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Abstract

Memory-based methods in semi-supervised video object
segmentation task achieve competitive performance by per-
forming dense matching between query and memory frames.
However, most of the existing methods neglect the fact that
videos carry rich temporal information yet redundant spatial
information. In this case, direct pixel-level global match-
ing will lead to ambiguous correspondences. In this work,
we reconcile the inherent tension of spatial and temporal
information to retrieve memory frame information along the
object trajectory, and propose a novel and coherent Tra-
jectory Memory Retrieval Network (TMRN) to equip with
the trajectory information, including a spatial alignment
module and a temporal aggregation module. The proposed
TMRN enjoys several merits. First, TMRN is empowered
to characterize the temporal correspondence which is in
line with the nature of video in a data-driven manner. Sec-
ond, we elegantly customize the spatial alignment module
by coupling SVD initialization with agent-level correlation
for representative agent construction and rectifying false
matches caused by direct pairwise pixel-level correlation,
respectively. Extensive experimental results on challeng-
ing benchmarks including DAVIS 2017 validation / test and
Youtube-VOS 2018 / 2019 demonstrate that our TMRN, as
a general plugin module, achieves consistent improvements
over several leading methods.

1. Introduction
Semi-supervised Video Object Segmentation (VOS) is

a fundamental task to perform pixel-wise classification of
a set of class-agnostic objects in video sequences. It has
been widely applied to autonomous driving [61], video edit-
ing [31], augmented reality [30], etc. Since the object mask
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Figure 1: Illustration of our motivation. (a) shows TMRN
reconciles the inherent tension of spatial and temporal in-
formation to retrieve memory frame information along the
object trajectory. (b) shows we carefully design a spatial
alignment module through a set of representative reference
features (agents) to rectify direct pairwise pixel-level corre-
lation caused by distractors with similar appearance.

is only given in the first frame without any other prior in-
formation assumptions, how to fully exploit limited and
semantic-agnostic information to perform accurate segmen-
tation in the subsequent frames is thus extremely challenging.

Recently, memory-based methods [56, 37, 7, 38, 32]
dominate this field credited to their simplicity yet competi-
tive performance. The core idea of the memory-based meth-
ods is to perform dense matching between query (i.e., cur-
rent frame) and memory (i.e., past frames with given or
segmented masks), and to retrieve the constructed memory
bank in a pixel-level manner. Despite their promising results,
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these methods neglect the fact that videos carry rich tempo-
ral information (e.g., the target object ball moves over time
in Figure 1 (a)) yet redundant spatial information. In this
case, direct pixel-level global matching forces each query
pixel to retrieve all memory pixels equivalently across space
and time, leading to ambiguous correspondences that suf-
fer from superfluous spatial information, and are fragile to
the movement of objects and cameras ascribed to contempt
for temporal information (i.e., trajectory). To make mat-
ters worse, the temporal information will be further diluted
when the memory frames gradually increase as the video
progresses, leading to sub-optimal results. Therefore, it is
highly desirable to characterize the temporal correspondence
from the VOS task, that is, aggregate the trajectory features
of the target object ball from all relevant memory frames for
segmentation.

In this paper, we aim to reconcile the inherent tension of
spatial and temporal information to retrieve memory frame
information along the object trajectory. Specifically, we de-
sign a novel Trajectory Memory Retrieval Network (TMRN)
that can be applied as a generic plugin, including a spatial
alignment module and a temporal aggregation module to
equip with the trajectory information for robust VOS. In
specific, as shown in Figure 1 (a), we enable each query
pixel to independently retrieve the pixels in each memory
frame to seek the location of the counterpart trajectory, and
obtain spatially aligned memory pixel features (resides in
the same spatial position as the corresponding query ones).
Then the resultant aligned memory pixels are pooled through
the temporal aggregation module to reason about inter-frame
connections (i.e., the contribution of each memory frame)
in an adaptive manner, please refer to figure 7. However,
directly employing pairwise pixel-level correlation in the
spatial alignment module tends to struggle to distinguish the
objects with similar appearances (e.g., color), increasing the
risk of false matches. As shown in Figure 1 (b), due to the
distractor jersey with similar appearances in memory frame,
p1 in the query frame situated on the cap is erroneously
closer to p3 located in the jersey than counterpart p2 in the
memory frame.

