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Abstract

The existing unsupervised video object segmentation
methods depend heavily on the segmentation model trained
offline on a labeled training video set, and cannot well gen-
eralize to the test videos from a different domain with pos-
sible distribution shifts. We propose to perform online fine-
tuning on the pre-trained segmentation model to adapt to
any ad-hoc videos at the test time. To achieve this, we
design an offline semi-supervised adversarial training pro-
cess, which leverages the unlabeled video frames to improve
the model generalizability while aligning the features of
the labeled video frames with the features of the unlabeled
video frames. With the trained segmentation model, we fur-
ther conduct an online self-supervised adversarial finetun-
ing, in which a teacher model and a student model are first
initialized with the pre-trained segmentation model weights,
and the pseudo label produced by the teacher model is used
to supervise the student model in an adversarial learning
framework. Through online finetuning, the student model is
progressively updated according to the emerging patterns in
each test video, which significantly reduces the test-time do-
main gap. We integrate our offline training and online fine-
tuning in a unified framework for unsupervised video object
segmentation and dub our method Online Adversarial Self-
Tuning (OAST). The experiments show that our method out-
performs the state-of-the-arts with significant gains on the
popular video object segmentation datasets.

1. Introduction
Video Object Segmentation (VOS) aims to track the

moving objects in a video sequence with an accurate seg-
mentation mask. The existing VOS works can be catego-

*Corresponding author. Email:songhuihui@nuist.edu.cn.
This work is supported in part by National Key Research and Develop-
ment Program of China under Grant No. 2018AAA0100400, in part by
the NSFC under Grant Nos. 61825601, U21B2044, 62276141, 61872189,
in part by the Postgraduate Research&Practice Innovation Program of
Jiangsu Province under Grant Nos. KYCX23 1367.

Figure 1. Examples of “visual discrepancy” (row (a)-(b)) in
UVOS, where “train” and “test” indicate where the example im-
age is drawn from. Our OAST method produces more precise seg-
mentation masks (third column) comparing to the method without
OAST (second column).

rized into two paradigms based on whether the prior knowl-
edge is provided at the test time. One is the Semi-supervised
VOS (SVOS), where a model is trained on the training set,
and at the test time is provided with the ground truth mask
on the first frame as prior to segment the objects in the sub-
sequent frames. The other is called Unsupervised VOS1

(UVOS), where no ground-truth mask is provided at the test
time and there is no prior to leverage to segment the target.

We focus on UVOS since it requires no prior input
and is closer to the real-world applications. The existing
UVOS works train a model with a labeled video set, and
then directly apply it to the unlabeled videos at the test
time [51, 7, 40]. Without any prior as input, the inference
has to completely depend on the trained model. This has
proven to be effective when the test data are drawn from
the same domain as the training data [68, 65, 46]. How-
ever, the inference result can become degraded when the test
data originate from a different domain which is a common
case under the zero-shot setting. The main scenario that can
cause severe domain shifts in the test data is called “visual

1It is also referred to as “zero-shot VOS” or “primary object segmenta-
tion” in the literature.
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discrepancy”. Compared to the training data, the test data
may be captured in different environments and manifest sig-
nificant inter-class ambiguity and intra-class variance. Fig-
ure 1(a) shows a cow object from the training and test data
respectively. Due to their appearance difference, the model
is confused to perform good segmentation. On the contrary,
Figure 1(b) shows a leopard object for training and a cat
object for test. They have highly similar visual appearances
even belonging to different categories. As seen, the seg-
mentation result is not satisfactory.

Therefore, there is a demand to bridge such visual dis-
crepancy in UVOS. Motivated by the online finetuning
method commonly used in SVOS [54, 6, 28, 2], we propose
to perform online test-time finetuning in UVOS to account
for the ad-hoc test videos. Specifically, we start from a pre-
trained VOS model, and progressively update it according
to the emerging visual patterns in the test video. The up-
dates and predictions are performed online, during which
the model only has access to the current test video without
having access to the full test data or any training data.

