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Abstract

Recent work in vision-and-language demonstrates that
large-scale pretraining can learn generalizable models that
are efficiently transferable to downstream tasks. While this
may improve dataset-scale aggregate metrics, analyzing
performance around hand-crafted subgroups targeting spe-
cific bias dimensions reveals systemic undesirable behav-
iors. However, this subgroup analysis is frequently stalled
by annotation efforts, which require extensive time and re-
sources to collect the necessary data. Prior art attempts
to automatically discover subgroups to circumvent these
constraints but typically leverages model behavior on exist-
ing task-specific annotations and rapidly degrades on more
complex inputs beyond “tabular” data, none of which study
vision-and-language models. This paper presents VLSlice,
an interactive system enabling user-guided discovery of co-
herent representation-level subgroups with consistent visi-
olinguistic behavior, denoted as vision-and-language slices,
from unlabeled image sets. We show that VLSlice enables
users to quickly generate diverse high-coherency slices in a
user study (n=22) and release the tool publicly1.

1. Introduction

Large-scale vision-and-language models trained on cu-
rated [25, 9, 36] and web-scrapped [29, 18, 8] data have
led to significant improvements over task-specific models
when transferred to downstream tasks in terms of aggre-
gate metrics. However, researchers probing these models on
hand-curated datasets have revealed problematic behaviors
and well-known biases [30, 33] learned during pretraining –
e.g. biases with respect to perceived gender, skin tone,2 and
occupation. These biases can lead to disparate represen-
tational performance for population subgroups, resulting in

1https://github.com/slymane/vlslice
2We use the term ‘skin tone’ rather than ‘race’ as race is a socially

constructed identity that can span a range of phenotypic features.

poor prediction quality for downstream applications such as
image captioning [15, 37] and search [28].

In the standard paradigm for bias analysis in vision-and-
language models, researchers query and analyze a set of im-
ages that potentially exhibit bias. They often select a sub-
ject population of interest, some specific subgroups of those
subjects to analyze, and a bias dimension to measure against
the model [30, 33]. For example, Ross et al. [30] choose im-
ages of people as their subject population, label these based
on perceived gender and skin tone categories, and measure
model-predicted affinities between the labeled image sub-
sets and text describing occupations or (un)pleasantness.

To effectively support analysis of such image sets for re-
searchers, the set of images returned for the subject popula-
tion subsets should be large, coherent, and representative
– i.e. containing enough images to make statistically signif-
icant statements, capturing a well-defined visual concept,
and covering the full diversity of visual presentation for the
selected concept rather than an arbitrary subset. Without
these, the biases may simply be noise (large), be obscured
by effects from images outside the intended subject group
being included (coherent), or be the result of some intersec-
tional bias captured in the subset that is not consistent across
the whole expression of the visual concept (representative).

Collecting and labeling appropriate image sets that ful-
fill these properties can be an arduous task. Despite this,
manual annotation of static datasets along predefined sub-
group and bias dimensions is the standard practice [19, 17].
This data collection methodology is expensive to perform
– effectively limiting broad bias-auditing to high-resource
institutions. Further, the one-off nature of this labeling pro-
cess limits the scope of testing to pre-identified biases and
does not account for how concepts may shift in visual ex-
pression or cultural convention over time.

Several methods have been proposed to automatically
discover biased “slices” of data which share similar input
attributes and exhibit consistent responses from machine
learning models [10, 31, 14, 11, 32, 21]. These Slice Dis-
covery Methods (SDMs) have typically been deployed in
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tabular input settings where individual input dimensions are
semantically meaningful. While some recent work has ex-
plored extending SDMs to more complex inputs like images
[14, 11, 32, 21], these require task-specific annotations to
evaluate the model – making them unsuitable to auditing
general vision-and-language alignment models.

To improve this workflow, we propose VLSlice , an inter-
active system to discover vision-and-language slices from
unlabeled collections of images. VLSlice consists of four
primary stages of user-driven interaction with a vision-and-
language alignment model of interest as depicted in the sys-
tem overview in Fig. 1. A First, users write a query defin-
ing a subject population of interest (e.g., “person”, “car”)
and bias dimension to measure (e.g., “intelligent”, “fast”)
which is submitted to VLSlice to select from a large set
of unlabeled images down to a subset of subject-relevant
images, then cluster those images by visual similarity and
alignment with the bias dimension. B Second, users are
displayed the clusters generated by VLSlice and can search,
filter, and sort those clusters in (un)directed searches to
identify and capture candidate slices (e.g., “people wear-
ing suits”, “red cars”). C Next, users interact with VLSlice
in a loop viewing recommended similar and counterfactual
clusters to their slice to gather more coherent and represen-
tative samples. D Finally, users can view a plot that shows
the relationship between the slice they formed and the bias
term across the entire subject population of interest, validat-
ing if biased model behavior is demonstrated in the slice.