To mitigate the false matching problem, we carefully
design the spatial alignment module through a set of repre-
sentative reference features (referred to as agents) to rectify
direct pairwise pixel-level correlation. The main idea is, for
each pixel from the query or memory frame, we can obtain
the agent-level correlation (i.e., a likelihood vector) by com-
paring this pixel with a set of agents. In essence, the agent-
level correlation reflects the consensus among representative
agents with a broader receptive field, thus it encodes the rel-
ative semantic comparability of the agents that can be relied
upon. Intuitively, each pair of pixels with true correspon-
dence (e.g., the p1-p2 pair in Figure 1 (b)) from the query and
memory frame should be not only visually similar to each

other (i.e., high pairwise pixel-level correlation), but also
holding consensus to any other agents (i.e., similar agent-
level correlation pair). Based on this correlation consistency
in spatial alignment module, false matches caused by similar
vision but dissimilar agent correlations will be suppressed
(e.g., the point p1-p3 pair in Figure 1 (b)), ensuring that true
pixel-level correlations between query-memory frame enjoy
higher weights in pursuit of spatially well-aligned memory
features.

However, it is non-trivial to attain the appropriate agents
without any supervision signals for training. Intuitively, the
agents should resonate favorably with diverse semantic cues
from both query and memory pixels with a wide range of
semantic contrast descriptive. In other words, the matching
between query-memory pixels in the spatial alignment mod-
ule based on agent-level correlation should preserve as much
critical information as possible in the original pixel-level cor-
relation. Therefore, we take advantage of the singular value
decomposition (SVD) to obtain diverse and complementary
agents benefiting from the inbuilt rapid decay properties of
the singular value, considering the sum of the squares of the
singular values after singular value decomposition can be
regarded as the energy of the matrix (i.e., the representative
information contained in the original pixel-level correlation).

In this work, our contributions can be summarized as
follows: (1) We design a novel and coherent Trajectory
Memory Retrieval Network (TMRN) that can be applied as
a generic plugin, including a spatial alignment module and
a temporal aggregation module to equip with the trajectory
information in VOS. To the best of our knowledge, this is the
first work to characterize the temporal correspondence which
is in line with the nature of video in a data-driven manner.
(2) We elegantly customize the spatial alignment module
by coupling SVD initialization with agent-level correlation
for representative agents construction and rectifying false
matches caused by direct pairwise pixel-level correlation,
respectively. (3) Extensive experimental results on challeng-
ing benchmarks including DAVIS 2017 validation / test and
Youtube-VOS 2018 / 2019 demonstrate that our TMRN, as
a general plugin module, achieves consistent improvements
over several leading methods.

2. Related Work
In this section, we introduce several lines of research

in semi-supervised VOS, and describe the memory-based
methods in detail.

Semi-supervised Video Object Segmentation. Existing
VOS methods can be roughly categorized into two categories
attributed to the development of deep learning [47, 41, 46,
27, 42, 26, 40]: online-learning methods and offline-learning
methods. For online-learning methods [1, 8, 10, 43, 28, 48],
the optimal parameters are derived by fine-tuning the model
for each video sequence in the inference stage. Xiao et
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Figure 2: Illustration of the proposed TMRN. TMRN is mainly composed of a spatial alignment module and a temporal
aggregation module to equip with the trajectory information, and enables each query pixel to independently retrieve the pixels
in each memory frame to seek the location of the counterpart trajectory, and obtain spatially aligned memory pixel features.
Then the resultant aligned memory pixels are pooled through the temporal aggregation module to reason about inter-frame
connections.

al. [48] attempt to make a base segmentation model adapt
to new videos by training a meta-learner. However, the
online-learning methods require considerable time and are
inappropriate for most practical applications.

The offline-learning paradigm aims to make the model
trained on the whole training sequences be able to seg-
ment any input video without fine-tuning. Generally, there
are two common solutions, including mask propagation
and pixel-wise matching. Mask propagation based meth-
ods [17, 2, 60, 31] leverage the temporal motion consis-
tency to propagate the segmentation mask to the current
frame. However, since the propagation is conducted in a
short-time interval, these methods are prone to error accu-
mulation under certain conditions such as occlusion. And
for the matching-based methods [15, 16, 58, 3], they cal-
culate the correspondences between the current frame and
the reference ones for segmentation. CFBI [54] utilizes
foreground-background integration for segmentation. Re-
cently, STM [32] demonstrates promising results and is a
pioneer work for memory-based methods. Our work follows
the memory-based methods due to its simplicity yet com-
petitive results, and attempts to characterize the temporal
correspondence which is in line with the nature of video,
mitigating the inherent limitations of existing methods.

