset [54]

for self-supervised training without any human annota-

tion. To create m augmented views per image (considering

m = 2, 3, 4), the DINO augmentation setup [12] is used.

The model is trained with the SGD optimizer [64] with

a learning rate of 6.0 × (batch size/256) for 100 epochs

and 3.0 × (batch size/256) for 200 and 400 epochs. We

use a cosine scheduler without restarts [38] and 10 epochs

warm-up for 200 and 400 epochs training and 1 epoch lin-

ear warm-up for 100 epochs training (we find it beneficial

for our method but not for SimCLR). During training, the

stop gradient operation is used following the self-supervised

learning setups of [14, 12, 27]; specifically, stop gradi-

ent is performed during distance computation d(xa, x·
i) =

d(xa,stop grad(x·
i)). While training with stop gradient

does not show a direct impact on the overall performance,

we observed that it allows training with larger variations

of hyperparameters while maintaining stable performance.

By default, the top N = 10 strongest negatives are sam-

pled from the batch and an inverse temperature of β = 1
is used. Due to resource constraints, the model is trained

with a batch size of 1 024 with mixed precision. On an 8-

GPU (NVIDIA A6000) server, training for 100 epochs with

m = 2 views takes approximately 22 hours.

4.2. Evaluation Procedure
Linear Probing. Linear probing allows to evaluate the

learned embedding space by linear evaluation [14, 27, 11,

17], capturing the linear separability of classes. For this,

a linear classifier is trained on frozen representations in a

fully-supervised way using the ImageNet train set. We fol-

low the standard protocol [17] to train the linear classifier.

k-NN Evaluation. To analyze the local properties of the

learned representation, namely how often neighbored data

points correspond to the same semantic class, we further

evaluate with respect to nearest neighbor classification, pre-

dicting the class by a simple weighted k nearest neighbor

classifier (k-NN) with k = {1, 10, 20} based on cosine dis-

tance as used in [12, 11]. Again, we use the ImageNet train

set for supervision and test on the val set.

Method BS Views 100 ep 200 ep 400 ep

Linear Probing (Top-1)

Max-Margin [57] 256 2×224 63.8 - -

MoCo v2† [16] [17] 256 2×224 67.4 69.9 71.0

SimCLR† [14] [17] 4096 2×224 66.5 68.3 69.8

GroCo (ours) 1024 2×224 69.2 70.4 71.1

GroCo (ours) 1024 4×224 69.6 70.6 71.3

SimSiam [17] 256 2×224 68.1 70.0 70.8

VICReg [4] 2048 2×224 68.6 - -

Barlow Twins [65] 2048 2×224 68.7 - -

SwAV† [11] 4096 2×224 66.5 69.1 70.7

ReSSL [67] 256 2×224 - 69.9 -

BYOL† [27] 4096 2×224 66.5 70.6 73.2
Whitening [24] 4096 4×224 69.4 - 72.6

k-NN (weighted, k=20)

MoCo v2 [16] 256 2×224 - 55.6 -

SimCLR† [14] [17] 4096 2×224 53.8 57.2 59.2

GroCo (ours) 1024 2×224 60.5 62.9 64.0

GroCo (ours) 1024 4×224 61.8 63.6 64.8

SimSiam [17] 256 2×224 57.4 - -

SwAV [11] 4096 2×224 - - 61.3

Table 1. Comparison to state-of-the-art in linear probing k-
NN classification on ImageNet. We report results for training for

100, 200, 400 epochs. Backbone=Resnet50. † denotes improved

reproductions from SimSiam [17].

Method Epochs
Batch

Views
Oxford Paris

Size M H M H

SimSiam [17] 100 256 2×224 26.89 7.04 46.92 19.31

MoCo v2 [16] 200 256 2×224 23.28 5.07 42.8 17.33

SimCLR [14] 400 4096 2×224 23.27 4.56 46.93 20.19

SwAV [11] 400 4096 2×224 28.01 8.35 46.23 17.4

GroCo (ours) 400 1024 2×224 29.37 7.11 54.95 26.26

Table 2. Comparison to state-of-the-art in image retrieval.
We evaluate image retrieval performance on the Medium (M) and

Hard (H) splits of the revisited Oxford and Paris datasets [50]. We

evaluate nearest neighbor retrieval performance with ImageNet-

trained encoders and report MAP. Backbone=Resnet50.

