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Figure 1. Examples of open-vocabulary part segmentation. Beyond open-vocabulary object detection, we propose that the detector
should be able to predict both objects and their parts. This open-world fine-grained recognition ability is in demand for an intelligent vision
system but is only realized in a limited number of categories [9, 29, 67] up to now. In this paper, we move forward to going denser with
open-vocabulary part segmentation: Left figure shows segmenting dog and its parts in different granularities. Right figure demonstrates
more visualization results.

Abstract
Object detection has been expanded from a limited num-

ber of categories to open vocabulary. Moving forward, a
complete intelligent vision system requires understanding
more fine-grained object descriptions, object parts. In this
paper, we propose a detector with the ability to predict both
open-vocabulary objects and their part segmentation. This
ability comes from two designs. First, we train the detector
on the joint of part-level, object-level and image-level data
to build the multi-granularity alignment between language
and image. Second, we parse the novel object into its parts
by its dense semantic correspondence with the base object.
These two designs enable the detector to largely benefit
from various data sources and foundation models. In open-
vocabulary part segmentation experiments, our method out-
performs the baseline by 3.3∼7.3 mAP in cross-dataset gen-
eralization on PartImageNet, and improves the baseline by
7.3 novel AP50 in cross-category generalization on Pascal
Part. Finally, we train a detector that generalizes to a wide
range of part segmentation datasets while achieving better
performance than dataset-specific training.

1. Introduction

Recent advances in open-vocabulary object detec-
tion [37,42,47,58,78,85,92,95] have made surprising devel-
opment in enlarging the number of object categories from a
pre-determined set by training datasets [17,26,49,71] to any
object in the open world. This is a crucial step for the vision
system to make effect in the real world. Towards the next
step, for a deeper understanding to object structure, mobil-
ity, functionality, and practical applications such as behav-
ior analysis [61,68,82], robotics manipulation [5,19,60,88],
image-editing [45, 70], only object-level perception is not
sufficient, while the fine-grained recognition ability of part
segmentation [9, 29, 67, 83] is necessary.

Since a part is the fine-grained version of an object, an
intuitive idea is to directly apply existing open-vocabulary
object detection methods [42, 47, 92, 95] to solve the part
detection/segmentation task. However, as shown in Table 1,
they do not show good generalization on part-level recog-
nition. Although conceptually similar to open-vocabulary
object detection, localizing and classifying the fine-grained
object parts are essentially more challenging. This moti-
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Method
dog

head leg paw tail torso

RegionCLIP [92] 5.2 0.1 0.2 0.0 1.9
Detic [95] 3.2 0.0 0.0 0.0 2.0
VLDet [47] 3.5 0.0 0.0 0.0 1.9
GLIP [42] 32.6 3.1 2.7 9.5 2.2

Oracle 50.7 14.8 20.7 10.4 18.7

Table 1. Performance of previous open-vocabulary object de-
tection methods on Pascal Part [9] validation set. The evalua-
tion metric is mAPbox@[.5, .95] on the detailed metrics of dog.
All models use their official codebases and model weights. Oracle
is the method trained on Pascal Part training set.

vates us to explore new designs to empower current object
detectors with open-vocabulary part segmentation ability.

The model of open-vocabulary part segmentation is sup-
posed to be able to segment the object not only on open cat-
egory but also on open granularity. As shown in Figure 1,
the [dog] can be parsed to the [head, torso, leg,
tail], while in the finer granularity, the head of a dog can
be further parsed to the [ear, eye, nose, etc.]. Anno-
tating such fine-grained object part is extremely expensive.
Publicly available datasets of part segmentation are less rich
and diverse than those of image classification and object de-
tection datasets. Even though we collect three sources of
part segmentation datasets, including Pascal Part [9], Par-
tImageNet [29], and PACO [67], only a small number of
objects part are accessible.

To expand the vocabulary of part categories, we first seek
to utilize the large vocabulary object-level and image-level
data, such as LVIS [26] and ImageNet [13], where object
categories are known, but their part locations or part names
are not. To enable part segmentation task benefit from them,
our detector is based on the vision-language model [66], and
trained on the joint of part-level, object-level and image-
level data, where the classifier weight in the detector is re-
placed to the text embedding of the class name. In this
way, the model learns to align vision and language at multi-
granularity level to help generalize the ability to parse the
object into its parts from base objects to novel objects.