Memory-based Video Object Segmentation. The typ-
ical pipeline for memory-based approaches is that given a
ground-truth mask at the first frame, we can extract a query
frame feature which is compared with the memory features in
the constructed memory bank to obtain the correspondences

for mask prediction. A series of works [57, 53, 25, 49, 14]
aim to improve segmentation performance in following as-
pects. (1) Apply the memory mechanism to other tasks such
as interactive VOS [6, 33] or video object tracking [11].
(2) Reduce the size of the memory bank for a faster in-
ference [22, 44, 19, 9]. (3) Make the model can segment
multiple target objects simultaneously [55, 12, 56]. For
instance, AOT [55] introduces a association mechanism
to segment multiple objects simultaneously. (4) Conduct
more reasonable ways for effective and robust memory read-
out [37, 23, 24, 34]. For example, STCN [7] utilizes the
negative squared Euclidean distance instead of inner-product
to compute the affinities for exploiting the rich memory in-
formation. XMem [5] incorporates multiple independent yet
deeply-connected feature memory stores. However, these
methods neglect the fact that videos carry rich temporal infor-
mation (trajectory) yet redundant spatial information. Some
methods [49, 57] attempt to explicitly model trajectories by
introducing external knowledge at the cost of considerable
model complexity, besides, they tend to accumulate errors
as the video progresses due to noisy optical flow. In contrast,
we characterize the temporal correspondence which is in line
with the nature of video in a data-driven manner.

3. Our Method

3.1. Overview

Inspired by STM [32], the memory-based methods show
superiority in VOS task and enjoy a dominant position. Typi-
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Figure 3: Illustration of the temporal alignment module.
The resultant aligned memory pixels from spatial alignment
module are pooled to reason about inter-frame connections
(i.e., the contribution of each memory frame) in an adaptive
manner.

cally, they construct a memory to store the processed frames
with the predicted or given masks. The current frame is
segmented by retrieving information from the memory. In
specific, each memory frame with corresponding mask is
encoded as Mk

t ∈ Rh×w×Ck and Mv
t ∈ Rh×w×Cv , where

h and w denote the height and width of the feature map, Ck

and Cv denote the channel number of the key feature map
and value feature map, respectively. In this way, we can
get the memory key Mk = {Mk

t }Tt=1 ∈ RT×h×w×Ck and
memory value Mv = {Mv

t }Tt=1 ∈ RT×h×w×Cv containing
T memory frames (suppose the desired segmented frame is
at T + 1 time). The query frame (i.e., current frame) is also
encoded as Qk ∈ Rh×w×Ck and Qv ∈ Rh×w×Cv .

3.2. Trajectory Memory Retrieval

In typical memory retrieval operation, all memory pixels
across space and time are treated equivalently:

si,j =
exp(βi,j)∑Thw

j=1 exp(βi,j)
, βi,j = sim(Qk

i ,Mk
j ), (1)

vi =

Thw∑
j=1

si,jMv
j , (2)

where i = 1, 2, ..., hw and sim(·, ·) denotes similarity func-
tion. A decoder takes the concatenation of the retrieved value
v and Qv as input and outputs the predicted mask for cur-
rent frame. Note that the above correlations are normalized
across both space and time, leading to ambiguous corre-
spondences that suffer from superfluous spatial information.

We are dedicated to improve the memory retrieval op-
eration and we argue that each memory frame should be
spatially aligned with the current frame before temporal ag-
gregation as illustrated in Figure 2. In specific, we align
each memory frame M⋆, ⋆ ∈ {k, v} (omit the subscript t

for convenience) with query frame Qk by:

si,j =
exp(βi,j)∑hw
j=1 exp(βi,j)

, βi,j = sim(Qk
i ,M

k
j ), (3)

M̃⋆
i =

hw∑
j=1

si,jM
⋆
j , (4)

where M̃⋆ denote the spatially aligned memory feature. Note
that the correlations are normalized spatially and unrelated
to time. Intuitively, this operation seeks the correspondence
location of Qk

i in memory frame t and reconstruct the mem-
ory M̃⋆

i using the feature of these locations, which is why
it is called spatial alignment. Then v can be obtained by
temporal aggregation as shown in Figure 3:

si,t =
exp(βi,t)∑T
t=1 exp(βi,t)

, βi,t = sim(Qk
i , M̃

k
i,t), (5)

vi =

T∑
t=1

si,tM̃
v
i,t. (6)

Note that this aggregation operation is performed alone the
temporal axis at one specific spatial position i. Thanks to
the previous spatially alignment operation, such temporal
aggregation is implicitly equivalent to retrieving the memory
along the trajectory.

