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Abstract

3D pose transfer is a challenging generation task that
aims to transfer the pose of a source geometry onto a tar-
get geometry with the target identity preserved. Many prior
methods require keypoint annotations to find correspon-
dence between the source and target. Current pose trans-
fer methods allow end-to-end correspondence learning but
require the desired final output as ground truth for supervi-
sion. Unsupervised methods have been proposed for graph
convolutional models but they require ground truth corre-
spondence between the source and target inputs. We present
a novel self-supervised framework for 3D pose transfer
which can be trained in unsupervised, semi-supervised, or
fully supervised settings without any correspondence labels.
We introduce two contrastive learning constraints in the la-
tent space: a mesh-level loss for disentangling global pat-
terns including pose and identity, and a point-level loss for
discriminating local semantics. We demonstrate quantita-
tively and qualitatively that our method achieves state-of-
the-art results in supervised 3D pose transfer, with compa-
rable results in unsupervised and semi-supervised settings.
Our method is also generalisable to unseen human and an-
imal data with complex topologies†.

1. Introduction

3D pose transfer [35, 40, 47, 33] is a challenging gener-
ation task in which the pose of a source geometry is trans-
ferred to a target geometry whilst preserving the identity
of the target geometry (see top half of Figure 1). This has
many potential applications in areas including animation,
human modelling, virtual reality, and more. It also pro-
vides a more affordable way of generating synthetic 3D data
which can be expensive to produce in the real world.

One of the main challenges of 3D pose transfer is that
current methods still put certain requirements on their train-
ing data making it difficult to collect and expensive to an-

*Corresponding author email: j.sun19@imperial.ac.uk.
†Code: https://github.com/justin941208/MAPConNet.
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Figure 1. Overview of our framework. Top: our pose transfer
pipeline. Bottom: our contrastive learning scheme, with a mesh-
level loss for disentangling global pose and identity and a point-
level loss for discriminating local semantics.

notate. One requirement is having correspondence labels,
which are pairs of vertices that correspond to each other se-
mantically between two point clouds or meshes. Many prior
pose transfer methods either require ground truth correspon-
dence [35, 4, 2, 43, 47] or simply neglect the issue [40]. Re-
quiring ground truth correspondence is costly, and neglect-
ing correspondence would adversely impact model perfor-
mance. [33] proposed learning a correspondence module
based on optimal transport in an end-to-end fashion through
the pose transfer task. However, their method is supervised
and requires the mesh with the desired pose and identity as
ground truth. This puts another requirement on the dataset:
having multiple subjects performing exactly the same set
of poses, which is unfeasible. [47] proposed an unsuper-
vised approach for registered meshes which only requires
each subject to perform multiple poses and they do not have
to align exactly across subjects – a more practical require-
ment for real datasets [6, 22]. However, their approach is
based on graph convolutional networks (GCNs) and ARAP
deformation which require ground truth correspondence.

We propose a self-supervised framework (Figure 1) for
3D pose transfer with Mesh And Point Contrastive learn-
ing, MAPConNet, requiring no correspondence labels or
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target outputs with the desired pose and identity as ground
truth for supervision. It can be applied in supervised, unsu-
pervised, and semi-supervised settings, and does not need
the pose and identity inputs to have the same ordering or
number of points. We propose to adapt the unsupervised
approach by [47] for pose transfer on unaligned meshes,
using [33] as our baseline. To prevent the network from
exploiting shortcuts in unsupervised learning that circum-
vent the desired objective, we introduce disentangled latent
pose and identity representations. To strengthen the disen-
tanglement and guide the learning process more effectively,
we propose mesh-level contrastive learning to force the
model’s intermediate output to have matching latent iden-
tity and pose representations with the respective inputs. To
further improve the quality of the model’s intermediate out-
put as well as the correspondence module, we also propose
point-level contrastive learning, which enforces similarity
between representations of corresponding points and dis-
similarity between non-corresponding ones. In summary:

• We present MAPConNet, a novel self-supervised net-
work for 3D pose transfer with Mesh And Point Con-
trastive learning. Our model requires no ground truth
correspondence or target outputs for supervision.

• We introduce two levels of contrastive learning con-
straints, with a mesh-level loss for global disentangle-
ment of pose and identity and a point-level loss for dis-
crimination between local semantics.

• We achieve state-of-the-art results through extensive
experiments on human and animal data, and demon-
strate competitive and generalisable results in super-
vised, unsupervised, and semi-supervised settings.

2. Related work

Deep learning on 3D data. Recent years have seen a
surge in deep learning methods on 3D data such as point
clouds, meshes and voxels. [41] and [23] operate on vox-
els using 3D convolutions which would be computationally
expensive for high-dimensional data such as ours. [12] and
[38] are designed for meshes but include fully-connected
layers which are memory-intensive. Some GCN models
[29, 21, 47] include down- and up-sampling layers and oth-
ers [19, 15] incorporate novel operations, both of which im-
prove efficiency. However, all their architectures rely on a
template structure to implement and is not suitable in our
scenario. As for point clouds, [27] and [28] use shared
weights across points and adopt aggregation strategies to
enforce order-invariance. We use shared weights without
aggregation to preserve detailed identity information.