We demonstrate that VLSlice enables users to quickly
generate diverse high-coherency slices in a between-
subjects user study (n=22), contrasting with a control in-
terface mimicking a linear unguided image search. From
this study, we present both qualitative and quantitative sup-
port, and discuss emergent user interaction paradigms. We
choose to study CLIP [29] as a representative model of
contemporary methods in large-scale pretraining and self-
supervision for image-text alignment.

2. Related Work
Vision and Language Bias. Both vision and language
models are independently known to harbor biases leading to
representational harm. For example, gender and skin tone
[4] in vision systems, associating racial minorities with an-
imals [13], gendering professions in language models [3],
and a litany of others documented in [2, 34]. Multimodal
vision-and-language models are not exempt from these ten-
dencies [26, 15, 28] and may in fact exacerbate them [33].

Many modern, high-performing vision-and-language
alignment models are pretrained on scraped internet data
[29, 18, 8] – a strategy that improves performance but
has been shown to teach models “misogyny, pornogra-
phy, and malignant stereotypes” [1] across multiple studies
[1, 30, 33]. As discussed in Sec. 1, studying these biases of-
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Figure 1: An example user workflow with VLSlice . The
user workflow begins with writing a (A) Query to the model
then (B) Exploring the resulting visiolinguistic clusters to
find interesting candidates to begin building a slice from.
Once users identify a hypothesis, they can (C) Refine the
clusters by gathering additional samples in a human-in-the-
loop manner with VLSlice recommending similar and coun-
terfactual examples to add to the clusters. Finally, users can
(D) Validate the bias behavior of the model on this slice.

ten requires labelling thousands of images for specific pre-
conceived subject groups and bias dimensions (e.g. gender
[33] and skin tone [30, 16], or emotion [27]). Our proposed
interactive method allows for more open-ended exploration
of bias and reduces the burden of collecting relevant subject
group image sets.
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Slice Discovery & Exploration. Slice discovery methods
(SDMs) attempt to find critical subgroups (or slices) of data
with common input properties and consistent predictions
(often, mis-predictions) with respect to some model. Much
of this work is developed for tabular data settings where
slices are defined based on categorical (e.g., gender, oc-
cupation) [10, 31] and numerical attributes (e.g., age, du-
ration in days) [6]. In these settings, identifying semanti-
cally coherent subsets is more straightforward than in high-
dimensional perceptual data like images where individual
input dimensions are non-semantic. Once slices are dis-
covered, they can be interactively inspected to understand
model behavior. For the case of slices that contain many
mis-predicted examples, they can be leveraged to improve
model performance, such as by augmenting the training set
with additional examples within the slice [7, 35].

Recent SDM work explores “unstructred” data like im-
ages, where each data item is not necessarily associated
with structured attributes [14, 11, 32, 21]. Commonly, these
approaches attempt to extract semantically meaningful clus-
ters from their high-dimensional embedding representa-
tions. For instance, Spotlight [11] identifies contiguous rep-
resentation space regions that contain data items with high
loss. Domino [14] additionally leverages a joint input-and-
language embedding space to generate natural language de-
scriptions of the extracted slices after input-space cluster-
ing, which can potentially aid analysis. VLSlice , in contrast,
examines the relationship between two modalities rather
than the nature of an input and a model’s task specific pre-
dictions. We note that the visiolinguistic relationship cap-
tured by image-text alignment may be viewed as an im-
age classification task with an extremely large and sparse
label space (all natural language strings). Under this set-
ting, VLSlice examines a sparsely labeled many-to-many
relationship between inputs where an image (caption) may
match many captions (images) but only a single relationship
is known. No SDMs exist that examine relationships of this
noisy multimodal nature.

Moreover, automated SDMs for unstructured data have
critical limitations. Because of the nature of unsupervised
methods, extracted clusters cannot perfectly align with se-
mantically meaningful concepts, bias, and human knowl-
edge [23]. Therefore, results from automated methods
need to be inspected and refined by human users (e.g.,
merge, split, add) to identify slices that capture the nec-
essary concepts while meeting the desired properties such
as coherency and representativeness. VLSlice mitigates the
noise in multimodal relationships and improves alignment
to semantically meaningful concepts by providing tooling
for human-in-the-loop slice discovery and refinement.