However, the direct pairwise pixel-level correlation si,j
calculated by Equation 3 is fragile to the distractor and at risk
of false matches. To mitigate the false matching problem,
we carefully design agent-level correlation mechanism to
rectify the pixel-level correlation. It is non-trivial to attain
the appropriate agents without any supervision signals and
we resort to the singular value decomposition. The improved
spatial alignment is shown in Figure 4 and detailed in the
following section.

3.3. Spatial Alignment

Agents Initialization. Intuitively, the agents should res-
onate favorably with diverse semantic cues from both query
and memory pixels. we take advantage of Singular Value
Decomposition (SVD) to implement principal component
analysis on the basis of original pixel-wise correlation matrix
S = {si,j}hwi,j=1 ∈ Rhw×hw. Specifically, we decompose
the S via SVD and only keep the largest K singular values:

S
SVD

=====
Top-K

UΣVT, (7)

where U ∈ Rhw×K , Σ ∈ RK×K , VT ∈ RK×hw. Benefit-
ing from the inbuilt rapid decay properties of the singular
value, keeping the largest K singular values is enough to re-
tain the representative information contained in the original
pixel-level correlation matrix.
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Figure 4: Illustration of the spatial alignment module. In
this module, We elegantly customize the spatial alignment
module by coupling SVD initialization with agent-level cor-
relation for representative agents construction and rectifying
false matches caused by direct pairwise pixel-level correla-
tion, respectively.

For the left singular matrix U, it can be seen as K orthog-
onal bases in the space of query feature Qk, and then we
explicitly map the Qk in the form of linear transformation
to get K agents:

AQ = UTQk. (8)

Another K agents in the space of memory feature can be
obtained in the same way:

AM = VTMk. (9)

Agent-level Correlation. After getting the agents A =
[AQ,AM ] ∈ R2K×Ck with a wide range of semantic con-
trast descriptive, we can calculate the query-agent corre-
lation sQA

i ∈ R1×2K and the memory-agent correlation
sMA
j ∈ R1×2K by:

sQA
i = softmax(

Qk
iA

T

√
Ck

). (10)

sMA
j = softmax(

Mk
jA

T

√
Ck

). (11)

Intuitively, each pair of pixels with true correspondence from
the query and memory frame should be not only has high
pairwise pixel-level correlation si,j , but also holding similar
agent-level correlation. Thus, we calculate the similarity
between the agent-level correlations by:

ci,j = sQA
i sMA

j

T
, (12)

which is used to rectify the direct pairwise pixel-level cor-
relation. Then the aligned memory frame feature can be
obtained similar to Equation 4:

M̃⋆
i =

hw∑
j=1

ci,j · si,jM⋆
j . (13)

The subsequent processing is consistent with the Sec-
tion 3.2.

4. Experiments

In this section, we construct experiments on widely used
multi-object benchmarks including DAVIS 2017 validation /
test [36, 35] and Youtube-VOS 2018 / 2019 [50] to evaluate
our TMRN. For DAVIS, we follow the official metrics and
adopt the region similarity J , the contour accuracy F and
the averaged score J&F for comparison. For YouTube-
VOS, we measure the area similarity (JS , JU ) and the con-
tour accuracy (FS , FU ) for the seen object categories and
the unseen ones separately, and finally the averaged over-
all score G can be attained. Note that we use the official
evaluation servers or toolkits to obtain all the scores.

4.1. Implementation Details

Our TMRN can be integrated into existing VOS methods
as a generic plugin, and we verify the effectiveness of our
model on representative three baselines, including STM [32],
XMem [5] and STCN [7]. In specific, for STM [32] and
STCN [7], we prepend the TMRN to improve the memory
reading module (MRM), while for XMem [5], our model is
inserted into the working memory reading mechanism. All
the rest of the network architecture including memory frame
encoder and query frame encoder, and training settings are
exactly the same as the baselines. For XMem and STCN,
TMRN is implemented on the memory features and query
features extracted by ResNet50 and ResNet18 [13] with
stride 16 respectively. While both the memory and query
features of STM are encoded by ResNet50. All baselines
undergo two-stage training, including static image pretrain-
ing [45, 39, 59, 4, 20] and video data main training [36, 51].
During inference, we construct memory frames with a sam-
pling interval of 5. Please refer to supplementary material
for more details.