Though the multi-granularity alignment is established,
the part-level alignment for novel objects is fragile since its
supervision signal is absent. To further strengthen it, we
propose to leverage the pre-trained foundation models [7]
to parse the novel object into its parts as the annotations:
1) We find the nearest base object for each novel object by
the similarity of their global features. 2) We build the dense
semantic correspondence between the novel object and its
corresponding base object by the similarity of their spatial
features. 3) We parse the novel object into its parts in the
way of the base object by the correspondence. The name of
novel parts follows its corresponding base object. Accord-

ing to this pipeline, we generate the parsed images and use
them as part annotations of novel objects.

Extensive experiments demonstrate that our method can
significantly improve the open-vocabulary part segmen-
tation performance. For cross-dataset generalization on
PartImageNet, our method outperforms the baseline by
3.3∼7.3 mAP. For cross-category generalization within
Pascal Part, our approach improves the baseline by 7.3 AP50

on novel parts. Finally, we train a detector with the joint
data of LVIS, ImageNet, PACO, Pascal Part, PartImageNet,
and parsed ImageNet. On three trained part segmentation
datasets, it obtains better performance than their dataset-
specific training. Meanwhile, part segmentation on a large
range of objects in the open-world is achieved , as shown in
Figure 1.

Our contributions are summarized as follows:
• We set up benchmarks and baseline models for open-

vocabulary part segmentation in Pascal Part and PartIma-
geNet datasets.

• We propose a parsing pipeline to enable part segmenta-
tion to benefit from various data sources and expand the
vocabulary of part categories.

• We train a detector with the ability of open-vocabulary
object detection and part segmentation, achieving favor-
able performance on a wide range of part segmentation
datasets.

2. Related Work

Open-vocabulary object detection. OVOD [85] aims
to improve the generalization ability of object detectors
from seen categories to novel categories. For example,
ViLD [25], RegionCLIP [66], PB-OVD [18] use pseudo
region annotations generated from the pre-trained vision-
language model [40, 66]. DetPro [16] designs an automatic
prompt learning method to improve the category embedding
effectively. GLIP [42] trains the detector on both detec-
tion and grounding data. Detic [95] enlarges the number of
novel classes with image classification data. VLDet [47] ex-
tracts region-word pairs from image-text pairs in an online
way. Different from these works, we explore more fine-
grained object recognition at the part level.

Part segmentation. Beyond recognizing objects through
category labels, a more fine-grained understanding of ob-
jects at the part level [12, 43, 56, 94] is in increasing de-
mand. Some pioneering works provide part annotations for
specific domains, such as human [21, 41, 82], birds [74],
cars [68, 72], fashion domain [33, 91]. Part annotations
for common objects include such as Pascal-Part [9], Part-
Net [59], PartImageNet [29], ADE20K [93], Cityscapes-
Panoptic-Parts [55] and more recent PACO [67]. Based on
these valuable datasets, our work is towards parsing any ob-
ject in the open world.
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Figure 2. Different part taxonomies in different dataset anno-
tations. For example, the [dog] is parsed to the [head, body,
foot, tail] in PartImageNet [29]. In the finer granularity, the
head of a dog is further parsed to the [ear, eye, muzzle,
nose] in Pascal Part [9].

Vision-and-language representation learning. A univer-
sal representation for vision and language is needed in
various tasks such as visual question answering [23, 27],
image/video-text retrieval [49,62,79], visual reasoning [20,
73] and so on. To enhance the visual representation, region-
based features obtained from object detection are intro-
duced. For instance, OSCAR [44] uses object tags and re-
gion features to train a universal semantic, UNITER [10]
establishes word-region alignments by supervising similar
output across multiple modalities, ALBEF [40] aligns the
image and text before fusing them with a multimodal en-
coder, SimVLM [76] reduces the requirement to regional
labels by exploiting large-scale weak supervision. Our work
is aimed at learning part-level visual representation aligned
with language supervision.

Semantic correspondence. The aim of semantic corre-
spondence [28,34,38,52,57,80,89] is to establish the spatial
visual correspondence between different instances of the
same object category. Cross-domain correspondence [1,86]
expands it to different categories. The pre-trained model
is usually introduced to compute the feature map similar-
ity. [1] used a pre-trained CNN and [3] improved the perfor-
mance by using ViT model [3, 14]. In our work, we apply
self-supervised DINO [7] to build the semantic correspon-
dence between the novel object and the base object.

3. Open-Vocabulary Part Segmentation
The goal of open-vocabulary part segmentation is to

parse any object in the wild into its components. The model
takes as input the image and outputs its part segmentation
by the pre-defined part taxonomy or custom text prompt.

3.1. Open Category and Granularity

We expect the model for open-vocabulary part segmen-
tation to be able to provide the part segmentation in both

open category and open granularity.

Open category. Similar to object detection, open category
means that the model is able to parse any category of the
object in the wild.