There are two challenges in devising an online finetuning
method for UVOS. The first is how to reduce the overfitting
of the VOS model to the labeled training data, and make
it easier to generalize to the test data in new domain. To
this end, we propose to a semi-supervised training strategy
by adding arbitrary unlabeled videos into model training. It
takes a labeled video frame and any unlabeled video frame
(without using test data and with a distribution shift from the
training data) as input, and trains a discriminator to distin-
guish the predicted intermediate feature map of the labeled
frame from that of the unlabeled frame. The discriminator
is trained in an adversarial manner such that the two kinds
of feature map become indistinguishable. This training pro-
cess aligns the features of the labeled video frames to the
features of the unlabeled frames, which helps relieve the vi-
sual discrepancy to the future test data, and improves the
generalizability of the trained VOS model.

The second challenge lies in that we have no supervision
on the test video to enable online finetuning. We therefore
propose to tackle the task in a self-supervised manner. With
the trained VOS model, we initialize a teacher model and
a student model with the model weights. Motivated by the
fact that the mean teacher prediction tends to be more accu-
rate than the individual model prediction [49, 56], given a
video frame at the test time, we perform data augmentation
over it and use the augmentation-averaged prediction from
the teacher model as the pseudo ground-truth segmentation
mask. Meanwhile, we feed the raw frame into the student
model and get a predicted mask. These two masks are then
fed into a discriminator, which employs an adversarial loss
to minimize the difference of these two masks such that they
become indistinguishable. In this process, the parameters of
the student model are updated to make similar predictions

as the mean teacher prediction. Once the training is done,
the weights of the teacher model are updated by the weights
of the student model using exponential moving average to
account for the emerging patterns in the test data.

We design our method based on the training and fine-
tuning strategies discussed above and dub it Online Adver-
sarial Self-Tuning (OAST) due to its adversarial nature dur-
ing training and testing. We conduct extensive experiments
over five popular benchmark datasets and demonstrate that
our OAST method achieves the state-of-the-art performance
with significant gains. Our main contributions include: (1)
an online test-time finetuning method for UVOS, which dy-
namically updates the VOS model to adapt into the test data
in a new domain, and, to our best knowledge, is the first
online finetuning method for UVOS, (2) an offline semi-
supervised adversarial training method to improve the gen-
eralization ability of the VOS model, (3) an online self-
supervised adversarial fintuning method for test-time adap-
tation to account for each new test video.

2. Related Work
Online Finetuning in Semi-Supervised VOS. The ex-

isting SVOS works focus on modeling the spatial-temporal
object dynamics in video [51, 53, 62] or fusing complemen-
tary signals via multimodal learning [6, 14, 61]. In SVOS,
a model is first trained offline on the training data to learn
a general concept of objects. Then given a video at the test
time, the model is finetuned on the given ground-truth mask
of the first frame, and then applied to segment the rest of
the frames in the video. Such a finetuning step is critical for
SVOS performance [42, 3, 25, 24, 33]. However, due to the
lack of any supervision in UVOS, there is no mechanism to
perform finetuning, we motivates us for this research.

Unsupervised VOS. The popular UVOS methods oper-
ate on the RGB frames of a video, and model their high-
order relations [57, 31], pixel-wise correspondence [64, 23],
or long-range dependencies [9, 31, 46]. Some recent efforts
incorporate the motion cues as additional signals to infer the
object mask [68, 65, 46, 40]. LVO [51] trains a two-stream
network, taking an RGB frame and the optical flow into a
ConvGRU module to infer the segmentation mask. Trans-
portNet [65] uses the optimal structural matching to align
the frame features and optical flow features to suppress the
distracting noisy signals in each modality. MATNet [68]
proposes a motion-attentive transition to fuse the motion
and appearance features. RTNet [46] identifies the primary
objects in a video by correlating the intra-frame contrast,
the motion cues and temporal coherence of recurring ob-
jects. These methods do not have a mechanism to perform
online test-time finetuning to account for the emerging pat-
terns in the test videos as our work does.

Domain Adaptation. The semi-supervised adversarial
training in our method bears assembly with the Unsuper-
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Figure 2. Overview of our OAST method. In the offline semi-supervised adversarial training stage, given a labeled video frame and any
unlabeled video frame (without using test data and together with their optical flow map) as input, our base segmentation model outputs two
segmentation masks for each. A discriminator is trained in an adversarial manner such that the feature maps from the labeled and unlabeled
frames become distinguishable. In the online self-supervised finetuning stage, a teacher model and a student model are initialized with the
trained base model weights. Given a test frame (together with its optical flow map), we use the teacher model to generate an augmentation-
averaged prediction as the pseudo label, while using the student model to generate a predicted map on the raw frame. The two masks are
fed into a discriminator to minimize the gap between the teacher and student model. The student model is updated online by adversarial
learning over each test frame, and the teacher model is updated by the student model weights using exponential moving average.