4.2. Comparison with State-of-the-art Methods

Quantitative Results. We verify the effectiveness of TMRN
on the DAVIS 2017 val / test [36, 35] and Youtube-VOS 2018
/ 2019 [50] sets. (1) DAVIS is a densely annotated video ob-
ject segmentation, The validation and test sets contain 60 and
30 videos, respectively. Table 1 tabulates the performance
comparison with and without TMRN on three baseline meth-
ods. we consistently observe that our TMRN achieves consis-
tent improvements over all baselines for all metrics, which
strongly proves the effectiveness of our method. In spe-
cific, STM [32] with TMRN significantly outperforms the
corresponding baseline (STM), achieving a large margin of
2.2%/3.1% in J&F for DAVIS 17 val / test. Besides, the
introduction of TMRN has a clear lead of 1.0% in J&F for
DAVIS 17 val compared to the best memory-based method
(XMem [5]). (2) YouTube-VOS is a large-scale benchmark
for multi-object VOS which provides more training and vali-
dation data than DAVIS. For the 2018 version, its validation
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Table 1: The quantitative evaluation on multi-object benchmarks, including Youtube-VOS 2018 / 2019 [50] and DAVIS 2017
validation / test [36, 35]. The best results are shown in bold.

YouTube-VOS 2018 Val YouTube-VOS 2019 Val DAVIS-17 test DAVIS-17 val

Method G JS FS JU FU G JS FS JU FU J&F J F J&F J F

KMN[ECCV20] [37] 81.4 81.4 85.6 75.3 83.3 - - - - - 77.2 74.1 80.3 82.8 80.0 85.6

CFBI[ECCV20] [54] 81.4 81.1 85.8 75.3 83.4 81.0 80.6 85.1 75.2 83.0 76.6 73.0 80.1 81.9 79.3 84.5

JOINT[ICCV2021] [29] 83.1 81.5 85.9 78.7 86.5 82.8 80.8 84.8 79.0 86.6 - - - 78.6 76.0 81.2

HMMN[ICCV21] [38] 82.6 82.1 87.0 76.8 84.6 82.5 81.7 86.1 77.3 85.0 78.6 74.7 82.5 84.7 81.9 87.5

AOT[NIPS21] [55] 84.5 84.3 89.3 77.9 86.4 84.5 84.0 88.8 78.4 86.7 81.2 77.3 85.1 85.4 82.4 88.4

RPCM[AAAI22] [52] 84.0 83.1 87.7 78.5 86.7 83.9 82.6 86.9 79.1 87.1 79.2 75.8 82.6 83.7 81.3 86.0

SITVOS[AAAI22] [18] 81.3 79.9 76.4 84.3 84.4 - - - - - - - - 83.5 80.4 86.5

AOC[MM22] [53] 84.0 82.7 78.8 87.4 87.1 84.1 82.7 79.4 76.9 87.2 79.3 74.7 83.9 83.8 81.7 85.9

PerClip[CVPR22] [34] 84.6 83.0 88.0 79.6 87.9 84.6 82.6 87.3 80.0 88.3 - - - 86.1 83.0 89.2

GSFM[ECCV22] [23] 83.8 82.8 87.5 78.3 86.5 - - - - - 77.5 74.0 80.9 86.2 83.1 89.3

RDE[CVPR22] [19] - - - - - 83.3 81.9 86.3 78.0 86.9 78.9 74.9 82.9 86.1 82.1 90.0

SWEM[CVPR22] [22] 82.8 82.4 86.9 77.1 85.0 - - - - - - - - 84.3 81.2 87.4

QDMN[ECCV22] [24] 83.8 82.7 87.5 78.4 86.4 - - - - - 81.9 78.1 85.4 85.6 78.1 85.4

TBD[ECCV22] [9] 80.5 79.4 75.5 83.8 83.2 - - - - - 69.4 66.6 72.2 80.0 77.6 82.3

STM [32] 79.4 79.7 84.2 72.8 80.9 79.2 79.6 83.6 73.0 80.6 72.2 69.3 75.2 81.8 79.2 84.3

STM w/ TMRN 81.5 81.5 86.5 74.8 83.2 81.3 81.9 85.6 75.3 82.4 75.3 72.0 78.7 84.0 81.1 86.8

XMem [5] 85.7 84.6 89.3 80.2 88.7 85.5 84.3 88.6 80.3 88.6 81.0 77.4 84.5 86.2 82.9 89.5

