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Abstract

Many studies in vision tasks have aimed to create ef-
fective embedding spaces for single-label object prediction
within an image. However, in reality, most objects possess
multiple specific attributes, such as shape, color, and length,
with each attribute composed of various classes. To apply
models in real-world scenarios, it is essential to be able
to distinguish between the granular components of an ob-
ject. Conventional approaches to embedding multiple spe-
cific attributes into a single network often result in entangle-
ment, where fine-grained features of each attribute cannot
be identified separately. To address this problem, we pro-
pose a Conditional Cross-Attention Network that induces
disentangled multi-space embeddings for various specific
attributes with only a single backbone. Firstly, we employ
a cross-attention mechanism to fuse and switch the infor-
mation of conditions (specific attributes), and we demon-
strate its effectiveness through a diverse visualization ex-
ample. Secondly, we leverage the vision transformer for
the first time to a fine-grained image retrieval task and
present a simple yet effective framework compared to ex-
isting methods. Unlike previous studies where performance
varied depending on the benchmark dataset, our proposed
method achieved consistent state-of-the-art performance
on the FashionAI, DARN, DeepFashion, and Zappos50K
benchmark datasets.

1. Introduction
ImageNet [2] is a representative benchmark dataset to

verify the visual feature learning effects of deep learning
models in the vision domain. However, each image has only
one label, which cannot fully explain the various features
of real objects. For example, a car can be identified with
various attributes such as category, color, and length, as in
Figure 1. As shown in Figure 1 (a), the general method of
forming embeddings for objects’ various attributes involves
constructing neural networks equal to the number of spe-
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Figure 1: Multiple Networks vs Single Network for Multi-
space embedding. CCA means our proposed Conditional
Cross Attention Network.

cific attributes, and creating multiple embeddings for vision
tasks such as image classification [6, 22, 8] and retrieval
[10, 20]. Unlike conventional methods, this study presents
a technique that embeds various attributes into a single net-
work. We refer to this technique as multi-space attribute-
specific embedding Figure 1 (b).

Embedding space aims to encapsulate feature similari-
ties by mapping similar features to close points and dis-
similar ones to farther points. However, when the model
attempts to learn multiple visual and semantic concepts si-
multaneously, the embedding space becomes complex, re-
sulting in entanglement; thus, points corresponding to the
same semantic concept can be mapped in different regions.
Consequently, embedding multiple concepts in an image
into a single network is very challenging. Although previ-
ous studies attempted to solve this problem using convolu-
tional neural networks (CNNs) [26, 13, 4, 20], they have
required intricate frameworks, such as the incorporation of
multiple attention modules or stages, in order to identify
specific local regions that contain attribute information.

Recently, there has been an increase in research related
to ViT [11], which outperforms existing CNN-based mod-
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Figure 2: Previous works (CSN, ASEN, CAMNet) vs. Ours (CCA)

els in various vision tasks, such as image classification [11],
retrieval [21], and detection [1]. In addition, research ana-
lyzing how ViT learns representations compared to CNN is
underway [17, 15, 14]. Raghu et al. [17] demonstrated that
the higher layers of ViT are superior in preserving spatial
locality information, providing improved spatially discrim-
inative representation than CNN. Some attributes of an ob-
ject are more easily distinguished when focusing on specific
local areas. So, we tailor the last layer of ViT to recognize
specific attributes based on their spatial locality, which pro-
vides fine-grained information about a particular condition.
Figure 2 summarizes the difference between existing CNN-
based and proposed ViT-based methods. This study makes
the following contributions:

1. Entanglement occurs when embedding an object con-
taining multiple attributes using a single network. The
proposed CCA that applies a cross-attention mecha-
nism can solve this problem by adequately fusing and
switching between the different condition information
(specific attributes) and images.