The field of visual analytics has developed methods and
tools that leverage the power of humans in data analy-
sis [20]. Visual analytics tools frequently serve to help users

explore noisy slices returned by SDMs. FairVis [6] allows
users to discover subgroups that exhibit bias by interactively
analyzing the clustering of tabular data. Zhao et al. [39] en-
ables users to train a binary classifier for each slice through
active learning, based on their analysis of the initial cluster-
ing of image patches. While most existing work targets a
single modality, Cabrera et al. [5] target image captioning
tasks. In contrast to their focus on human’s comprehensive
sensemaking of non-grouped image sets, VLSlice aims to
use human inputs minimally by letting human users start
their analysis from clustered results.

3. VLSlice
We propose VLSlice , an interactive system to discover

and build slices from large-scale unlabeled image sets with
respect to a vision-and-language (ViL) model of interest.
Specifically, our methodology is designed to test ViL mod-
els which produce image-text alignment scores and support
clustering in the image feature space – a common feature of
many popular models (e.g. CLIP [29]).

The following subsections describe the technical details
of VLSlice and provide a running example of how they
support the user workflow depicted in Fig. 1. The work-
flow is roughly split into four parts – A query specification
(Sec. 3.1), B exploration of presented clusters (Sec. 3.2),
C iterative slice refinement (Sec. 3.3), and D validation of
the observed phenomenon (Sec. 3.4).

3.1. Caption-based Querying

Users must first write a query defining the domain of sub-
jects (e.g., people, cars, houses) and bias dimension (e.g.,
CEO-like, fast, pleasant) they are interested in evaluating
by specifying the baseline and augmented captions in the
VLSlice interface, denoted respectively as Cb and Ca. The
interface will then define a working set Iw of relevant im-
ages by filtering a large unlabelled image set to just the k
images most aligned with the baseline caption. The choice
of k is left to the user and is a trade-off between precision
and recall of subjects captured within the working set. We
discuss this trade-off further in Sec. 7.

Running Example (Fig. 1 A ). The user enters “A photo of a
person” as the baseline caption Cb with k=3000 to restrict
the working set to 3000 “people”-images and “A photo of a
CEO” as the augmented caption Ca to define a “CEO”-ness
bias dimension to explore.

Measuring Affinity with the Augmented Caption. With-
out loss of generality, we can consider vision-and-language
affinity models to be functions f(I, C) that compute some
score reflecting if caption C describes the contents of the
image I . A natural approach for measuring the model’s
predicted affinity between each working set image Ii ∈ Iw
and the bias dimension is then to compute the augmented
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Figure 2: Sample rankings by baseline caption (Cb = “per-
son”), augmented caption (Ca = “happy person”), and ∆C,
with highest on the left. The change in percentile from Cb

to Ca is shown with green arrows for positive changes, red
arrows for negative, and gray arrows for neutral. We en-
large the photo of people with smiling faces eating a meal.
The rank of this photo does not change from Cb to Ca (4th),
but increases (2nd) under ∆C. Captions are prepended with
“A photo of a ” in practice.

caption similarity Sa
i =f(Ii, Ca). However, our initial ex-

periments suggest this is not always sufficient.
In Fig. 2, we consider cases where the augmented cap-

tion extends the baseline caption, e.g. “A photo of a per-
son” vs. “A photo of a happy person”. In these cases, well-
framed canonical images of the subject may retain higher
scores under the augmented caption despite actually reduc-
ing in magnitude compared to their affinity to the baseline
caption – due solely to a strong alignment with the subject.
In this instance, we would like to disentangle the model-of-
interest’s learned notions of “person” from that of “happy”
which we wish to examine.

To ameliorate this effect, we consider a measure based
on the change in similarity from the baseline to augmented
caption. Analogous to the augmented caption similarity
Sa
i , let Sb

i=f(Ii, Cb) be the baseline caption similarity for
image Ii. With Sa and Sb denoting the empirical distri-
butions of these similarities over the working set Iw, let
P a
i =P (Sa ≤ Sa

i ) and P b
i =P (Sb ≤ Sb

i ) be the empiri-
cal percentile rank of caption similarity for image Ii for the
augmented and baseline captions respectively.

We can then define the change in augmented caption per-
centile ∆C for image Ii as

∆C(Ii) = P a
i − P b

i . (1)

Intuitively, images that report greater affinity with the aug-
mented caption than the baseline caption relative to other
working set images will achieve a higher ∆C. As shown

in Fig. 2, this results in reduced effect of canonical images.
Further, this score is bounded between ±1 and avoids forc-
ing users to reason about absolute changes in affinity mag-
nitude which may vary greatly in scale for different settings.