vised Domain Adaptation (UDA) [35, 69, 22, 10, 29], which
is a task of transferring knowledge from the labeled source
domain to the unlabeled target domain to improve model
performance on the target domain. During training, UDA
methods align the feature distributions between the two do-
mains typically with adversarial training [12, 52, 41]. This
setup requires a pre-defined unlabeled target domain for
alignment. On the contrary, we adopt any ad-hoc unlabeled
videos, and the purpose is to reduce the risk of overfitting
the VOS model to the labeled training data, and improve the
model generalizability. The unlabeled videos play the role
of regularization in training, and they do not need to overlap
with the domain of the test videos.

Test-Time Adaptation. Test-Time adaptation, also re-
ferred to as source-free domain adaptation, aims to adapt
the model to the target domain without requiring any data
from the source domain. One popular trend is to finetune the
source model without explicitly performing domain align-
ment. TENT [55] adapts a pre-trained model by adjusting

the trainable parameters in BatchNorm layers via entropy
minimization. SHOT [26] freezes the source model and
learns the target-specific feature representation to implic-
itly align the target to the source. [36] uses a diversity
regularizer together with an input transformation module to
improve adaptation stability. TTT [48] trains an additional
auxiliary rotation prediction head to adapt to the target data
distribution. T3A [15] adjusts the last classification layer
during the inference time based on the pseudo-prototype
representations learned from the online unlabeled data and
the base classifier trained in source domain. Most existing
works require re-training the source model to support test-
time adaptation, and therefore is unrealistic for real-world
online applications. To relieve this, CoTTA [56] is recently
proposed to adapt a pre-trained source model to continu-
ally changing target data. It is a self-supervised framework
where a mean teacher model is used to generate high-quality
pseudo labels used for training the student model with a la-
bel consistency loss. We are motivated by this method, but
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the difference is that we introduce adversarial learning to
better align test video frame to the pre-trained model at the
test time, which is tailored to the VOS task and proven to
outperform CoTTA under the zero-shot setting.

3. Online Adversarial Self-Tuning for UVOS
3.1. Overview

Figure 2 illustrates our OAST method, which consists of
an offline semi-supervised adversarial training and an on-
line self-supervised adversarial finetuning stage.

At the training stage, given a labeled and an unlabeled
video frame, we employ a base segmentation model to pre-
dict a segmentation mask for each frame. We minimize
the segmentation loss between the labeled frame and its
ground-truth mask. Besides, we take the two predicted fea-
ture maps, and feed them into a discriminator for adversarial
training. the feature maps from the labeled and unlabeled
frames are enforced to be indistinguishable, which reduces
the domain gap between the labeled and unlabeled data, and
increases the generalizability of the base model.

At the finetuning stage, we initialize a teacher and a stu-
dent model with the pre-trained model weights. Given a
video frame at the test time, we perform data augmentation
and adopt the augmentation-averaged prediction from the
teacher model as the pseudo ground-truth mask. Concur-
rently, the frame is fed into the student model to produce
a predicted mask. The two masks are then sent into a dis-
criminator and an adversarial training process is conducted
to minimize their gap. In this process, the weights of the stu-
dent model are updated to account for the new test data, and
the weights of the teacher model are updated by the weights
of the student model using exponential moving average.

3.2. Base Segmentation Model

Motivated by the success of the two-stream network in
VOS [68, 46, 65], our base segmentation model takes both
appearance and motion cues as input. Given a video frame
Ia ∈ RH×W×3 and its optical flow map Im ∈ RH×W×3,
where H and W are the height and width, we concatenate
them together as a hybrid 4D tensor input Iam = [Ia; Im] ∈
R2×H×W×3. Our model is a U-shape network consisting of
an encoder and a decoder. The encoder is adapted from the
MobileViT [34] by inflating the 2D convolution layers into
the 3D convolution layers similar to I3D [4] to meet the
requirement of our input. The decoder is a symmetric ar-
chitecture as the encoder in which the down-scaling stages
are replaced by the up-scaling stages and the skip connec-
tions are used to link the corresponding stages together. We
use the pre-trained MobileViT to initialize the encoder and
randomly initialize the decoder. The whole model was fine-
tuned end-to-end with the training data. The details of the
network architecture can be found in the supplemental ma-

terial. At the end of the network, a 1 × 1 convolution layer
followed by upscaling and a sigmoid function is applied on
the feature, producing a predicted mask P ∈ [0, 1]H×W .