Open granularity. As shown in Figure 2, the part tax-
onomy is inherently hierarchical, the [dog] can be parsed
to the [head, body, leg, tail], while in the finer
granularity, the head of a dog can be further parsed to the
[ear, eye, muzzle, nose, etc.]. This brings to in-
consistent definitions in different datasets, for example, the
taxonomy of Pascal Part [9] is relatively finer than Ima-
geNetPart [29].

3.2. Evaluation Protocol

For terminology, base parts are the parts of base objects
(seen in the training set), and novel parts are the parts of
novel objects (unseen in the training set).

Cross-category generalization. The models are trained on
the base parts, such as parts of cat, cow, horse, and sheep,
and evaluated on novel categories, such as parts of dog. In
this setting, the base categories and the novel categories are
mutually exclusive.

Cross-dataset generalization. In practice use, the trained
model could be used in any evaluation dataset, therefore,
the object categories in inference may overlap with those
in training. We use a cross-dataset setting to evaluate these
more practical scenes.

3.3. Revisit Open-Vocabulary Object Detection

One may assume that the part instance is a special type
of object, and the open-vocabulary part segmentation task
can be solved by off-the-shelf open-vocabulary object de-
tection/segmentation methods [42, 47, 92, 95].

Adapting open-vocabulary object detector to part recog-
nition. To adapt the open-vocabulary object detector to part
segmentation, its classifier weight in the region recognition
head needs to be replaced by text embedding of the part
category name. The performance of some popular open-
vocabulary object detectors on part segmentation is shown
in Table 1. Obviously, their performances are far from sat-
isfactory. We analyze the limited performance of open-
vocabulary object detection on part segmentation comes
from two folds: (i) Recall. The part and the object have
different granularities, it is non-trivial for region proposals
trained on object-level data to generalize to part-level. (ii)
Precision. The learning materials of open-vocabulary ob-
ject detectors, object-level and image-level data, have in-
sufficient part instances and are hard to provide effective
part-level supervision.

Generalizability of region proposals. We study whether
region proposal networks trained on object-level data could

15455



Training data Type
Pascal Part

AR@30 AR@100 AR@300 AR@1000

VOC object 7.7 11.8 15.4 16.1
COCO object 8.4 14.8 24.4 40.5
LVIS object 12.7 20.6 30.0 45.8

Pascal Part base part 29.4 48.1 63.6 75.3
Pascal Part part 31.1 50.5 67.2 78.8

Table 2. Evaluation on the generalizability of region proposals
on objects and parts. The recall is evaluated at IoU threshold
0.5 on the validation set of Pascal Part. All models are ResNet50
Mask R-CNN. The upper section is trained on object-level data
and the lower section is part-level data. It is non-trivial for region
proposals to generalize from object-level to part-level.

- The cat is sleeping on the sofa by the 
remote control.
- A cat laying on the couch next to a remote 
and a pillow.
- A cat laying on top of a couch near a jacket.
- A cat sleeps on a couch by a book, a banana 
and a shirt.
- A cat with its paw over its face lying next to 
a remote and a banana.

Figure 3. Example of COCO Caption [8]. COCO Caption data
provides the image and its corresponding caption only, without
object-level alignment (solid box) or part-level alignment (dashed
box). Even if all alignments are known, part descriptions are much
less frequent than object descriptions.

provide sufficient object proposals for the part. Although
previous works [25,95] conclude that novel categories only
suffer a small performance drop in recall, we point out that
this is not the case when the novel objects have different
granularity from object to part. As shown in Table 2, the
detector trained on object-level data only has limited recall
on the part dataset. To obtain better recall, part-level an-
notations are necessary, evidenced by the model trained on
the Pascal Part base having very close recall with the fully-
supervision model on the full Pascal Part training set.

Part-level alignment between image and its caption.
Open-vocabulary object detection methods usually use im-
age caption data to train the model. However, learning to
detect the object part in the image from its image caption
has two challenges: (1) Image caption data only provides
the image and its corresponding caption, without dense cap-
tions on objects. Each open vocabulary object detector
method [42, 47, 92, 95] needs to design its own method to
align objects in the image and in the caption. (2) Even if the
alignment could be extracted from the caption, or provided
by the dataset annotations [36, 63, 84], we find the caption
contains object parts less frequently than objects, as shown
in Figure 3. This less frequency makes part-level alignment
between the image and its caption more difficult to learn
than the object-level.