XMem w/ TMRN 86.4 85.5 90.4 80.5 89.2 85.9 84.8 89.0 80.5 89.1 81.5 77.7 85.2 87.2 83.8 90.6

STCN [7] 83.0 81.9 86.5 77.9 85.7 82.7 81.1 85.4 78.2 85.9 76.1 72.7 79.6 85.4 82.2 88.6

STCN w/ TMRN 84.2 82.8 87.9 79.2 86.9 84.1 82.6 87.0 79.1 87.5 78.2 74.2 73.3 87.0 83.6 90.4

Table 2: Evaluation of the effectiveness of different compo-
nents on DAVIS 2017 validation set. ST denotes the bald
spatial alignment module coupled with temporal aggregation
module to model the trajectory, that is, TMRN without SVD
initialization (SVD) and agent-level correlation (Agent).

Configuration J&F J F

Baseline 85.4 82.2 88.6

Baseline+ST 86.1 83.0 89.2

Baseline+ST+Agent 86.5 83.6 89.4

Baseline+ST+Agent+SVD (TMRN) 87.0 84.2 89.8

set contains 474 videos, including 65 training (seen) cate-
gories and 26 unseen ones. And the 2019 version further
expands the number of videos to 507. As summarized in Ta-
ble 1, Our TMRN all surpasses the corresponding baselines
respectively (e.g., 1.2%/1.4% in G for STCN on YouTube
18/19), which further confirms the effectiveness of our model
to characterize the temporal correspondence and is more sen-
sible in dealing with complex video scenes.
Qualitative Comparison. Figure 6 showcases qualitative
comparison between STCN w/ TMRN and other competitive

Table 3: Different strate-
gies for agent construc-
tion.

J&F J F

All 85.9 82.9 88.9

Rand 86.6 84.1 89.1

Top-K 86.6 83.9 89.3

SVD 87.0 84.2 89.8

Figure 5: Statistical distribu-
tion of memory frame contri-
butions.
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methods including STM [32], GSFM [23], and STCN [21].
We can observe that STM and STCN fail to predict target
objects when multiple similar objects human have appeared.
Benefiting from the inherent property that agent-level cor-
relation in the spatial alignment module can alleviate false
matches caused by direct pixel-level correlation, our method
yields more precise segmentation. Besides, compared to the
baseline STCN, we achieve better consistent segmentation
results credited to modeling the temporal trajectory in a data-
driven manner. Please refer to supplementary material for
more qualitative results.
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Figure 6: Qualitative comparison on DAVIS 2017 test-dev set. And we mark significant improvements using red boxes. Zoom
for better view.

Table 4: Evaluation of the hyperparameters K.

K 64 96 128 160 192

J&F 86.1 86.5 87.0 86.9 86.4

4.3. Ablation Study and Analysis

To look deeper into our method, we perform a series of
ablation studies on DAVIS 2017 validation following [19,
9] to analyze each component of TMRN, and the baseline
method is STCN [7].
Effectiveness of Trajectory Modeling. From the compar-
ison between the 1st row and the 2nd row of Table 2, We
find that the introduction of trajectory modeling achieves
clear performance gains (i.e.,0.7% in J&F ) even without
customizing the spatial alignment module. We conclude that
the performance gain comes from retrieving memory frame
information along the object trajectory, which is in line with
the nature of video.
Effectiveness of Agent-level Correlation. The addition of
the agent-level correlation in spatial alignment module also
contributes to a remarkable performance gain compared with
the 3rd in Table 2. The improvements can be mainly ascribed
to the proposed agent-level correlation that can effectively
rectify direct pairwise pixel-level correlation and ensure that
true pixel-level correlations between query-memory frame
enjoy higher weights.
Effectiveness of SVD Initialization. With the utilization
of the SVD to construct agents, further improvements can
be observed, e.g., 0.5% J&F . This proves that the singular
value decomposition (SVD) can attain diverse and comple-
mentary agents benefiting from the inbuilt rapid decay prop-
erties of the singular value, and laying a good foundation for

agent-level correlation (3rd vs. 4th in Table 2).