2. This is the first study to apply ViT to multi-space
embedding-based image retrieval tasks. In addition, it
is a simple and effective method that can be applied
to the ViT architecture with only minor modification.
Moreover, it improves memory efficiency by forming
multi-space embeddings with only one ViT backbone
rather than multiple backbones.

3. Most prior studies showed good performance only
on specific datasets. However, the proposed method
yields consistently high performance on most datasets
and effectively learns interpretable representations.
Moreover, the proposed method achieved state-of-the-
art (SOTA) performance on all relevant benchmark
datasets compared to existing methods.

2. Related Works

Similarity Embedding Triplet Network [24, 18] uses dis-
tance calculation to embed images into a space; images in
the same category are placed close and those in different
categories are far apart. This algorithm has been widely

used for diverse subjects such as face recognition and im-
age retrieval. However, as it learns from a single embed-
ding space, it is unsuitable for embedding multiple subjects
with multiple categories. Multiple learning models must be
created separately according to the number of categories to
increase the sophistication level.

Image Retrieval via CNN-based Embedding Image Re-
trieval is a common task in computer vision, which is find-
ing relevant images based on a query image. Recent works
have explored the CNN-based embedding and attention
mechanisms to improve image retrieval. Some works lever-
age attention mechanisms according to the channel-wise
[8, 28, 29] and spatial-wise [29] concepts to assign more
importance to attended object in the image. Understanding
the detailed characteristics of objects is crucial in image re-
trieval. This is particularly significant in the fashion domain,
where even the same type of clothing can have various at-
tributes such as color, material, and length. Therefore, to
excel in attribute-based retrieval,, it is required to recognize
disentangled representation for each attribute. The nature
of this task is suitable for demonstrating the effectiveness
of multi-space embedding. Thus, we show the efficacy of
CCA through a fashion attribute-specific retrieval task.

CNN based Attributes-Specific Embedding Figure 2
outlines the concepts of existing attribute-specific embed-
ding, similar to our current study. CSN [26] converts the
condition into a mask-like representation for multi-space
embedding. The mask can be easily applied to the fully con-
nected layer (FC). ASEN [13] joins the attention mecha-
nism with a condition for multi-space embedding. A varia-
tion, ASEN++ [4], extended ASEN to 2 stages. These multi-
stage techniques are excluded from this study for a fair com-
parison. M2Fashion [27] adds a classifier to the ASEN base.
Unlike CSN, CAMNet [19] was extended to 3D feature
maps and applied to the spatial attention mechanism, thus
enhancing performance. These studies are CNN-based, not
self-attention-based like the present study. The recent ViT
[11] has been successfully applied to many vision tasks.
However, there has been no technique of multi-space em-
bedding for specific attributes, as described in this study.
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3. Methods

Figure 3 presents the proposed CCA architecture, which
is mostly similar to that of ViT [11] because it was designed
to embed specific attributes through a detailed analysis of
the ViT architecture. Hence, CCA is easily applicable un-
der the ViT architecture. Moreover, as described in subsec-
tion 4.5, it yields excellent performance. The proposed ar-
chitectures comprise self-attention and CCA modules. The
following sections explain these networks.

3.1. Self Attention Networks

The self-attention module learns a common representa-
tion containing the information necessary for multi-space
embedding. The self-attention modules are nearly iden-
tical to ViT [11]. ViT divides the image into specific
patch sizes and converts it into continuous patch tokens
([PATCH]). Here, classification tokens ([CLS]) [3] are
added to the input sequence. As self-attention in ViT is
position-independent, position embeddings are added to
each patch token for vision applications requiring position
information. All tokens of ViT are forwarded through a
stacked transformer encoder and used for classification us-
ing [CLS] of the last layer. The transformer encoder con-
sists of feed-forward (FFN) and multi-headed self-attention
(MSA) blocks in a continuous chain. FFN has two multi-
layer perceptrons; layer normalization (LN) is applied at the
beginning of the block, followed by residual shortcuts. The
following equation is for the l-th transformer encoder.