4.3. Comparison to State-of-the-Art

We start with a comparison of the proposed method to

state-of-the-art self-supervised learning methods in linear

probing and k-NN evaluation on the ImageNet [54], and in

image retrieval on the revised Oxford and Paris dataset [50],

as well as in transfer learning.

Linear Probing. In the case of linear probing (Table 1), the

proposed method is compared to contrastive baselines using

positive and negative samples, namely Max-Margin [57],

SimCLR [14], and MoCo v2 [16], as well as to alternative

methods. We observe that, in the given setting, the pro-

posed loss is able to improve above all contrastive baselines

and even outperforms most strong alternative baselines ex-

cept BYOL [27] and Whitening [24] (in 400 epochs setup)

that use ×4 larger batch size and/or an additional teacher

network. Another finding is that in the context of linear
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Method Epochs BS Aircraft Caltech101 Cars Cifar10 Cifar100 DTD Flowers Food Pets SUN397 VOC2007 Average

MoCo v2 200 256 20.1 78.9 12.3 86.9 61.4 68.7 67.3 47.2 67.2 46.9 73.9 57.35

SimCLR 400 4096 19.3 77.7 15.3 85.4 61.0 70.2 72.5 51.2 68.2 49.0 73.1 58.45

SimSiam 100 256 25.4 80.1 17.3 87.4 65.5 69.3 77.3 52.5 72.5 50.0 72.8 60.92

SwAV 400 4096 25.8 82.2 17.8 88.6 66.0 71.1 74.8 50.3 70.4 52.9 75.6 61.41

GroCo (ours) 400 1024 27.6 81.2 19.1 86.8 65.8 71.0 79.2 56.3 80.6 52.3 74.6 63.14

Table 3. Comparison to state-of-the-art transfer performance in k-NN classification on 11 classification datasets. Models are pre-

trained on ImageNet. Backbone=Resnet50, views=2x224.

Method BS Views 100 ep 200 ep 400 ep

Linear Probing (Top-1)

SwAV [11] 4096 2×224 + 6×96 72.1 73.9 74.6

GroCo (ours) 1024 2×224 + 6×96 71.8 72.9 73.7

k-NN (weighted, k=20)

SwAV [11] 4096 2×224 + 6×96 61.7 63.7 64.9

GroCo (ours) 1024 2×224 + 6×96 62.3 64.2 65.2

Table 4. Comparison to SwAV for the multi-crop augmenta-
tion strategy. We report results for training for 100, 200, and 400
epochs. Backbone=Resnet50.

probing, having four positive samples does not significantly

improve the approach compared to only two samples. We

attribute this to the fact that missing fine-grained differences

in the local neighborhood are compensated by the linear

layer training, thus the initial pretraining is less relevant

with respect to the local neighborhood in this setting.

k-NN Evaluation. Further, the proposed method is evalu-

ated with respect to the k-NN performance and compared to

state-of-the-art methods that officially released weights (Ta-

ble 1). Here, it can be observed that the proposed method

outperforms all methods in this setting. The results demon-

strate that the margin, by which the loss improves over other

methods, is increased compared to linear probing, where,

e.g., for SwAV, the results were mainly on par (+0.4%) in

case of linear probing, while here they show a more substan-

tial improvement (+2.3%). A second hint that the strength

of this method is in the optimization of local neighborhoods

is given by the fact that the k-NN setting also shows an im-

proved performance by leveraging multiple positive exam-

ples. This can be an indication that more positive examples

contribute to a better local neighborhood in this setting.