3.3. Offline Semi-Supervised Adversarial Training

Given a labeled video frame Ilam and a unlabeled video
frame Iuam, where we have a ground-truth segmentation
mask Gl ∈ {0, 1}H×W for the labeled frame as super-
vision. We apply our base segmentation model as a gen-
erator to produce two feature maps Fl, Fu ∈ RH×W×C

(by upscaling the feature maps output from the last layer
of the backbone), as well as a segmentation mask for the
labeled frame only. We first employ the classic VOS
segmentation loss including Cross-Entropy (CE) loss and
Intersection-over-Union (IoU) loss over the predicted seg-
mentation mask and the ground-truth mask, formulated as,

Lseg = LCE + λLIoU , (1)

where LCE = −
∑

i,j G
l
ij logP

l
ij , LIoU = 1 −

1
HW

∑
ij min(Gl

ij ,P
l
ij)/max(Gl

ij ,P
l
ij), and λ is a trade-

off parameter.
We choose a light-weight network as the discriminator.

It contains four convolution layers, in which each layer re-
duces the input resolution by 2 and every two layers are
connected by a BatchNorm and a ReLU layer. The details
of the discriminator architecture can be found in the sup-
plemental material. The discriminator takes a feature map
of size H × W as input and outputs a scalar probability
value indicating the likelihood of the input feature map be-
ing labeled. In our semi-supervised training, we feed Fl

and Fu into the discriminator and yield probability values
f l, fu ∈ [0, 1] as outputs.

With the discriminator output, we further apply an ad-
versarial loss as follows,

Ldomain = log(f l) + log(1− fu), (2)

where the discriminator tries to enforce f l → 1, fu → 0,
and the adversarial training tries to confuse the discrimina-
tor until the origins of the two input feature maps become
indistinguishable. This essentially enforces the model to
align the labeled frames with the unlabeled frames in the
feature space, which relaxes the model from the training
videos and better generalizes to new test videos.

Based on the aforementioned losses, our total training
loss is defined as follows,

L = Lseg + λdLdomain, (3)

where λd is the tradeoff parameters, and we jointly train our
feature map generator and the discriminator in an adversar-
ial min-max fashion.
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3.4. Online Self-Supervised Adversarial Finetuning

The challenge in online finetuning for UVOS lies in that
we do not have any supervision on the test video. To resolve
this, we propose a self-supervised tuning framework. We
first take the weights of our base model and use them to
initialize a teacher model and a student model. Motivated
by [49] that the augmentation-averaged prediction usually
provides a more accurate result than the individual model
prediction, we take the averaged prediction from the teacher
model as the pseudo-label to train the student model.

Given a video frame and its optical flow map Iam ∈
R2×H×W×3 at the test time, we perform data augmentation
including horizontal flip, color enhancement, multi-scale,
and feed the augmented samples into the teacher model. We
take the outputs from the teacher model and average them
as the pseudo ground-truth mask Pt ∈ [0, 1]H×W . The
student model is then optimized by the cross-entropy loss
between the student and teacher predictions as,

LCE(θs) = −
∑
i,j

Pt,ij logPs,ij , (4)

where θs is the model weights of the student model and
Ps ∈ [0, 1]H×W is the segmentation confidence map from
the student model.

We further employ adversarial learning to align Pt and
Ps to make them indistinguishable and improve the predic-
tion quality. To this end, we design a similar light-weight
discriminator in Section 3.3 for our online learning. The
difference is the final logits are sent into a 1 × 1 convo-
lution layer followed by upsampling and a sigmoid func-
tion to produce an output confidence map. Details of the
model architecture can be found in the supplemental mate-
rial. Given Pt and Ps, we denote the discriminator outputs
as P̃t, P̃s ∈ [0, 1]H×W . Then an adversarial loss is defined
as follows,

Ladv(θs) =
∑
i,j

log(P̃t,ij) + log(1− P̃s,ij), (5)

where the discriminator tries to distinguish P̃t,ij , P̃s,ij , and
the adversarial learning makes them indistinguishable.