4. Our Method: VLPart

Our detector architecture is a vision-language version of
Mask R-CNN [30], where the classifier is the text embed-
ding of category name from CLIP [66]. This enables us to
seamlessly train the detector on part-level, object-level and
image-level data. We further parse the image data into its
parts to expand the vocabulary of part categories, which is
based on dense semantic correspondence between the base
object and the novel object extracted from DINO [7].

4.1. Detector Architecture

Image encoder. The image encoder is based on convolu-
tional neural networks such as ResNet [31] or Transformer-
based models like Swin [54], followed by Feature Pyramid
Network [48] to generate multi-scale feature maps to be
used in the detection decoder.

Detection decoder. The architecture of detection decoder
is composed of a region proposal network (RPN) [69] and
a R-CNN recognition head. RPN provides box proposals
for both objects and parts. R-CNN recognition head refines
the box location and the classification score. Notably, the
classifier weight in the recognition head is replaced by text
embedding of the class name of the object and the part.

Text embedding as the classifier. The classification score
of the recognition head is implemented as a dot-product
operation between the region features and the text embed-
dings, where the region features are cropped from feature
maps of the image encoder, and the text embeddings are
extracted from the text encoder in CLIP [66].

Mask decoder. We choose the architecture of mask decoder
from Mask R-CNN [30] and replace the original multi-
classification head with a class-agnostic head to support
segmentation on novel categories. We note that more ad-
vanced architecture such as Mask2Former [11] has the po-
tential to further improve the performance but is not the fo-
cus of this work.

4.2. Training on Parts, Objects, and Images

The training data includes part-level, object-level, and
image-level data. The image data is further parsed into the
part annotation. Our detector is joint-trained on these data
to establish multi-granularity alignment.

Part segmentation data. Part segmentation data [9,29,67]
contains part mask segmentation and its category. Part is al-
ways defined as an object-part pair since the same semantic
part can be very different when it is associated with differ-
ent objects. The category name of the part is formalized as
follows:

Cpart = [“dog: head”, “dog: nose”, ..., “cat: tail”]
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(a) Find nearest base object

Base 
category

Novel 
category

(c) Parse novel object(b) Build semantic correspondence

Figure 4. The pipeline of parsing novel objects into parts. (a) Finding the nearest base object for each novel object. (b) Building the
dense semantic correspondence between a novel object and its corresponding base object. For better visualization, we only some points
sampled from the feature map grid. (c) Parsing the novel object as the way of the base object.

Object detection data. Object detection data contains
object boxes and its category. Most object detection
datasets [26,49] also provide object mask segmentation an-
notations.

Cobject = [“person”, “bicycle”, ..., “toothbrush”]

The training loss for part and object data includes all loca-
tion loss, classification loss, and mask loss.

Image classification data. Image classification data pro-
vides a large vocabulary of object categories in the form of
images. Although object-level or part-level bounding anno-
tations are absent, these images could be effectively used
by the following ways: (1) The classification loss can be
performed on max-size proposal [95] for each image, and
therefore expands the object-level vocabulary. (2) As will
be introduced in section 4.3, the image can be parsed into
parts and used as part-level annotations to expand the vo-
cabulary of part categories. The training loss about image
data only includes classification loss.

4.3. Parsing Novel Objects into Parts

Most novel objects share the same part taxonomy with
one of the base objects, for example, the novel dog has the
same parts as the base cat. Since the part segmentation of
the base object is known, we could parse the novel object
according to its dense semantic correspondence to the base
object. The whole pipeline is shown in Figure 4.

Finding the nearest base object for each novel object.
We use DINO [7] to extract the [class token] of each
base object, denoted as tcls(·), and save these features as
the database. Then, for each novel object i, we extract its
feature using the same way and find its nearest base object
inear in the database by the cosine similarity.

inear = argmax
j

sim(tcls(Ii), t
cls(Ij))

Building dense semantic correspondence between the
base object and its nearest novel object. We further
use the DINO feature map as dense visual descriptors [3],
denoted as Fx,y(·), where x, y are grid indexes in the
feature map. After computing the spatial similarity be-
tween the novel object Fx,y(Ii) and its nearest base object
Fp,q(Iinear ), for each token (x, y) in the novel object, its
corresponding token in the base object are chosen as the to-
ken with the highest cosine similarity.

xcorr, ycorr = argmax
p,q

sim(Fx,y(Ii), Fp,q(Iinear ))

Parsing novel parts by semantic correspondence. After
dense correspondence between the base object and novel
object is obtained, we could parse the novel object into its
part segmentation Mi(x, y) as the way of its corresponding
base object part segmentation Minear

(p, q).