x0 = [x[CLS];x[PATCH]] + x[POS]

x′
l = xl−1 + MSA(LN(xl−1))

xl = x′
l + FFN(LN(x′

l))

(1)

where x0 is inital ViT input. x[CLS] ∈ R1×D,
x[PATCH] ∈ RN×D and x[POS] ∈ R(1+N)×D are the classi-
fication, patch, and positional embedding, respectively. The
output of the L− 1 repeated encoder is used as input to the
CCA module, as explained in subsection 3.2

3.2. Conditional Cross Attention Network

In this study, the transformer must fuse the concept of
attributes and mapped condition information for the net-
work to learn. Drawing inspiration from Vaswani et al. [25],
we propose CCA to enable learning in line with the trans-
former’s self-attention mechanism. CCA uses a common
representation obtained from the self-attention module and
cross-attention of the mask according to the given condition
to learn nonlinear embeddings that effectively express the
semantic similarity based on the condition. Though existing
techniques, such as CSN [26] and ASEN [13], have applied
condition information to the embedding, these methods are
CNN-based rather than transformer-based.

Conditional Token Embedding A network switch based
on the condition is required to embed multiple attributes
under a single network. In other words, attributes must be
learned according to the condition. We propose two condi-
tional token embedding methods, as illustrated in Figure 3.

First, Condition c is converted into a one-hot vector, after
which conditional token embedding is performed, similar to
that used in multi-modal studies such as DeViSE [5], which
learns text and image information having the same meaning
using heterogeneous data in the same space, as follows:

qc = FC(onehot(c)) (2)

where qc ∈ RD×1, c is condition of size K.
Second is the CSN [26] technique, presented in Figure 2

(a). To express K conditions, CSN applies a mask ∈ RK×D

to one of the features and uses element-wise multiplication
to fuse and embed two CNN features ∈ RD. This study
uses this step only for conditional feature embedding with-
out fusing the features. To this end, we initialize the mask
∈ RK×D for all attributes. This mask can be expressed as
a learnable lookup table. The conditional token embedding
using the mask is expressed as follows:

qc = FC(ϕ(Mθ[c, :])) (3)

where ϕ refers to ReLU, the activation function. Accord-
ingly, the dimensions must be the same as the feature to
apply self-attention. The result of FC in Equation 2 and
Equation 3 is embedded while matching the dimension of
C.

Finally, the result of both equations must equal the di-
mensions of the token embedding in subsection 3.1. There-
fore, the same vector qc ∈ RD×1 is repeated times to ex-
pand the result of both equations as follows:

Qc = [qc;qc; ...;qc] (4)

Conditional Cross Attention Finally, the transformer ar-
chitecture must effectively fuse the conditional token em-
bedding vector Qc, for which we use CCA. The MSA pro-
cess in Equation 1 uses a self-attention mechanism with the
vector query (Q), key (K), and Value (V ) as input and is
expressed as follows:

Attention(Qi,Ki, Vi) = softmax(
QiK

⊤
i√
d

)Vi (5)

These vectors generated from image i can be expressed
using Ki, Qi, Vi ∈ RN×D, consistent with the tokens men-
tioned above. The inner product of Q and K is calculated,
which scales and normalizes with the softmax function to
obtain weight N.

In contrast, though CCA is nearly identical to self-
attention, Query, Qc in Equation 4, is generated to have con-
dition information. Ki and Vi, which are the same as above,
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Figure 3: The Architecture of Conditional Cross Attention Network (CCA)

Figure 4: Visualization of attention heat maps for each attribute. Red outlines denote actual annotated attributes in FashionAI.

are input, and the cross-attention mechanism is applied to
construct the final CCA as follows:

Attention(Qc,Ki, Vi) = softmax(
QcK

⊤
i√
d

)Vi (6)