Therefore, the overall loss for finetuning the student
model is as follows,

L(θs) = LCE(θs) + λaLadv(θs), (6)

where λa is a trade-off parameter.
It is difficult for the teacher model to effectively guide

the student model if the weights of the teacher model are
never updated. Therefore, we employ the exponential mov-
ing average method to update the weights of the teacher
model θt using the weights of the student model θs,

θt = αθt + (1− α)θs, (7)

where α is a smoothing factor. This update takes place once
the student model is online updated for every new test video
frame. At each step, the student model is used to predict the
segmentation map on the test frame.

4. Experiments
4.1. Implementation Details

The network architectures in our method can be found
in the supplemental material. Our experiments follow the
common practices as in [65, 68]. The training set con-
sists of three parts: (a) all training data in DAVIS16 [43],
which contains 30 videos and 2, 000 frames, (b) 10, 000
frames from Youtube-VOS [62], a subset of the training set
of Youtube-VOS by sampling one frame every ten frames
in each video, making sure its scale be similar as other data
sets, (c) the test data of Youtube-objects [44] (independent
of the test data in each evaluation dataset), which contains
126 videos and over 20, 000 frames. We use (a) and (b)
as the labeled data while using (c) as the unlabeled data to
train our model. All frames are resized to 384 × 640 × 3,
and the optical flow is estimated by RAFT [50]. The model
is trained with the AdamW optimizer [30] with an initial
learning rate of 1e− 4. The batch size and weight decay
are set as 2 and 1e− 2, and the augmentation strategies in-
cluding random horizontal flip, random cropping and ran-
dom rotation covering a range of degrees (−10, 10) are
applied during training. The tradeoff parameters λ and
λd are respectively set as 1 and 1e− 4 based on cross-
validation. At the online test-time finetuning stage, we set
the learning rate of the optimizer as 1e− 5, and set the
coefficient α of the exponential moving average and the
tradeoff parameter λa to 0.999 and 1e− 4 based on cross-
validation. The data augmentation at this stage includes ran-
dom horizontal flip, color enhancement and multi-scale re-
sizing. Given a test frame, 3 augmented frames from the
above three augmentation methods, together with the orig-
inal frame itself, are used to infer augmentation-averaged
prediction (after re-aligning the outputs from the original
and the augmented frames). The offline training process
takes 55 epochs, and the online fine-tuning takes 10 epochs.
The proposed method is implemented in the framework of
Pytorch 1.10.1 with two NVIDIA 2080TI GPUs and di-
rectly produces the binary segmentation mask without any
post-processing technique.

4.2. Datasets and Evaluation Metrics

Our experiments are performed over five benchmark
datasets commonly used for UVOS. Note that only the train-
ing data in DAVIS16 set is used for training our model,
while the other data sets are all out-of-domain data for eval-
uating the online adaptation performance. Following the
common practice in existing UVOS works [40, 68, 46], we
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only use part of Youtube-VOS in training, but do not use it
for test evaluation, given that this data set is only used as
a testbed for semi-supervised VOS [39]. Again, most eval-
uation data sets here are independent of the training data,
which is a perfect setup for the zero-shot VOS.

DAVIS16 consists of 50 videos with high-quality dense
pixel-level annotations, including 30 training videos and 20
test videos. We evaluate on the test set, and employ the stan-
dard metrics for this dataset including the region similarity
J , the boundary accuracy F and the overall J&F score
that is the average of J and F scores as the evaluation met-
rics. Besides, we also report the video salient object detec-
tion [16, 5] performance in terms of structure-measure (Sa),
F -measure (Fm), and Mean Absolution Error (MAE), as
in [5, 16, 45].

FBMS contains 59 videos, including 29 videos for train-
ing and 30 videos for test. We evaluate on the test set, and
report the standard metrics for this dataset including the re-
gion similarity J , as well as Sa, Fm and MAE.

DAVSOD is a challenging dataset for the video salient
object detection task. It contains a total of 96 videos, in-
cluding 61 videos for training and 35 videos for testing. We
report results on the test data in terms of Sa, Fm and MAE.

MCL contains 9 videos with a diverse set of objects and
backgrounds, varying in video length from 30 frames to 100
frames. The evaluation metrics Sa, Fm and MAE are used
to evaluate the performance of different methods over the
whole dataset.

ViSal is created for the video salient object detection task
and it consists of 17 videos with a total of 193 precisely
annotated frames. The whole dataset is used for evaluation
in terms of Sa, Fm and MAE.