Mi(x, y) = Minear
(xcorr, ycorr)

A hybrid parser to base and novel objects. Figure 4 also
provides some examples of semantic correspondence and
parsed novel objects. It can be seen that the strong and clear
alignment is set up and the produced part segmentation is
qualified to be used as pseudo part annotation for the novel
object. For the base object, we use the detector trained on
base parts to generate its pseudo part annotation.

4.4. Inference on Text Prompt

In inference, the model takes as input the image and out-
puts the part segmentation for the object. Since all vocab-
ulary of both objects and parts are a large number, and the
user may not be interested in obtaining all possible object
and part segmentation, our detector supports inference on
text prompt by user input.
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The left section of Figure 1 is a case using a dog
as an example. When the user-input is [dog], [dog:
head, torso, leg, tail] and [dog: head,
ear, eye, nose, torso, leg, paw, tail],
the detector outputs the segmentation results in different
granularities accordingly. The right section of Figure 1
is a range of objects in the open world. It can be seen
that our model is able to detect both open-vocabulary
objects and their parts. When our detector is used in real
applications, one can flexibly choose to use the pre-defined
part taxonomy in datasets such as Pascal Part, PACO, or
custom text prompt.

5. Experiment
5.1. Datasets

We use three sources of part segmentation datasets, Pas-
cal Part [9], PartImageNet [29] and PACO [67].

Pascal Part. The original Pascal Part provides part anno-
tations of 20 Pascal VOC classes, a total of 193 part cate-
gories. Its taxonomy contains many positional descriptors,
which is not suitable for this paper, and we modify its part
taxonomy into 93 part categories.

PartImageNet. PartImageNet groups 158 classes from Im-
ageNet into 11 super-categories and provides their part an-
notations, a total of 40 part categories.

PACO. PACO supplements more electronic equipment, ap-
pliances, accessories, and furniture than Pascal Part and
PartImageNet. PACO contains 75 object categories, 456
object-part categories and 55 attributes. The image sources
of PACO are LVIS and Ego4D [24]. In this work, we use
PACO-LVIS set as default. We focus on object parts and
leave attributes for future research.

For object-level detection data, we use VOC [17],
COCO [49] and LVIS [26]. For image-level data, we use
ImageNet1k (IN) [13]. We also create ImageNet-super11
(IN-S11) and ImageNet-super20 (IN-S20) that overlap with
PartImageNet and Pascal category vocabulary separately.
More details about datasets are in Appendix.

5.2. Cross-dataset segmentation on PartImageNet

In Table 3, we study cross-dataset generalization by us-
ing PartImageNet validation set as the evaluation dataset,
where the metrics of all (40) parts and the detailed metrics
of parts of quadruped are reported.

Table 3a shows when Pascal Part is the only available
human-annotated part dataset, using IN-S11 data could help
to improve PartImageNet performance.

Baseline from Pascal Part. The baseline method directly
uses the Pascal Part-trained model to evaluate PartIma-
geNet. As shown in Table 3a first row, the performance is
poor, for example, body and foot of the quadruped

Method
All quadruped
(40) head body foot tail

Pascal Part 4.5 17.4 0.1 0.0 2.9
+ IN-S11 label 5.4 23.6 3.4 0.8 1.2
+ Parsed IN-S11 7.8 35.0 15.2 3.5 8.9
vs. baseline +3.3 +17.6 +15.1 +3.5 +6.0

PartImageNet 29.7 57.3 25.8 22.9 22.9

(a) Cross-dataset generalization when only one part dataset, Pascal
Part, is available. Pascal Part is trained on the Pascal Part training set.
IN-S11 label and Parsed IN-S11 are added into the training sequentially.

Method
All quadruped
(40) head body foot tail

Pascal Part 4.5 17.4 0.1 0.0 2.9
+ LVIS, PACO 7.8 22.9 7.1 0.3 4.0
+ IN-S11 label 8.8 26.3 3.7 0.4 1.0
+ Parsed IN-S11 11.8 47.5 13.4 4.5 14.8
vs. baseline +7.3 +30.1 +13.3 +4.5 +11.9

PartImageNet 29.7 57.3 25.8 22.9 22.9

(b) Cross-dataset generalization when more than one part datasets
are available. Starting from Pascal Part, LVIS, PACO, IN-S11 and
Parsed IN-S11 are added into the training sequentially.

Table 3. Cross-dataset generalization on PartImageNet part
segmentation. The evaluation metric is mAPmask@[.5, .95] on
the validation set of PartImageNet. All models are ResNet50 Mask
R-CNN and use the text embedding of the category name as the
classifier. PartImageNet is the fully-supervised method as the ora-
cle performance.

are nearly to zero. Pascal Part has no semantic label of
quadruped, and the model needs to generalize from parts
of dog, cat, etc. in Pascal Part to parts of quadruped
in PartImageNet. The possible generalization ability comes
from the text embedding generated from CLIP [66]. How-
ever, generalization in part-level recognition is beyond its
capability since CLIP is pre-trained on only image-level
data.