The cross-attention mechanism is nearly identical to gen-
eral self-attention; except for the part of Equation 6, it is
the same as Equation 1. The output is the embedding val-
ues of [CLS] and [PATCH]. In our proposed CCA, only
[CLS] is used for the loss calculation. For the final out-
put, FC and l2 normalization are applied to the embedding
feature x[CLS] ∈ RD of [CLS] as follows:

ffinal = l2(FC(x[CLS])) (7)

Self-attention, explained in subsection 3.1, executes the
transformer encoder until step 1 ∼ (L − 1), while CCAN,
explained in subsection 3.2, applies only to the final step
L. In other words, during inference, as shown in Figure 1,
if step 1 ∼ (L − 1) is executed only once and the condi-
tion in the final step L is changed and repeated, then several

specific features can be obtained under various conditions.
Figure 4 shows related experimental results. Eight attributes
in the FashionAI dataset are attended in regions matched to
each attribute. In addition, step 1 ∼ (L− 1) in the network
model can apply the existing ViT-based pre-trained model
without modification for learning.

3.3. Triplet Loss with Conditions

We use triplet loss for learning specific attributes, dif-
ferent from the previous general triplet loss in that a con-
ditioned triplet must be constructed. If a label with image
I and condition c exists, then the Pair can be denoted as
(I, Lc). When expanded to triplets, this is expressed as fol-
lows:

T = {((Ia, La
c ), (I

+, L+
c ), (I

−, L−
c )|c)} (8)

where a indicates the anchor, + means that it has the
same class in the same condition as the anchor, and − means
that it does not have the same class. Using negative sam-
ples with the same condition in triplet learning can be in-
terpreted as a hard negative mining strategy. As shown in
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DataSets #Attributes #Classes #Images

FashionAI [32] 8 55 180,335
DARN [9] 9 185 195,771
DeepFashion [12] 6 1000 289,222
Zappos50k [31] 4 34 50,025

Table 1: Statistics of the banchmark datasets.

[30], randomly selected negatives are easily distinguished
from anchors, enabling the model to learn only coarse fea-
tures. However, for negative samples with the same condi-
tion, the model must distinguish more fine-grained differ-
ences. Hence, informative negative samples more suitable
for specific-attributes learning are provided. The equation
of triplet loss L is as follows:
L(Ia, I+, I−, c) =

max{0, DIST(Ia, I+|c)− DIST(Ia, I−|c) +m}
(9)

m uses a predefined margin, and DIST() refers to cosine
distance. In the Appendix, we present Algorithm 1, which
outlines the pseudo-code of our proposed method.

4. Experiments
Table 1 shows the statistics of the datasets, including the

number of attributes, classes within the attributes, and the
total number of images. The difficulty increases as the num-
ber of attributes increases and for higher classes. These re-
sults can also be seen in the evaluation results of Table 2,
Table 3, and Table 4.

4.1. Metrics

For FashionAI, DARN, and DeepFashion, we used the
experimental setting information of ASEN [13] and applied
the mean average precision (mAP) metric for evaluation.
For Zappos50K, we followed the experimental setting of
CSN [26] and applied the triplet prediction metric for evalu-
ation. This metric verifies the efficiency of attribute specific
embedding learning for predicting triplet relationships.

4.2. Implementation Details

The experimental environment was implemented using
8 RTX 3090 GPUs. We used Pytorch [16] for all imple-
mentations. The backbone network was initialized with pre-
trained R50+ViT-B/16 [11]. A batch size of 64 and learning
rate of 0.0001 was applied for learning. We trained the mod-
els up to 200 epochs and selected the trained model that
yielded the best results. Triplet loss, described in subsec-
tion 3.3, was used with a margin of 0.2.