4.3. Comparison with the State-of-the-Arts

Table 1 lists the comparison between our OAST method
and the state-of-the-art UVOS methods on DAVIS16 and
FBMS datasets. Following the common practice in UVOS,
we only report J on FBMS [65, 9, 68]. From the results, we
have the following observations: (1) Our method achieves
the best performance over all evaluation metrics on both
datasets. This shows that the online test-time finetuning
is an essential step for improving the UVOS performance.
(2) Although our method achieves similar performance as
HFAN [40] on the DAVIS16 dataset, it significantly outper-
forms the HFAN on the FBMS dataset with a large margin
of 6.9% absolute improvement. This may attribute to the
model overfit to the DAVIS16 training data and validates
the value of adding unlabeled data for improving the model
generalizability. (3) Our method beats the MATNet [68],
COSNet [31], AnDiff [64] and DBSNet [9], which take ad-
vantage of post-processing techniques such as CRF [19]
and instance pruning to ensure the segmentation quality.
This indicates that the adversarial learning strategies in our

Methods DAVIS16 FBMS
J&F J F J

COSNet (CVPR19) [31] 80.0 80.5 79.4 75.6
AGNN (ICCV19) [57] 79.9 80.7 79.1 -
AGS (CVPR19) [59] 78.6 79.7 77.4 -
EpO+ (WACV20) [1] 78.1 80.6 75.5 -

MATNet (AAAI20) [68] 81.6 82.4 80.7 76.1
DFNet (ECCV20) [67] 82.6 83.4 81.8 -

3DC-Seg (BMVC20) [32] 84.5 84.3 84.7 71.5
FSNet (ICCV21) [16] 83.3 83.4 83.1 -
F2Net (AAAI21) [27] 83.7 83.1 84.4 77.5

TransportNet (ICCV21) [65] 84.8 84.5 85.0 78.7
AMCNet (ICCV21) [63] 84.6 84.5 84.6 76.5
RTNet (CVPR21) [46] 85.2 85.6 84.7 -
CFANet (WACV22) [5] 82.8 83.5 82.0 -

D2Conv3D (WACV22) [47] 86.0 85.5 86.5 -
IMPNet (AAAI22) [20] 85.6 84.5 86.7 77.5

DBSNet (ACMMM22) [9] 85.3 85.9 84.7 78.5
HFAN (ECCV2022) [40] 86.7 86.2 87.1 76.1
TMO (WACV2023) [7] 86.1 85.6 86.6 79.9

OAST (Ours) 87.0 86.6 87.4 83.0

Table 1. Results on DAVIS16 and FBMS test sets, and the numbers
in “red”, “blue”, and “green” indicate the top three performance.

method produce high quality segmentation maps compara-
ble to the sophisticated post-processing.

Table 2 shows the performance of different methods in
terms of Sa, Fm and MAE over all five datasets. From the
results, we can see that (1) Our OAST method surpasses the
other methods by large margins and reaches new state-of-
the-art results on FBMS [37], DAVSOD [8] and MCL [18].
This again verifies the importance of online finetuning for
UVOS, (2) Our method shows promising results on the out-
of-domain datasets including DAVSOD [8], ViSal [58] and
MCL [18]. Note that none of these datasets are used in train-
ing, and they have significant visual and semantic discrep-
ancies from the training data. This validates the adaptability
of our method to the domain shift in the novel data.

Figure 3 visualizes the segmentation results on some test
videos. It is interesting to see that the cat and the horse ob-
ject (in the top three rows) can be perfectly segmented even
their appearance and the background environment evolve
significantly over time. In the last three rows of Figure 3,
we show the worm, blackswan and cheetah objects that are
unseen categories in the training data. As seen, our method
is still able to precisely segment all of them owing to its
online finetuning strategy.

4.4. Ablation Study

In this section, we run experiments to study how the in-
dividual component of our OAST method contributes to the
overall performance. We conduct analysis over DAVIS16
and FMBS and adopt the standard metrics on these datasets
to measure the performance.
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Methods
DAVIS16 FBMS DAVSOD ViSal MCL

Sa ↑ Fm ↑ MAE ↓ Sa ↑ Fm ↑ MAE ↓ Sa ↑ Fm ↑ MAE ↓ Sa ↑ Fm ↑ MAE ↓ Sa ↑ Fm ↑ MAE ↓
SSAV (CVPR2019) [8] 89.3 86.1 2.8 87.9 86.5 4.0 72.4 60.3 9.2 94.3 93.9 2.0 81.9 77.3 2.6