IN-S11 label. Considering that Pascal Part has no seman-
tic label such as quadruped, piped, etc., we collect IN-
S11 images from ImageNet and add them to the training as
image-level classification data. As shown in Table 3a sec-
ond row, the performance is improved to some extent. This
shows that image-level alignment is beneficial to the part
recognition task. However, since no additional part-level
supervision signal is introduced when using IN-S11 as im-
age classification data, the improvement is still limited.

Parsed IN-S11. We use our parsing pipeline to deal with
IN-S11 images and generate their part annotations. As
shown in the third row in Table 3a, introducing these parsed
parts into the training brings a significant improvement,
3.5∼17.6 mAP improvement on the parts of quadruped
and 3.3 mAP gain on all 40 parts over the baseline method.
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Method
All (93) Base (77) Novel (16)

AP AP50 AP AP50 AP AP50

Base part 15.0 33.4 17.8 39.6 1.5 3.7
+ VOC object 16.8 36.8 19.9 43.3 2.1 5.9
+ IN-S20 label 17.4 37.5 20.8 44.7 1.1 3.1
+ Parsed IN-S20 18.4 39.4 21.3 45.3 4.2 11.0
vs. baseline +3.4 +6.0 +3.5 +5.7 +2.7 +7.3

Pascal Part 19.4 42.7 18.8 41.5 22.1 48.9

Table 4. Cross-category generalization on Pascal Part part seg-
mentation. The evaluation metric is on the validation set of the
Pascal Part. All models are ResNet50 Mask R-CNN and use the
text embedding of the category name as the classifier. Base part
is the base split from Pascal Part. VOC object, IN-S20 label and
Parsed IN-S20 are added into the training sequentially. Pascal Part
is the fully-supervised method as the oracle performance.

This suggests that our proposed methods are able to pro-
vide an effective part-level supervision signal to the detec-
tion model and boosts its performance on cross-dataset gen-
eralization.

More part datasets are available. Table 3b shows when
more than one human-annotated part datasets are available,
including Pascal Part, PACO, and LVIS. Although LVIS
is an object-level dataset, we find its categories contain
many object parts, such as shoes, which can also be seen
as parts. From the first two rows of Table 3b, we can
see that when the part-level annotations grow in training,
the part segmentation obtains better performance, from 4.5
mAP to 7.8 mAP. When IN-S11 label and parsed IN-S11
are added to the training, the performance is further boosted
by a large margin. For example, the head of quadruped
has achieved 47.5 mAP, close to fully-supervised 57.3 mAP.
This shows that when more data sources are available in
the future, a strong model for part segmentation in the open
world is promising.

5.3. Cross-category segmentation on Pascal Part

We evaluate the cross-category generalization within the
Pascal Part dataset. All 93 parts are split into 77 base parts
and 16 novel parts, detailed in Appendix. Table 4 reports
the metrics of all (93), base (77), and novel (16) parts.

Baseline from Pascal Part base. Table 4 first row is the
baseline, which is trained on base parts and evaluated on
novel parts. Since the detector uses CLIP text embedding as
the classifier, the novel parts obtain non-zero segmentation
performance.

VOC object. Compared with the part annotation, the object
annotation is much easier to collect. We add VOC object
data to verify whether this could help to improve the per-
formance. As shown in the second row of Table 4, adding
VOC object data helps to improve the performance on both

Method
PartImageNet Pascal Part PACO
AP AP50 AP AP50 AP AP50

Joint 29.1 52.0 22.6 47.8 9.3 18.9
+ IN 30.8 54.4 23.6 49.2 9.0 18.7
+ Parsed IN 31.6 55.7 24.0 49.8 9.6 20.2
vs. baseline +2.5 +3.7 +1.4 +2.0 +0.3 +1.3

Dataset-specific 29.7 54.1 19.4 42.3 10.6 21.7

(a) All models are ResNet50 [31] Mask R-CNN [30].

Method
PartImageNet Pascal Part PACO
AP AP50 AP AP50 AP AP50

Joint 40.0 64.8 31.2 60.5 15.4 30.3
+ IN 41.2 66.8 31.7 61.1 15.9 30.8
+ Parsed IN 42.0 68.2 31.9 61.6 15.6 30.6
vs. baseline +2.0 +3.4 +0.7 +0.9 +0.2 +0.3

Dataset-specific 41.7 68.7 27.4 56.1 15.2 29.4

(b) All models are Swin-B [54] Cascade Mask R-CNN [6].