4.3. Visualization of Multi-Space Embedding and
Ranking Results

Entangled vs. Disentangled Multi-space Embedding
The proposed method enables multi-space embedding for

various specific attributes with only one backbone network.
When using the general learning method, entanglement in
the embedding space inevitably occurs. To solve the en-
tanglement problem and verify whether multi-space em-
beddings were formed, t-SNE [23] was used to examine
the results. The t-SNE visualization results in Figure 5
show whether each attribute class of the FashionAI dataset
is properly embedded. The t-SNE visualization results at
the center are for the FashionAI dataset with 8 fashion at-
tributes. For the proposed method, excellent embedding re-
sults are found for all 8 attributes in the center, and each
attribute on the edges. However, training a single model for
multiple attributes with the non-conditional method, which
is the triplet network in Table 2, Table 3, and Table 4, do
not solve the entanglement problem. These findings offer
strong evidence that the proposed method achieved multi-
space embedding with only one backbone network.

Ours vs. Previous Works’ Multi-space Embedding Fig-
ure 6 compares the embedding results between the proposed
and previous (ASEN [13], CAMNet [19]) methods for the
FashionAI dataset. The comparison results for 3 of the 8
detailed categories (Neck Design, Sleeve Length, and Coat
Length) in FashionAI are shown. Our method yielded better
embedding results than ASEN and CAMNet. For example,
in the ASEN and CAMNet results, entanglement occurred
in the embedding space for the Wrist Length, Long Sleeves,
and Extra-long Sleeves classes of Sleeve Length, whereas
entanglement is resolved with our proposed method. Figure
A3 presents the embedding results for the 8 attributes in the
FashionAI dataset.

Ranking Results Figure A2 in Appendix B presents the
Top 3 ranking results for the 8 attributes in the FashionAI
dataset. The order in the figure is lapel design (notched),
neckline design (round), skirt length (floor), pant length
(midi), sleeve length (short), neck design (low turtle), coat
length (midi), and collar design (peter pan). The features of
each attribute are reflected accurately in the ranking. This is
also demonstrated in the attention heat map.

4.4. Memory Efficiency

The ViT used in this study has 98M parameters. Individ-
ual networks are required to learn attributes with the exist-
ing naive method, which necessitates 98M ×K parameters.
However, our proposed method can form multi-space em-
beddings with only one backbone network, thus requiring
approximately 98M ×1 parameters. As shown in Figure 2,
only the last layer of the ViT model is modified in the pro-
posed CCA, and fewer than 0.1M parameters are added for
conditional token embedding. Thus, the proposed method
achieves SOTA performance with very few parameters, in-
dicating high efficiency of the algorithm.
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Figure 5: Comparison of multi-space embedding : Conditional (Ours) vs. Non-Conditional (Triplet network)

Method Backbone mAP
mAP for each attribute

skirt length sleeve length coat length pant length collar design lapel design neckline design neck design

Random baseline [13] R50 15.79 17.20 12.50 13.35 17.45 22.36 21.63 11.09 21.19
Triplet network [13] R50 38.52 48.38 28.14 29.82 54.56 62.58 38.31 26.64 40.02
CSN [13] R50 53.52 61.97 45.06 47.30 62.85 69.83 54.14 46.56 54.47
ASEN [13] R50 61.02 64.44 54.63 51.27 63.53 70.79 65.36 59.50 58.67
CAMNet [19] R50 61.97 64.14 56.22 53.05 65.67 72.60 67.74 63.05 61.97
ASEN++ [4] R50 64.31 66.34 57.53 55.51 68.77 72.94 66.95 66.81 67.01
TF-CSN† ViT 64.86 66.73 59.58 59.94 70.91 71.45 68.17 64.92 62.33
TF-ASEN† ViT 64.21 65.86 60.11 59.74 70.20 70.80 67.01 64.08 59.48

Ours

CCA (Type-1) ViT 66.06 67.20 62.34 60.47 70.29 75.93 70.32 65.76 61.04
CCA (Type-2) ViT 69.03 69.55 65.92 64.43 72.74 75.39 71.89 70.42 63.85

Table 2: mAP comparisons of our methods against other studies on FashionAI. Bold: the best results among all methods.
Bold black: the best results among the counterparts. TF is Transformer. R50 is ResNet50. † indicates our reproduced results.