AnDiff (ICCV2019) [64] - 80.8 4.4 - 81.2 6.4 - - - - 90.4 3.0 - - -
F3Net (AAAI2020) [60] 85.0 81.9 4.1 85.3 81.9 6.8 68.9 56.4 11.7 87.4 90.7 4.5 - - -
MINet (CVPR2020) [38] 86.1 83.5 3.9 84.9 81.7 6.7 70.4 58.2 10.3 90.3 91.1 4.1 73.0 62.3 3.8

GateNet (ECCV2020) [66] 86.9 84.6 3.6 85.7 83.2 6.5 70.1 57.8 10.4 92.1 92.8 3.9 - - -
PCSA (AAAI2020) [11] 90.2 88.0 2.2 86.6 83.1 4.1 74.1 65.5 8.6 94.6 94.0 1.7 75.4 68.3 3.8
DFNet (ECCV2020) [67] - 89.9 1.8 - 83.3 5.4 - - - - 92.7 1.7 - - -

3DC-Seg (BMVC2020) [32] - 91.8 1.5 - 84.5 4.8 - - - - 92.2 1.9 66.4 72.1 4.1
CASNet (TNNLS2020) [17] 87.3 86.0 3.2 85.6 86.3 5.6 69.4 - 8.9 82.0 84.7 2.9 - - -

FSNet (ICCV2021) [16] 92.0 90.7 2.0 89.0 88.8 4.1 77.3 68.5 7.2 - - - 86.4 82.1 2.3
ReuseVOS (CVPR2021) [39] 88.3 86.5 1.9 88.8 88.4 2.7 - - - 92.8 93.3 2.0 75.4 67.9 3.7

CFANet (WACV2022) [5] 91.8 90.9 1.5 90.9 91.5 2.6 75.3 66.2 8.3 - - - - - -
DBSNet (ACMMM2022) [9] 92.4 91.4 1.4 88.2 88.5 3.8 77.8 68.8 7.6 93.1 92.8 2.0 86.8 83.0 2.0

HFAN (ECCV2022) [40] 93.4 92.9 0.9 87.5 84.9 3.3 75.3 68.0 7.0 94.1 93.5 1.1 83.4 78.8 1.8
TMO (WACV2023) [7] 92.8 92.0 0.9 88.6 88.2 3.1 76.7 70.8 7.2 94.2 94.7 1.0 84.2 84.5 1.9

OAST (Ours) 93.5 92.6 1.1 91.7 91.9 2.5 78.6 71.2 7.0 94.8 95.0 1.0 88.9 87.0 1.5

Table 2. Results on DAVIS16, FBMS, DAVSOD, ViSal and MCL datasets, in which the numbers in “red”, “blue”, and “green” color
indicate the top three performance respectively.

Figure 3. Exemplary segmentation results over test videos. The cat and horse objects in the first three rows can be precisely segmented
even when their appearance and background evolve significantly over time. Meanwhile, the worm, blackswan and cheetah objects in the
last three rows are also perfectly segmented even they are novel unseen categories from the training data.

Model DAVIS16 FBMS
J&F J F J

Transformer Base Model 82.0 81.4 82.6 78.2
3D ResNet101 Base Model 80.9 80.5 81.3 76.1

Transformer Base Model w/ Offline Adv. Training 85.3 84.7 85.9 81.4
Transformer Base Model w/ Online Finetuning 84.0 83.4 84.5 80.5

OAST w/ 3D ResNet101 85.9 85.4 86.3 81.7
OAST w/ Transformer 87.0 86.6 87.4 83.0

Table 3. Results on DAVIS16 and FBMS test sets for different vari-
ants of the proposed OAST method, in which we try different base
models between transformer and 3D ResNet101, and also evaluate
the impact of each individual component in OAST.