Table 5. Part segmentation across datasets. All models are eval-
uated by setting the classifier as text embedding of category name
in the evaluation dataset. Joint denotes the joint-training on LVIS,
PartImageNet, Pascal Part and PACO datasets. Dataset-specific
uses the training data of each dataset, separately.

base parts and novel parts in Pascal Part. This demonstrates
that object-level alignment could lead to better part-level
performance.

IN-S20 label. Image-level classification data is also an
easy-to-get annotation. We collect images with Pascal cat-
egories from ImageNet, IN-S20, and add them to the train-
ing. As shown in Table 4 third row, additional image-level
data does not bring much gain than object detection data.
This is because image-level data has a similar effect as
object-level data on part-level recognition. Most of its gain
is diminished by object data.

Parsed IN-S20. We use our proposed parsing method to
generate part annotations for novel objects, and they pro-
vide supervision on part classification. As shown in Ta-
ble 4 fourth row, our method improves the performance on
both base and novel categories. This shows that our pars-
ing pipeline is an effective solution to both base and novel
object part segmentation.

5.4. Part segmentation across datasets

Towards detecting and parse any object in the open
world, we train a detector on the joint of available part seg-
mentation datasets, including LVIS, PACO, Pascal Part and
PartImageNet. The performance is shown in Table 5.

This joint training model shows good generalization
ability on various evaluation datasets, for example, Pascal
Part obtains 22.6 mAP, better performance than its dataset-
specific training. However, the potential problem lies in that
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Pascal Part
All dog
(93) head torso paw tail

a [object] [part] 19.1 50.7 18.7 20.7 10.4
[part] of a [object] 18.4 48.8 17.6 21.3 9.2

PartImageNet
All quadruped
(40) head body foot tail

a [object] [part] 29.7 57.3 25.8 22.9 22.9
[part] of a [object] 29.9 55.9 25.1 22.9 24.3

Table 6. Text prompt template to object part. We compare
different templates of text prompt to object part in the fully-
supervision setting of Pascal Part and PartImageNet.

Method
All quadruped
(40) head body foot tail

Baseline 5.4 23.6 3.4 0.8 1.2

Max-score [92] 6.0 29.6 7.1 1.0 1.7
Max-size [95] 5.3 20.5 3.5 0.6 4.7
Parsed (ours) 7.8 35.0 15.2 3.5 8.9

Table 7. Comparisons of different aligning methods for novel
parts. The experiments are carried out on cross-dataset general-
ization from Pascal Part to PartImageNet. Fine-tuning from the
baseline model, max-score, max-size and our method apply dif-
ferent designs to utilize image-level data to further improve part
segmentation performance, where the former two are trained on
part labels expanded from the image label.

joint training does not benefit all datasets, where PartIma-
geNet and PACO decrease the performance a little.

To make up for the performance loss, we add IN and
Parsed IN into the training. It can be seen all datasets
obtain the performance gain accordingly. When we scale
up the model capability from ResNet50 [31] to Swin-
B [54], the detector achieves better performance than
dataset-specific training on all Pascal Part, PartImageNet
and PACO datasets.

5.5. Ablation Study

Text prompt template. Since the part is associated with
the object category, we study how to design the text prompt
template of (object, part) pair to the text encoder. We
select two common expressions: a [object] [part] and
[part] of a [object]. For example, [dog] and [head],
these two expressions are [a dog head] and [head of
a dog]. As shown in Table 6, a [object] [part] be-
haves a little better than [part] of a [object] in Pascal
Part while not in PartImageNet. Which expression is a gen-
erally better usage of text prompt to the part needs to be ver-
ified on more datasets and we leave it for future research. In
addition, more advanced prompt engineering for part seg-
mentation is also an open problem.

D
IN

O
V

an
ill

a 
 V

iT
Figure 5. Semantic correspondence from vanilla ViT and
DINO. The upper section is from supervised ViT model [14] and
the lower section is from self-supervised DINO [7]. For each sec-
tion, first row and second row are paired base objects and novel
objects. We crop each image into a uniform size for better visual-
ization.

Aligning method for novel parts. We compare different
aligning methods to use IN-S11 data to help part segmen-
tation in PartImageNet. We select two popular designs in
open-vocabulary object detection, max-score and max-size.
Max-score is selecting the proposal that has the highest
score of the target category as the matched proposal, used
in [92]. Max-size is selecting the proposal that has the max-
imum area among all proposals as the matched proposal to
the target category, proposed in [95]. For each ImageNet
image, its object category is known, and its part taxonomy
can be inferred, these parts will be used as the target cate-
gory in max-score and max-size methods.