3.2. Exploring Visiolinguistic Clusters

To assist users in identifying groups of related images
with consistent affinity to the augmented caption, we dis-
play the working set images as clusters rather than a long list
of individual images. These accelerate users’ ability to find
examples, prime them for identifying shared visual features,
and provides a convenient bootstrap for forming slices.

We form clusters using standard agglomerative cluster-
ing with average linkage stopping at distance threshold
dt = 0.2. To capture both visual similarity and bias-effect
consistency, we define the linkage affinity between two im-
ages Ii and Ij as a combination of their visual dissimilarity
Dimg and the difference between their ∆C’s. Given a vi-
sual encoder Φ : I → Rd from our model-of-interest, we
compute the visual cosine distance as

Dimg(Ii, Ij) = 1− Φ(Ii)
TΦ(Ij)/∥Φ(Ii)∥∥Φ(Ij)∥, (2)

the ∆C-based affinity consistency distance as

D∆C(Ii, Ij) = |∆C(Ii)−∆C(Ij)|, (3)

and the overall linkage affinity between Ii and Ij as

D(Ii, Ij) = a ∗Dimg(Ii, Ij) + (1− a) ∗D∆C(Ii, Ij) (4)

where a controls the trade-off between clustering by visual
similarity and affinity consistency. We set a = 0.95.

By default, clusters are displayed in descending order by
mean ∆C. Each cluster is displayed with a set of sample
images along with numeric attributes for cluster size and
mean / variance of ∆C within the cluster. Additionally, his-
tograms for these numeric attributes are displayed and users
may filter the displayed clusters by specifying ranges of at-
tribute values. Users may change the ordering of clusters
by ranking on different attributes or by making a directed
search over clusters with any arbitrary text (e.g., “glasses”).
In this case, clusters are re-ranked by average image-text
similarity from the model-of-interest. To construct slices,
users create lists of images according to the properties enu-
merated in Sec. 1. Users may select individual image in-
stances or entire clusters, then add-to an existing or new
slice. Upon slice creation, users are prompted to provide a
name according to the captured visual feature(s) and may
change that name later as the slice is refined.

Running Example (Fig. 1 B ). The user interacts with the
histogram filters to find large clusters with low variance in
∆C to drill-down on high-quality clusters likely to prompt
some bias hypothesis. Then, they browse the sorted clusters
to discover a visual concept corresponding to men’s suits.
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3.3. User-guided Cluster Refinement

Once users have identified a slice they would like to ex-
plore by capturing some example images, our interface pro-
vides tooling to assist with discovering additional examples
to improve the size of the sample and representation of the
visual concept. Specifically, users may request similar and
counterfactual clusters for a slice. We measure cluster sim-
ilarity based on the cosine between cluster centroids. When
similar clusters are requested for a slice, we simply rank
clusters by visual similarity to the slice and display the near-
est 50 clusters. For counterfactual clusters, we first filter to
clusters which have mean ∆C’s with opposing sign as the
slice and then sort by visual similarity.

Both similar and counterfactual clusters are updated re-
activity as the user gathers samples (and thus change the
slice centroid embedding), allowing users to refine and ex-
tend their slice in an iterative process. All clusters which
contain at least one image already captured by the user are
filtered out to avoid displaying samples which have already
been considered for that slice. These tools help users find
visually similar images to expand their slices and help to
guard against users selecting non-representative subsets of
the intended visual concept that happen to display bias (as
demonstrated in in Fig. 3).

Running Example (Fig. 1 C ). From the cluster displaying
images of men’s suits, the user requests similar clusters and
begins adding more images of suits to their slice to expand
the slice’s coverage of the men’s suit visual concept.

3.4. Validating Model Behavior

Once users have formed a slice, they can examine the
mean ∆C to draw some conclusions about the model-of-
interest’s bias. However, it is useful to consider the trend
over a larger set of images to determine if it is likely to
hold beyond the slice. To achieve this, users can request
a correlation scatter plot that charts visual similarity to the
slice centroid against ∆C for each image in the working
set. Observing a strong linear relationship in this plot pro-
vides additional evidence that the visual concept captured
in the slice has a consistent effect on caption affinity. Fur-
ther, this plot is useful for identifying outlier instances with
unexpected behavior (e.g. high similarity but different ∆C)
which users may add or remove from their slice.