Impact of transformer as base segmentation model.
As shown in Section 3.2, we adopt the transformer-based

3D MobileViT as our base segmentation model. To verify
its impact, we replace it with 3D ResNet101 [13], and get a
CNN-based base segmentation model. Following the same
strategy adapting MobileViT into our base model, we con-
vert the 3D ResNet101 into an encoder-decoder architecture
and append a 1×1 convolution to infer a segmentation map.
We compare these two base models and report the results in
rows 1-2 in Table 3. As seen, 3D ResNet101 drops the per-
formance by 1.1% in terms of J&F on DAVIS16, and by
2.1% in terms of J on FBMS. Apparently, the transformer
better models the long-range dependencies in the video con-
tent, leading to better results. The results in row 5 of Table 3
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Figure 4. The first column shows the distribution shift metrics between the DAVIS16 and the unlabeled data with and without adding
unlabeled data for offline adversarial training. The last two columns visualize the feature distribution with and without unlabeled data over
DAVIS-2016 and unlabeled data.

show the result of our OAST method with 3D ResNet101 as
the base model, which is worse than the result with trans-
former as shown in row 6.

Impact of offline adversarial training. On top of the
transformer-based base segmentation model, we further add
the offline adversarial training step as described in Sec-
tion 3.3, and the results can be found in row 3 of Table 3. As
seen, comparing to the base model (row 1), the offline ad-
versarial training further improves the performance by 3.3%
in terms of J&F on DAVIS16 and 3.2% in terms of J on
FBMS. This verifies that the unlabeled data help alleviate
model overfit to the labeled data and generalize better to
the test data in new domain. Figure 4 displays distribution
shift metrics (column 1) based on [21] and the intermediate
feature distributions trained with (column 2) and without
unlabeled data (column 3) over DAVIS-2016 and unlabeled
data. As seen, the model trained with unlabeled data ex-
hibits a distribution shift metric of 0.23 between DAVIS-
2016 and the unlabeled data, significantly smaller than the
model trained without unlabeled data. Furthermore, the
feature distributions become much closer, indicating that
adding unlabeled data via offline adversarial learning has
effectively reduced the distribution shift.

Impact of online finetuning. Now we add online fine-
tuning on top of our base segmentation model and show the
result in row 4 of Table 3. As seen, comparing to the base
model (row 1), the online finetuning improves the results by
2.0% in terms of J&F on DAVIS16 and 2.3% in terms of
J on FBMS. This demonstrates the validity of our online
finetuning strategy that could adapt to the new data distri-
bution and ensure the model generalizability. Note that the
performance of just adding online fine-tuning is worse than
only adding unlabeled data for training. This is due to the
fact that the model trained without unlabeled data tends to
overfit to the labeled data, which confirms the necessity of
offline adversarial training for online fine-tuning.

Model DAVIS16 FBMS
J&F J F J

w/o adversarial learning 85.8 85.2 86.4 81.9
w/ adversarial learning 87.0 86.6 87.4 83.0

Table 4. Results on DAVIS16 and FBMS test sets with and without
adversarial learning in OAST online finetuning.

Impact of all components in OAST. Adding all com-
ponents together, our OAST method outperforms the base
segmentation by 5.0% on DAVIS16 in terms of J&F and
by 4.8% on FBMS in terms of J (row 6 vs row 1 in Ta-
ble 3). It also outperforms all other variants in Table 3. This
indicates that all of the proposed components are essential
to the overall success of our OSAT method.

Impact of adversarial learning in OAST online fine-
tuning. We also verify the impact of adversarial learning
in the online finetuning described in Section 3.4, and the
result can be seen in Table 4. As seen, without adversarial
learning, the OAST performance drops by about 1% over
all metrics on both datasets. This verifies the value of align-
ing the segmentation maps from the teacher and the stu-
dent model to improve their consistency. It is worth noting
that our method without adversarial learning boils down to
the general online test-time adaptation method CoTTA [56],
and adding adversarial learning makes our method more tai-
lored to the UVOS task, leading to better performance.

5. Conclusion
We presented an online finetuning method for UVOS,

which consists of an offline semi-supervised adversarial
training and an online self-supervised online finetuning. At
the training stage, we add the unlabeled videos to improve
the model generalizability and use a light-weight discrimi-
nator to align the features of labeled and unlabeled training
videos via adversarial learning. At the test stage, we ini-
tialize a teacher model and a student model, and use the
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augmentation-averaged prediction from the teacher to su-
pervise the student model to adapt to the emerging patterns
in the test videos, during which a discriminator is trained in
an adversarial manner to minimize the gap between the pre-
dictions from the two models. Through online finetuning,
the student model is trained by optimizing adversarial loss
and consistency loss and the teacher model is updated with
the student model weights via exponential moving average.
Extensive experiments on five popular benchmark datasets
have demonstrated the effectiveness of proposed method,
substantially outperforming the state-of-the-art methods.
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