Image Retrieval. To further assess the potential of the pro-

posed method in nearest neighbors-based tasks, the model is

evaluated on the task of image retrieval in Table 2. Results

are reported as the Mean Average Precision (MAP) for the

Medium (M) and Hard (H) splits of the datasets as in [12].

Our method outperforms all other methods in this task, con-

firming good local properties of learned representations.

Transfer Performance. Finally, we compare how well

performance transfers on other datasets. In Table 3, we

compare ImageNet pre-trained models in zero-shot k-NN

evaluation on 11 classification datasets, including FGVC

Method Views
k-NN Evaluation Linear Eval.

k=1 k=10 k=20 Top-1 Top-5

SimCLR 2×224 - - - 64.3 -

SimCLR‡ 2×224 46.0 51.5 51.9 65.7 86.7

SimCLR‡ 3×224 44.7 50.0 50.6 65.8 86.8

SimCLR‡ 4×224 46.3 52.1 52.6 66.5 87.1

SimCLR‡ 2×224+6×96 46.6 51.4 52.0 67.2 87.7

GroCo (ours) 2×224 55.3 60.3 60.5 69.2 88.4

GroCo (ours) 3×224 55.8 61.2 61.6 69.5 88.8

GroCo (ours) 4×224 56.4 61.5 61.8 69.6 88.9

GroCo (ours) 2×224+6×96 57.2 62.0 62.3 71.8 90.4

Table 5. Comparison to SimCLR as a contrastive baseline on
ImageNet. Backbone=Resnet50, #epochs=100, batch size=1024.
‡ denotes our reproduction.

Aircraft [39], Caltech-101 [26], Stanford Cars [35], CI-

FAR10 [36], CIFAR-100 [36], DTD [19], Oxford 102 Flow-

ers [41], Food-101 [6], Oxford-IIIT Pets [43], SUN397 [61]

and Pascal VOC2007 [25]. We observe that the proposed

method improves over the SimCLR and MoCo v2 baselines

in all classes and on average even outperforms the publicly

available SimSiam and SwAV baselines. This can be par-

ticularly attributed to the improved performance on the Pets

and Food datasets. We credit the increased performance to

the fact that both food and animal-related classes often ap-

pear in the ImageNet pretraining data, thus, learning a good

local embedding helps with those datasets, specifically in

the case of k-NN classification.

Multi-crop Augmentation. Since computational cost

grows linearly with an increasing number of augmenta-

tions, the multi-crop augmentation strategy proposed in

SwAV [11] is also considered. The idea is to sample low-

resolution local views along with the standard 224 × 224
ones. Use 2× 224+6× 96 scheme, where with two global
224 × 224 augmented views, six local 96 × 96 views are

sampled, giving eight views per image. In this case, we fol-

low the “local-to-global” correspondence idea [11, 12] and

use only global views as positives for both local and global

anchor images. While the proposed method shows slightly

lower results compared to clustering-based SwAV, it again

improves in the case of k-NN classification (Table 4).

4.4. Comparison to Contrastive Loss
To evaluate the properties of the proposed method in a di-

rect comparison with the pairwise contrastive loss formula-
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Method Views
k-NN Evaluation Linear Eval.

k=1 k=10 k=20 Top-1 Top-5

MoCo v3 2×224 61.5 66.6 66.8 70.9 90.2
GroCo (ours) 2×224 63.1 67.6 67.5 70.8 89.7

Table 6. Comparison to MoCo v3 as a contrastive base-
line on ImageNet. Backbone=ViT-Small, #epochs=100, batch
size=1024.

k-NN Evaluation Linear Probing

k=1 k=10 k=20 Top-1 Top-5

Triplet Loss (margin=0.8) 46.8 52.5 52.8 63.9 85.4

Triplet Loss (margin=1.6) 47.9 53.4 53.7 64.2 85.3

Triplet Loss (margin=+∞) 47.9 53.3 53.8 64.3 85.3

GroCo (ours) 55.3 60.3 60.5 69.2 88.4

Table 7. Comparison on ImageNet with Triplet Loss. Back-
bone=Resnet50, #epochs=100, batch size=1024.

tion, we compare it further to the classical contrastive learn-

ing methods SimCLR [14] and MoCo v3 [18] that use the

popular InfoNCE loss [42] as well as to the triplet loss.