Running Example (Fig. 1 D ). The user requests a correla-
tion plot to validate the bias behavior – observing a positive
slope where visual similarity to the “men’s suit” slice is pre-
dictive of higher “CEO”-ness under the model-of-interest.

4. VLSlice User Study
To evaluate VLSlice , we conduct a user study compar-

ing it with a baseline interface, ListSort, representative of
typical strategies used to explore model behavior.

Slice: Glasses (ΔC > 0)

Similar Cluster (ΔC > 0)

Counterfactual Cluster (ΔC < 0)

Figure 3: Similar and counterfactual clusters for a slice cap-
turing an unintended subset of “glasses” for the query Cb =
“A photo of a person”, Ca = “A photo of a CEO.” While
the similar clusters display additional masculine presenting
glasses-wearers with positive ∆C, counterfactuals help es-
cape this region by displaying a cluster of feminine present-
ing glasses-wearers with opposing negative ∆C.

Baseline: ListSort. The ListSort baseline interface uses
the same query inputs and list construction as VLSlice , but
several key components are removed. The interface sim-
ply sorts images by their change in augmented caption per-
centile (∆C), then displays those ranked images to the user
without any clustering or human-in-the-loop interactions.
The user does not have the ability to view similar or coun-
terfactual images, cannot do additional sorting or filtering,
and cannot view the correlation scatter plot. We chose this
interface as the baseline because there is no existing tool
designed for the task VLSlice supports, and we design the
ListSort interface as a representation of the current work-
flow of ML practitioners. They often simply visualize a
sorted list of results to evaluate behavior or use a search en-
gine to manually gather samples for population subsets [30].

4.1. Image Data and Model

Data. We use OpenImages [22] images as our base image
set. As our user study focuses on objects and entities rather
than scenes, we extract bounding images around annotated
objects in the dataset. We apply non-maximum suppres-
sion to the ground-truth boxes to reduce redundant overlap-
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ping detections, then extract a square box with side length
1.1 ∗max(bboxh, bboxw) centered on the detection to cap-
ture both the detection and its context. Detections on image
borders are padded with the mean RGB value of the dataset.
Detections smaller than 642 pixels and those which capture
a region bounded by another detection from it’s parent in
the class hierarchy (e.g., a nose detection on a face) are dis-
carded. In total, this yields a dataset of Ia = 8.1 million
images. Neither VLSlice or ListSort use the image labels.

Model-of-Interest. We use CLIP [29] as a representative
vision-and-language alignment model – using the common
variant utilizing a vision transformer [12] with sequence
length sixteen from HuggingFace Transformers [38].

4.2. Protocol

We perform a between-subjects study (n=22) for
VLSlice . Each participant is randomly assigned to use ei-
ther the VLSlice or ListSort interface and are instructed to
complete two tasks using their assigned interface.

Participants. We recruited 22 participants using depart-
mental mailing lists and word of mouth. Five self-identified
as women, fifteen as men, and two as non-binary or other
genders. The average age of participants was 27 years old,
three were most recently enrolled or completed an under-
graduate degree, and 19 a graduate degree. Participation
was limited to people who have taken three or more AI/ML
courses or have at least two years of professional experience
in AI/ML (including graduate studies), and are 18 years old
or older. Each session had only one participant and all par-
ticipants joined remotely via video call. All participants
were compensated with a $15 gift card upon completion.

Protocol. Each participant takes approximately one-hour
to complete the study. First, they are presented with a pre-
study questionnaire to collect demographic information, fa-
miliarity with vision-and-language tasks in machine learn-
ing, and prior experience using other tools for analyzing
their models results and behaviors. After completing the
pre-study questionnaire, they are introduced to the tasks and
given a guided demo of the selected interface with the query
Cb = “A photo of a car”, Ca = “A photo of a fast car”. The
study facilitator first demonstrates how to construct slices
with the interface for the participant, then they switch roles
and the participant demos the same task back to the facilita-
tor. Once the participant is comfortable with the interface,
they are given fifteen minutes to complete each of their two
tasks and asked to “think aloud” while doing so. Finally, the
participant completes a post-study questionnaire collecting
twelve 7-point Likert-scale ratings and three free-form re-
sponses evaluating their experience with the interface.