4.5. Benchmarking

Table 2, Table 3, and Table 4 present the evaluations for
mAP using the metrics in subsection 4.1. Table 5 shows the
triplet prediction metric results. In all tables, our method
outperforms the SOTA models CSN [26] and ASEN [13].

FashionAI In Table 2, our method achieves SOTA per-
formance for all categories except neck design. Overall, we
achieve a +4.72% performance improvement.

DARN In Table 3, the proposed model yields SOTA per-
formance for all items. Averaged across the board, it shows
a significant performance improvement of +12.15%.

DeepFashion In Table 4, the proposed model yields
SOTA performance for all items. Overall, we achieve a per-
formance improvement of +1.4%. As shown in Table 1, al-
though it consists of only five attributes, these contain many
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Figure 6: Comparison of multi-space embeddings (Ours vs. ASEN and CAMNet) for FashionAI. The top row corresponds
to our method, the middle row to ASEN, and the bottom row to CAMNet. The embeddings are shown for three categories
(Neck Design, Sleeve Length, Coat Length) out of eight attributes.

Method Backbone mAP
mAP for each attribute

clothes category clothes button clothes color clothes length clothes pattern clothes shape collar shape sleeve length sleeve shape

Random baseline [13] R50 32.26 8.49 24.45 12.54 29.90 43.26 39.76 15.22 63.03 55.54
Triplet network [13] R50 40.14 23.59 38.07 16.83 39.77 49.56 47.00 23.43 68.49 56.48
CSN [13] R50 50.86 34.10 44.32 47.38 53.68 54.09 56.32 31.82 78.05 58.76
ASEN [13] R50 53.31 36.69 46.96 51.35 56.47 54.49 60.02 34.18 80.11 60.04
CAMNet [19]† R50 44.32 25.24 38.02 47.01 45.25 48.35 45.57 23.33 71.69 55.89
M2Fashion [27] R50 54.29 36.91 48.03 51.14 57.51 56.09 60.77 35.05 81.13 62.23
ASEN++ [4] R50 55.94 40.15 50.42 53.78 60.38 57.39 59.88 37.65 83.91 60.70
TF-CSN† ViT 62.85 48.65 60.71 53.27 66.18 63.70 72.75 45.95 88.36 66.35
TF-ASEN† ViT 33.52 6.20 23.28 31.24 31.37 41.16 39.02 15.57 60.88 54.16

Ours

CCA (Type-1) ViT 66.78 51.56 65.55 55.94 72.95 66.97 75.80 51.37 90.08 71.44
CCA (Type-2) ViT 68.09 53.04 68.21 56.65 74.71 70.12 77.03 52.51 90.23 70.99

Table 3: mAP comparisons of our methods against other studies on DARN. † indicates our reproduced results.

more classes than FashionAI and DARN at 1000, resulting
in a relatively low mAP value.

Zappos50K Table 5 presents the triplet prediction met-
ric results. Our method achieved SOTA performance, with
a +3.61% improvement compared to the previous method.
Unlike the aforementioned datasets, the Zappos50K dataset
is relatively simple, as indicated by the category composi-
tion in Table 1 and the example in Figure A1.