Analysis of Agent Construction. To explore effectiveness
of different strategies to construct agents for subsequent
agent-level correlation, we conduct experiments in Table 3,
where All denotes grabbing all pixels from the memory and
query frame respectively, Rand refers to randomly sample K
pixel features, and Top-K means select top K features condi-
tioned on the cumulative correlation matrix along the mem-
ory and query dimension respectively. We can vividly ob-
serve that the inappropriate construction strategy will make
the agents full of noise or incompleteness, leading to per-
formance decay. While the strategy of SVD achieves the
best results, which is in line with our design purpose, that
is, representative agents can enjoy synergy with subsequent
agent-level correlations.

Analysis of Temporal Aggregation. To vividly present
the working mechanism of the temporal aggregation mod-
ule, we visualize the contribution of each memory frame to
the current frame for segmentation and normalize the time
dimension, as illustrated in Figure 5. We can find an in-
teresting fact that the segmentation of the current frame is
more related to the adjacent memory frames at the statistical
level, which is consistent with our intuition considering the
inherent temporal smoothness of video.

Hyperparameter Evaluations. As shown in Table 4, we
evaluate how K affects our model learning. we can observe
that the performance continues to grow until K = 128, We
deem the main reason is too few agents cannot represent
diverse semantic clues, while too many agents will lead to
undesirable redundancy.
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Figure 7: Visualization of trajectory. From top to bottom: (1) We see that the TMRN has the ability to retrieve memory frame
information along the object trajectory (yellow arrow). (2) We visualize the spatial alignment module (i.e., activation map of
spatial location of trajectory). (3) We visualize the temporal aggregation module (i.e., contribution of each memory frame).
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Figure 8: Visualization of target object-activated agents for
better illustration. As we can see, the well-constructed agents
resonate favorably with diverse semantic cues with a wide
range of semantic contrast descriptive. Zoom for better view.

4.4. Visualization and Analysis

Visualization of Trajectory. To qualitatively evaluate the ef-
fect of characterizing the trajectory, We visualize the spatial
alignment module (i.e., activation map of spatial location of
trajectory) and the temporal aggregation module (i.e., con-
tribution of each memory frame) separately, summarized in
Figure 7. We can find that the some well-matched trajectory
segments occupies larger weight (e.g., 3rd row), while some
trajectory segments with large pose differences caused by
the movement of object trolley are assigned with smaller
weights. This proves that our TMRN can seek the location
of each memory frame and reason about inter-frame con-
nections (i.e., the contribution of each memory frame) in an
adaptive manner.
Visualization of Constructed Agents. We visualize the
target object-activated agents for better illustration in Fig-
ure 8. As we can see, the well-constructed agents resonate
favorably with diverse semantic cues with a wide range of
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Figure 9: Visualization of direct pairwise pixel-level corre-
spondence. The green and red arrows point to the top five
memory pixels that match the query pixel with and without
agent-level correlation, respectively. As we can see, the top
five pixels corresponding to the query points tend to line in
the corresponding location of memory frame thanks to the
agent-level correlation. Zoom for better view.

semantic contrast descriptive. This also confirms the effec-
tiveness of singular value decomposition (SVD) which can
obtain diverse and complementary agents benefiting from
the inbuilt rapid decay properties of the singular value.
Visualization of the Pixel-level Correspondence. To
vividly present the effect of agent-level correlation, we vi-
sualize differences in pixel correspondences according to
whether agent-level correlation exits. As shown in Figure 9,
with the utilization of agent-level correlation, the top five
pixels corresponding to the query points tend to line in the
corresponding location of memory frame. While these ones
will contain large noises without the agent-level correla-
tion to perform direct pairwise pixel-level matching. This
is in line with the design idea, i.e., ensuring that true pixel-
level correlations between query-memory frame enjoy higher
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weights in pursuit of spatially well-aligned memory features.

5. Conclusion

In this paper, we propose a a novel and coherent Trajec-
tory Memory Retrieval Network (TMRN) that can be applied
as a generic plugin, including a spatial alignment module
and a temporal aggregation module to equip with the trajec-
tory information in VOS. Besides, We customize the spatial
alignment module by coupling SVD initialization with agent-
level correlation for representative agents construction and
rectifying false matches caused by direct pairwise pixel-level
correlation, respectively. Extensive experimental results on
challenging benchmarks show effectiveness.
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