Tasks. Participants are given two tasks: (1) Cb = “A photo
of a person”, Ca = “A photo of a CEO”; and (2) Cb = “A
photo of a house”, Ca = “A photo of a nice house” with

ListSort VLSlice

Slices # Img. F1 Missed Slices # Img. F1 Missed

Person/CEO 4.3 107 .42 90 4.6 141 .59 54

House/Nice 3.6 87 .20 41 5.1 211 .46 70

Table 1: Average number of slices identified with average
total images cataloged into those slices, F1 slice coherency,
and missed images representation metrics, aggregated by
participant. Bold is better. Participants assigned VLSlice
capture more images with higher coherency in both tasks.

k = 3, 000 for both. For each, participants are instructed
to discover as many slices as possible while attempting to
adhere to the desirable properties given in Sec. 1. They are
informed that these slices should contain visually coherent
images with consistent response to the augmented caption.

At the end of each task, we save a snapshot of the slices
created by the participant. This snapshot contains the names
of each slice, what images were added to it, and all im-
ages included in the working set for the query. After each
session, recordings of the study are reviewed to transcribe
comments made by participants and slices captured by them
are manually coded into higher-order categories.

5. Quantitative Results
Size and Number of Slices. Using the participant snap-
shots in each task, we evaluate the number of slices identi-
fied and the total number of images categorized into them
by participants in Tab. 1. We find VLSlice outperforms List-
Sort in all cases. We hypothesize causes for the difference
between our task results in the discussion (Sec. 6). To assess
statistical significance, we fit linear mixed effect regression
models (lmer) of the form: y=w∗Interface+βTask where
y is the measured outcome, Interface is a binary variable in-
dicating VLSlice or ListSort, w estimates the effect strength
of the interface, and βTask is a per-task intercept mod-
eled as a random effect. Under this model, VLSlice results
in 84.58 more images (p=0.017) and 0.5955 more slices
(p=0.295). This suggests using VLSlice yields statistically
significantly larger image sets than the baseline.

Coherency. To evaluate visual coherency of slices cap-
tured by participants, we have annotators perform an out-
lier detection task. For each participant-collected slice, we
subsample eight images and randomly select zero-to-two of
those images to replace with outliers. Outliers are randomly
sampled from other slices captured by the participant and
are constrained to images with visual similarity to the slice
centroid within one positive standard deviation of the mean
of similarities for all candidate images. This helps prevent
trivial outliers and ensures that the participant had consid-
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ered the outlier images during slice formation. For slices
with fewer than eight images, no subsampling is performed
and slices with fewer than two images are excluded from
the analysis. Annotators are then prompted that each slice
contains 0-2 outliers and are asked to select them. We com-
pute F1 over all slices for each annotator. Again using a
linear mixed effect regression model of the same form, we
find that VLSlice results in an increase in 0.215 F1 score
(p=0.006). This suggests VLSlice leads to statistically sig-
nificantly greater coherence than the baseline.

Representativeness. We measure representation by asking
annotators to identify images that potentially should have
been included in each slice but were missed by participants.
For each slice, we measure the similarity between the slice
centroid and each image in the working set that was not
included in that slice. We then subsample 50 of the 100
most similar images. We display all images captured in the
slice, the participant’s description of the slice, and the sub-
sampled similar images to annotators and ask that they se-
lect all images that should have been included in the slice.
Again using a linear mixed effect regression model, we find
VLSlice reduces the average number of missed images by
2.1 (p=0.35) but this result is not significant at 95% confi-
dence. As VLSlice slices are both larger and more coherent
than the baseline (and thus capture more images relevant to
the slice), we suspect the non-significance of this result may
reflect a lack of sensitivity in this study.

User Ratings. We evaluate participants’ average response
to Likert-scale post-questionnaire ratings in Tab. 2. Partici-
pants score VLSlice more favorably that ListSort in 10 of 12
questions with both lower scoring cases being relegated to
simplicity of learning and using the interface, an expected
result considering the short tutorial period during the study
and comparably substantial feature set of VLSlice against
ListSort. Nine of ten questions scoring higher on average
for VLSlice are measured as statistically significant at 95%
confidence under a Mann-Whitney U test.

6. Qualitative Results
Below, we highlight several observations from the user

study, providing insights about how people use VLSlice .

VLSlice users discover more abstract slices. Mapping
slices discovered by participants to higher-level categories
reveals trends in the types of relationships typically iden-
tified while using each interface. Participants assigned to
ListSort more frequently discover slices capturing visual
concepts which are easy to identify from low-level visual
features that require little, and often pre-attentive, visual
processing. These slices are frequently based in color (e.g.,
“black and white”), structure (e.g., “truncated subject”), and
photographic qualities (e.g., “blurry”), accounting for 17%
(0% VLSlice) of all concepts identified in the Person/CEO