4.6. Ablation Studies

SOTA models applied Transformer The results of the
existing CSN [26], ASEN [13] models are obtained with
the RestNet50 as the backbone. For a fair comparison, we
apply the ViT backbone rather than CNN to these meth-
ods and present the experimental results. These models are
indicated as TF-CSN and TF-ASEN, respectively. To ap-
ply this to CSN and ASEN, first, CSN must accept di-
mensions of size RD. Hence, it must be applied in [CLS]
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Method BACKBONE mAP
mAP for each attribute

texture-related fabric-related shape-related part-related style-related

Random baseline [13] R50 3.38 6.69 2.69 3.23 2.55 1.97
Triplet network [13] R50 7.36 13.26 6.28 9.49 4.43 3.33
CSN [13] R50 8.01 14.09 6.39 11.07 5.13 3.49
ASEN [13] R50 8.74 15.13 7.11 12.39 5.51 3.56
ASEN++ [4] R50 9.64 15.60 7.67 14.31 6.60 4.07
TF-CSN† ViT 10.04 15.27 8.11 14.91 7.40 4.51
TF-ASEN† ViT 8.53 13.98 6.56 13.39 5.61 3.13

Ours

CCA (Type-1) ViT 10.64 16.18 8.38 15.98 7.99 4.78
CCA (Type-2) ViT 11.04 16.76 8.42 16.83 8.47 4.92

Table 4: mAP comparisons of our methods against other studies on DeepFashion. † indicates our reproduced results.

Method Prediction Accuracy(%)

Random baseline [13] 50.00
Triplet network [26] 76.28
CSN [26] 89.27
ASEN [13] 90.79
ADDE-C [7] 91.37

TF-CSN† 94.78

TF-ASEN† 94.56

Ours

CCA (Type-1) 94.98
CCA (Type-2) 94.85

Table 5: Performance of triplet prediction on Zappos50k. †
indicates our reproduced results.

∈ RD. In contrast, ASEN must accept a CNN feature map
of ∈ RW×H×D dimensions. For ViT, it must be applied
in [PATCH] ∈ RN×D, which can be applied because N
can be reshaped to W ×H . One peculiarity is that ASEN
outperforms CSN based on CNN but not that based on ViT.
Overall, our proposed CCA, with the same transformer base
as TF-CSN and TF-ASEN, outperforms both models.

Consistent Performance We found that previous studies
yielded different performance results for the datasets. For
example, Table 2, CAMNet [19] outperformed ASEN and
CSN, whereas, in Table 3 and Table 4, there are no perfor-
mance results. Similarly, in Table 3, M2Fashion [27] out-
performed ASEN and CSN, whereas, in Table 2 and Ta-
ble 4, there are no results. This suggests that the perfor-
mance varies with the dataset. Accordingly, we applied the

CAMNet study to the DARN dataset to reproduce it. In Ta-
ble 3, the † symbol indicates our reproduced results. CAM-
Net model yielded lower performance than ASEN and CSN.
Moreover, ASEN outperformed CSN based on CNN in the
results of TF-CSN/ASEN when using the transformer. This
is attributed to differences in learning according to the char-
acteristics of each dataset. Thus, learning to form embed-
dings for objects with multiple attributes using a single net-
work is very difficult. In contrast, our proposed CCA con-
sistently yields high performance for all datasets.

Type-1 vs. Type-2 These results relate to Equation 2 and
Equation 3 in subsection 3.2. Table 2 presents the results for
CCA (Type-1) and CCA (Type-2); CCA (Type-2) yielded
+2.97% higher performance than CCA (Type-1). In Ta-
ble 3 and Table 4, CCA (Type-2) showed +1.31% and
+0.4% higher performance, respectively. In Table 5, CCA
(Type-1) yielded +0.42% higher performance. CCA (Type-
2) was slightly higher in the previous three benchmark sets,
whereas CCA (Type-1) was slightly higher by 0.13% in this
dataset. However, CCA (Type-1) and CCA (Type-2) outper-
formed all results of the previous studies and TF-CSN and
TF-ASEN described above, achieving SOTA performance.

5. Conclusion
This study investigates forming embeddings for an ob-

ject with multiple attributes using a single network, which
is generally difficult in practice. However, the proposed
method can extract various specific attribute features using
a single backbone network. The proposed network enables
multi-space embedding for multiple attributes. Finally, our
proposed algorithm achieved SOTA performance in all eval-
uation metrics for the benchmark datasets.
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