Contrastive Loss. First, we compare the performance to

the SimCLR method in Table 5, where we also analyze the

properties of losses to align local neighborhood based on

more positive data points. To ensure an identical setting for

both methods, SimCLR is reproduced with a 3-layer MLP

projection head [15]. Since SimCLR originally uses only

two augmentations per image, we extend it to a group of

positives by applying contrastive loss between all possible

positive pairs (see supplementary material). While outper-

forming the SimCLR baseline by +3% (Top-1) in linear

probing, the proposed method also advances in k-NN eval-

uation by more than +8% (k = 20), demonstrating that the

loss helps to learn better representation not only in terms

of linear separability but also in terms of local structure.

Considering the multi-crop scenario, SimCLR shows mixed

results from utilizing more views. While it benefits in lin-

ear evaluation, performance slightly decreases in k-NN for

k ∈ {10, 20}. The proposed method profits from utiliz-

ing more positives in both evaluations, resulting in +1.7%
in k-NN (k = 1), and +2.4% in linear evaluation (Top-

1). We further compare performance with the more recent

and better-engineered MoCo v3 approach [18] with a ViT-

Small [22] backbone in Table 6. MoCo v3 additionally uti-

lizes a predictor and a momentum encoder that incur an ad-

ditional computational cost but are beneficial for contrastive

training [18, 12]. We plugin our proposed GroCo loss in

MoCo v3 setup (with the same architecture, optimizer, etc.)

and perform minimal hyperparameter tuning. Table 6 shows

that without any tips and tricks the proposed method outper-

forms MoCo v3 in all k-NN metrics and has a comparable

performance in Top-1 linear probing.

Triplet Loss. We also compare the group ordering loss

with the triplet loss formulation L = max (dpi − dnj + r, 0),

Inverse temp. Number of negatives N
β 1 5 10 20

k-NN Lin.p. k-NN Lin.p. k-NN Lin.p. k-NN Lin.p.

0.062 52.1 64.5 - - - -

0.125 52.2 64.5 59.2 68.7 - -

0.25 52.1 64.4 59.6 68.6 - - - -

0.5 - - 59.4 68.4 60.1 69.1 - -

1 - - 59.2 68.1 60.5 69.2 54.6 65.5

2 - - - - 60.2 68.7 55.9 66.0

4 - - - - - - 58.6 67.5

8 - - - - - - 59.0 68.0

16 - - - - - - 53.0 65.8

(a) An inverse temperature β, a number of negatives N .

k-NN Evaluation Linear Probing

k=1 k=10 k=20 Top-1 Top-5

Randomly ordered 54.4 59.2 59.5 68.9 88.2

Pre-ordered 55.3 60.3 60.5 69.2 88.4

(b) Pre-ordering in the groups.

Batch Size
k-NN Evaluation Linear Probing

k=1 k=10 k=20 Top-1 Top-5

256 52.4 57.2 57.2 67.8 88.1

512 53.1 57.9 58.2 68.2 88.0

1024 55.3 60.3 60.5 69.2 88.4

(c) Batch size.

Batch Sampling
k-NN Evaluation Linear Probing

k=1 k=10 k=20 Top-1 Top-5

Regular 55.3 60.3 60.5 69.2 88.4
With many false negatives 51.5 56.6 56.9 67.6 87.7

(d) Sensitivity to false negatives in a batch.

Table 8. Ablation Experiments. For (a), we report k-NN

performance with k=20, and linear probing Top-1, denoted as

“Lin.p”. The best results are bolded. Options used to obtain the

main results are highlighted. Backbone=Resnet50, Views=2×224,
#epochs=100.

where r is a margin (Table 7). For a fair comparison, we

consider all positive and the 10 strongest negative samples

and evaluate different margin parameters. Here, sorting is

superior to a triplet loss with hard margin selection.