Question ListSort VLSlice

Easy to learn how to use 6.27 5.55
Easy to use 6.00 5.55
Confident when using the tool 5.45 5.73
Enjoyed using the tool 5.27 6.45*
Would like to use again 4.73 6.45*
Image sets capture intended concept 4.36 5.36*
Helpful for finding new behavior 5.09 6.55*
Helpful for confirming behavior 4.82 6.27*
Easy to build sets of images 5.00 6.27*
Easy to discover additional images 4.82 6.36*
My image sets are coherent 5.09 5.64*
My image sets capture systemic bias 5.00 6.27*

Table 2: Participants’ average 7-point Likert-scale rating for
each interface. VLSlice outscores ListSort in 10 of 12 ques-
tions. * indicates statistical significance at 95% confidence
in a one-sided Mann-Whitney U test.

task and 45% (14% VLSlice) of the House/Nice House task
for ListSort. In contrast, participants leveraging VLSlice
capture slices relating to historically gendered features, skin
tone, and age in 62% (34% ListSort) of Person/CEO task
concepts. For the House/Nice House task, VLSlice partici-
pants identify concepts relating to housing density, cultural
cues, and features indicative of wealth in 33.9% (7.5% List-
Sort) of all concepts. We note that these choices in slices are
emergent and that participants were not instructed to search
for any specific or socially relevant visual concepts. We
show sample slices created by participants using VLSlice
for the Person/CEO task in Fig. 4. Additional examples for
both tasks are provided in the appendix.

VLSlice promotes iterative refinement of slices. We find
that all participants assigned the VLSlice interface engage
in iteratively improving the quality of cluster recommen-
dations by utilizing a feedback loop. Participants typically
first identify a small number of relevant images from the
cluster display and add it to a slice to bootstrap recommen-
dations. Pointing out three neighboring clusters, participant
P5 stated “Some of these look a lot like houses in the neigh-
borhoods I grew up in, lower-income in India specifically”
and selected a small subset of images from each cluster con-
tinuing to say “I can see that it picks up on some of the
visual cues individually, but struggles to put them all to-
gether” before adding his selection to a slice and expanding
the similar clusters display. The most similar clusters pro-
vided additional relevant samples and, as P5 continued to
update the slice, was satisfactory in support for discovering

15297



“masculine glasses” ∆C > 0

“people of color” ∆C < 0

Figure 4: Example slices created by participants for the Per-
son/CEO task with VLSlice . In the “masculine glasses”
slice (top), the participant identified that people wearing
glasses with larger features or facial hair have a positive
∆C, indicating a CEO-like bias. In contrast, the “people
of color” (bottom) slice has a negative ∆C, indicating bias
against people with darker skintones being CEO-like.

an otherwise difficult to identify set of images. Likewise,
participant P25 stated “I liked how I could further refine my
sets of images. This made it easy to quickly build sets with
similar attributes,” with respect to his cluster recommen-
dations. We anticipate this workflow as the source of the
increase in images captured as reported in Tab. 1.

Counterfactuals and correlation plots improve co-
herency and confidence. The above iteration is frequently
followed by using counterfactuals to diagnose if the partic-
ipant’s slice has fallen into a systemic positive or negative

subset of the visual concept they wish to capture. Partici-
pants typically add counterfactual samples until exhausted.
For slices with a large support and high variance in ∆C,
some participants iteratively switch between similar and
counterfactual images until both are exhausted of relevant
samples. Participant P1 leverages the correlation plot com-
menting that “I’m using the correlation to try and find out-
liers that I missed when looking through similar and coun-
terfactual photos” and that “when I’m looking at this [cor-
relation plot], I’m checking to see if the model really knows
the concept I’m trying to capture” continuing to clarify that
they are looking for a steep regression to imply bias and
proximal in-concept images most similar to the slices cen-
troid for coherency. We speculate that this workflow helps
to improve coherency as reported in Sec. 5.

VLSlice accommodates users regardless of their famil-
iarity with bias dimension. VLSlice can successfully ac-
commodate participants who are both familiar and unfamil-
iar with the bias dimension. When a participant is familiar
with the dimension, they ask directed questions about be-
havior with respect to some preconceived notion. For ex-
ample, participant P6 investigated the intersection of histor-
ically gendered features and skin tone in the Person/CEO
task stating “I have a few biases in mind that I’m already
aware of and want to search for, so I’m going to [...] to
see what the model thinks of them.” When a participant is
unfamiliar with the bias dimension, they seek support from
the interface for prompting visual concepts. Several partic-
ipants find that the initial clustering primes them to investi-
gate different visual concepts they would not have otherwise
thought of. P6 stated that “[filtering and sorting the cluster
display] is nice because I’m not really sure what things a
house would be biased against, but [VLSlice] primes me to
explore some directions.” This flexibility makes VLSlice an
effective tool for both directed bias search and discovery.