- Max-score. As shown in Table 7 second row, max-
score helps to improve the performance a little over base-
line. Fine-tuning from the baseline model, its selected high-
est score proposals contain efficient training samples, and
these samples bring performance gain.

- Max-size. As shown in Table 7 third row, the max-
size method degenerates the performance in most metrics.
According to the max-size rule, all parts are assigned to the
same proposal, it is hard to align the part-level region to
its part name text embedding. This shows that part-level
alignment is more difficult than object-level and an efficient
fine-grained supervision signal is necessary.

Pre-trained model in semantic correspondence. We use
self-supervised DINO [7] in this work to find the near-
est base object for each novel object and build their dense
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Source capability part name part location

base parts Align image and text in part-level ✓ ✓

of base objects
novel objects Align image and text in object-level ✓

and image-level of novel objects
CLIP [66] Anchor the part name in language ✓

feature space
DINO [7] Parse the novel object into its part ✓

Table 8. The source of VLPart capability. Besides training data
of base parts and novel objects, two foundation models, CLIP and
DINO, contribute to open-vocabulary part segmentation.

semantic correspondence. We verify whether a vanilla
ViT [14] has a similar function, which is pre-trained on
fully-supervised ImageNet. As shown in Figure 5, vanilla
ViT is obviously behind DINO in the aspect of providing
semantic correspondence. On the one hand, the nearest
base object found by DINO has better alignment with the
novel object in color, texture, and pose. On the other hand,
the dense correspondence from DINO has clear semantics
correspondence between the two objects. Similar experi-
ment phenomenons are reported in [3, 7]. Besides DINO,
whether other models could benefit to part segmentation is
a potential research direction in the future.

6. Discussion

Learning from Foundation Models. When we analyze
how VLPart achieves open-vocabulary part segmentation
capability, as shown in Table 8, we could see that the impor-
tant components of VLPart’s capability are two foundation
models: CLIP [66] and DINO [7]. Learning from founda-
tion models is a recently rising research topic [2, 4, 15, 39].
Although a single foundation model is not an expert in a
specific task, for example, neither CLIP nor DINO can ac-
complish the part segmentation task, combining these foun-
dation models could bring to a range of applications [22,
32, 46, 50, 53, 77, 87, 90], and this paper takes the part seg-
mentation task as an example to explore. In the future, how
to ”decode” more capabilities from foundation models is a
very promising research topic.

Comparison with Segment Anything Model. Segment
Anything Model (SAM) [35] is a recently proposed model
aimed to generate masks for all entities [64, 65] in an im-
age, including both objects and their parts. As shown in
Figure 6, the main differences between SAM and VLPart
are: (1) SAM is a class-agnostic mask segmentation model,
while VLPart is class-aware. (2) The part segmentation of
SAM is mostly edge-oriented, which makes it hard to parse
two parts if there is no obvious edge between them, while
VLPart parses objects based on semantics instead of low-
level edge signals.

(a) image (b) SAM (c) VLPart

Figure 6. Comparsion of SAM [35] and VLPart. The main
differences are: (1) SAM is a class-agnostic segmentation model
and VLPart is class-aware, (2) SAM parses the object mostly in an
edge-oriented way and VLPart is semantic-oriented.

Segment and Recognize Anything Model. A big pic-
ture for the vision perception system is to segment and
recognize anything in the open world, in which SAM,
open-vocabulary object detection and our open-vocabulary
part segmentation are all sub-tasks. Some recently pub-
lic works [51, 75, 81, 96] attempt to achieve this goal but
their focuses are either segmentation or recognition. Fur-
thermore, their explorations only reach the object-level, and
do not go denser into the part-level. This paper provides a
promising solution to part-level segmentation and recogni-
tion, serving as a component of achieving the goal of Seg-
ment and Recognize Anything Model.

7. Conclusion and Future Work
In this paper, we explore to enable object detectors with

the fine-grained recognition ability of open-vocabulary part
segmentation. Our model a vision-language version of the
segmentation model to support text prompt input. The train-
ing data is the joint of part-level, object-level and image-
level data to establish multi-granularity alignment. To
further improve the part recognition ability, we parse the
novel object into its parts by the dense semantic correspon-
dence with its nearest base objects. Extensive experiments
show that our method can significantly improve the open-
vocabulary part segmentation performance and achieve fa-
vorable performance on a wide range of datasets.

In the future, our models have great potential to be
applied to various applications such as robotic manipula-
tion [19], part-guided instance object [67], and part-aware
image editing [45].
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