4.5. Ablation Study

Inverse Temperature, Number of Negatives. Table 8a

shows the influence of the number of nearest neighbor neg-

atives N used in the loss, as well as the value of the inverse

temperature parameter β (Equation 2). We observe that us-

age of too many negatives is not be beneficial for the model.

Since our loss focuses on negatives that are sorted incor-

rectly, increasing the number of negatives at some point

does not bring any new learning signal (because more dis-

tant samples are unlikely to be sorted incorrectly). How-

ever, a larger N results in more steps of the sorting network,

increasing the degree of relaxation. Using a larger inverse

temperature β (leading to a lower degree of relaxation in the

16460



Figure 4. A toy experiment where we optimize five real variables, treating one of them as positive similarity and the other four as negatives,

with both the GroCo loss and contrastive InfoNCE loss for multiple iterations. While the InfoNCE loss minimizes all negatives, the GroCo

loss works behaves more similar to a margin optimization: negatives that further away from the border are optimized to a smaller degree.

swap operation) we can gain some performance; however,

the variance of the gradients is larger with a larger β, which

is not beneficial for optimization. We found N = 10 and

β = 1 to be an efficient configuration for this setting.

Pre-ordering. In Table 8b, we analyze the impact of pre-

ordering elements within negative and positive groups be-

fore forwarding them to the sorting network. We find that it

achieves good performance even without pre-ordering, but

also that pre-ordering further strengthens the method.

Batch Size. A large batch size can be an important fac-

tor in obtaining good performance for many self-supervised

learning methods. Results in Table 8c show that our method

also benefits from a large batch size, which we attribute to

utilizing stronger negatives from a larger batch.

False negatives. To assess the sensitivity of proposed meth-

ods to the false negatives, we artificially sample a batch in a

way that for each instance, there are three more instances of

the same class on average (acting as false negatives). In

Table 8d, we observe a performance decline in this sce-

nario (”With many false negatives”). Given GroCo’s im-

plicit emphasis on strong negatives, enhancing its robust-

ness to false negatives would require further adjustments,

which we leave for future work.

Training Time. We also consider the training time of our

model compared to SimCLR baseline. To eliminate the in-

fluence of distributed training, we measure the average time

of training iteration on one GPU. We find that the iteration

time of both models is comparable, 514ms for SimCLR vs

526ms for the proposed methods for a batch size of 128.

Optimization of Negatives. To better understand the ratio-

nale behind GroCo’s superiority in k-NN tasks, we analyze

the difference between the GroCo loss and contrastive In-

foNCE loss (used in SimCLR) in structuring the embedding

space. We conduct a toy experiment where we optimize five

real variables treating one of them as positive similarity and

the other four as negative similarities with both losses for

multiple iterations. We demonstrate the optimization pro-

cess in Figure 4. Although both losses elevate positive sim-

ilarities and lower negative similarities, they differ in the

optimization of the negatives. While the InfoNCE loss min-

imizes all negatives (even pushing the blue curve substan-

tially below zero), the GroCo loss works behaves more sim-

ilar to a margin optimization: negatives that are not on the

border to the positive are optimized to a smaller degree (the

blue curve is pushed only slightly below zero). This high-

lights GroCo’s focus on neighborhood optimization.

5. Conclusion

In this paper, an alternative approach to the common

pairwise contrastive learning formulation is proposed. The

group ordering constraints consider positives and negatives

as groups and enforce the group of positives to be closer

to the anchor image than the negative group. To enforce

these constraints, recent progress in the context of differen-

tiable sorting approaches are leveraged to formulate a group

ordering loss based on the given sorting supervision. Our

evaluation shows that the proposed framework, does not

only compete with current contrastive loss baselines, but

actually outperforms standard contrastive learning in many

settings with regards to k-NN-based metrics.
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