ListSort result in unfounded confidence. Although rated
lower than VLSlice , participants assigned ListSort are still
very confident overall in the coherency of slices they cap-
ture (Tab. 2). However, our quantitative results (Sec. 5)
show that this is not the case. The common methodology
of analysis may be leading participants to unsubstantiated
conclusions about their model behavior. Specifically, some
participants assigned ListSort identify a visual concept with
many neighboring samples in the interface, select all those
samples for a slice, then continue to a new slice. Exam-
ining slices discovered in this case reveals that they often
capture a subset of the visual concept targeted by the par-
ticipant. For example, many participants label their slice as
“formal wear” but captures only images of masculine pre-
senting people wearing suits. Conversely, participant P17
was assigned VLSlice and arrived at a similar result, but
after using the provided exploratory tools (e.g., counterfac-
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tuals) determined that he was capturing the concept “men
in suits” instead, proceeding to search for feminine formal
apparel as a second distinct slice.

7. Limitations

Choosing an appropriate top-k. Users are faced with
an implicit sensitivity-specificity trade-off for identifying
the domain of subjects with baseline caption Cb through
their choice in k for working set filtering. A small k has
high specificity for filtering to this domain but poor sen-
sitivity, potentially excluding informative samples. Con-
versely, a large k has low specificity and high sensitivity,
potentially capturing irrelevant samples which will be out-
of-distribution for the ∆C metric. We hope for future work
to explore interactive processes at the working set boundary
to intelligently select an appropriate value of k.

Working-set level model bias. While VLSlice allows users
to discover biases falling within the working set of samples,
it is unable to discover biases along a subject the model is
unable to identify or where the bias presented in Ca corre-
lates with a bias against the subjects identified in Cb. For ex-
ample, given a model which is unable to effectively count,
and baseline caption Cb = “A photo of two people”, the
model will fail to identify the subject domain. If given the
baseline caption Cb = “A photo of a meal”, augmented cap-
tion Ca = “A photo of a healthy meal”, and a model trained
from image-caption pairs scrapped from the web, then the
notion of both what a meal and healthy meal are will likely
be confounded with western cultural norms and thus unable
to capture working set examples for evaluating the bias term
“healthy.” We therefore advise that slices identified with
VLSlice have high precision and are likely to be representa-
tive of a biased notion learned by the model, but potentially
poor recall in either case described above and should not be
used to argue the absence or non-existence of a bias.
Behavior with strongly biased subgroups. In the case of
a model with strong bias towards some subgroup, but that is
still effective for capturing that subgroup in the working set
(e.g. feminine presentation in the Person/CEO task), there
are two ways we may hypothesize VLSlice to change. First,
we suspect the B Explore step cluster presentation to be
more likely to bifurcate along subgroup dimensions, form-
ing additional clusters which capture the subgroup with
high magnitude ∆C. Second, during the B Refine step, we
suspect these bifurcated clusters to be highly ranked within
counterfactual cluster recommendations. For example, par-
ticipants studying people wearing glasses in the Person-
/CEO task frequently found the subgroup was bifurcated by
gender presentation, then discovered the two cluster compo-
nents using counterfactual recommendations. If model bias
is orthogonal to the biases targeted for evaluation, increased
user effort may be needed during the refine step to guide the

model away from recommendations capturing the disrup-
tive bias instead of the one targeted by the user. For exam-
ple, by searching through more counterfactuals and boot-
strapping VLSlice recommendations for additional steps.
Computational complexity for joint encoders. As pre-
sented, VLSlice is limited to models which compute inde-
pendent representations of language and imagery, which are
used to compute similarity for clustering and ∆C calcu-
lations efficiently. Hypothetically, these same similarities
could be computed as the output of joint encoder models
(e.g. ViLBERT [24]), but at high computational expense.

8. Conclusion

In this work, we proposed VLSlice , an interactive sys-
tem to discover slices from unlabeled collections of images.
We conducted a between-subjects user study to evaluate the
effectiveness of VLSlice against common methodologies
for identifying model behavior. The results indicate that
VLSlice outperforms the baseline for the number of images
captured and slice coherency in both tasks. Additionally,
participants rate it more favorable than the baseline in 10 of
12 Likert-scale questions describing usability and user con-
fidence in desirable slice properties. We discuss the results
of the study and find VLSlice to better support user work-
flows and promote discovering high quality abstract slices.
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