3D pose/deformation transfer. Pose transfer aims to
transfer the pose of a source geometry to a target without

changing the target’s identity. Deformation transfer meth-
ods [35, 4, 2, 43, 44, 18] require a template pose across dif-
ferent identities and sometimes also correspondence labels,
which are unavailable in our and most realistic settings.
Image-to-image translation methods [48, 8, 16, 24, 37, 36]
have also been repurposed for pose transfer due to their rel-
evance. [13] used CycleGAN [48] for pose transfer but re-
quires retraining for each new pair of identities. [3] refor-
mulated the problem as “identity transfer” but required ver-
tex correspondence. [40] used SPADE normalisation [24]
to inject target identity into the source. [33] added cor-
respondence learning to [40] and improved the normalisa-
tion method. However, both require ground truth outputs.
[47] proposed an unsupervised framework but requires cor-
respondence labels. We do not require ground truth out-
puts or correspondence labels. [34] proposed a dual re-
construction objective in a similar spirit to [47] to enable
unsupervised learning in [33]. In contrast, our approach
is to force the model to learn disentangled latent pose and
identity codes and impose mesh- and point-level contrastive
losses on them, which improves performance in both super-
vised and unsupervised settings.

Self-supervised learning on 3D data. Self-supervised
learning is the paradigm of automatically generating super-
visory signals in training and has been successful in 2D
[32, 9, 25, 46, 14, 7, 37]. Some 2D approaches have also
been adopted for 3D data, such as rotation [26] and com-
pletion [39], but we choose contrastive learning as it can be
easily adapted to suit our needs. Most existing contrastive
learning approaches for 3D data [45, 42, 31, 10, 1] focus
on learning invariance across views or rigid transformations
for scenes or simple objects, whereas we address more fine-
grained patterns such as identity, pose, and correspondence
for complex shapes including humans and animals.

3. Methodology
We now present our problem setting and proposed MAP-

ConNet in detail. Given a pose (i.e. source) mesh xA1 ∈
RNpose×3 and identity (i.e. target) mesh xB2 ∈ RNid×3,
where the letters A,B, . . . and numbers 1, 2, . . . denote the
identities and poses of the meshes respectively, our goal
is to train a network G to produce a new mesh x̂B1 =
G(xA1,xB2) ∈ RNid×3 which inherits pose 1 and identity
B. The integers Npose and Nid are the numbers of vertices
in the pose and identity meshes, respectively. The meshes
are treated as point clouds by our model, but connectivity is
required for training. In addition, we do not require the ver-
tices of both inputs to share the same order, but the output
mesh x̂B1 would follow the same order as xB2.

3.1. Preliminaries

For our baseline, we choose 3D-CoreNet [33] – a prior
state-of-the-art 3D pose transfer model that requires no

14453



Pose
input

Identity
input

Refinement

Warped
output 

Final output

shared

Feature
extractor 

Feature
extractor 

Correspondence

Edge

Reconstruction

Pointwise features

Contrastive learning

Figure 2. Our supervised learning pipeline. The feature extractor F embeds the inputs xB2 and xA1 into a shared latent space. The
correspondence module warps xA1 into wB1 which should have the same vertex order as xB2. In addition, we separate the latent codes
into identity and pose, where only the identity channels are used as style conditioning to refine wB1 into the final output x̂B1. We propose
mesh and point contrastive learning on top of the existing reconstruction and edge losses. Our model is based on 3D-CoreNet [33].

ground truth correspondence. It has two modules: cor-
respondence and refinement. The correspondence module
produces an intermediate “warped” output wB1 ∈ RNid×3

inheriting the pose from xA1 but the vertex order of xB2.
Specifically, the warped output is obtained by wB1 =

TxA1, where T ∈ RNid×Npose

+ is an optimal transport (OT)
matrix learned based on the latent features of both inputs.
The refinement module then uses the features of the iden-
tity input xB2 as style condition for the warped output wB1,
refining it through elastic instance normalisation and pro-
ducing the final output x̂B1. The training of 3D-CoreNet
is supervised: given the model output x̂B1 and the ground
truth output xB1, it minimises the reconstruction loss

Lrec(x̂
B1;xB1) =

1

3Nid
∥x̂B1 − xB1∥2F , (1)

where ∥ · ∥F is the Frobenius norm. For this loss to work
properly, the ground truth xB1 and identity input xB2 must
have the same dimensions and vertex order. In addition
to Lrec, an edge loss is used to help generate smoother
surfaces and prevent flying vertices [40, 33]. Given the
model output x̂B1 and identity input xB2, which should
have matching vertex orders, the edge loss is given by

Ledge(x̂
B1;xB2) =

1

|E|
∑

(j,k)∈E

∣∣∣∣∣∥x̂B1
j − x̂B1

k ∥2
∥xB2

j − xB2
k ∥2

− 1

∣∣∣∣∣ ,
(2)

where E is the set of all index pairs representing vertices that
are connected by an edge, and x̂B1

j ,xB2
j ∈ R3 are the coor-

dinates of the j-th (similarly, k-th) vertices of x̂B1 and xB2

respectively. Finally, the overall supervised loss is given by

Ls = λrecLrec(x̂
B1;xB1) + λedgeLedge(x̂

B1;xB2), (3)

where λrec and λedge are the weights for the two losses.

3.2. Latent disentanglement of pose and identity

Our supervised pipeline is shown in Figure 2 with pro-
posed loss terms Lmesh and Lpoint which are discussed in

detail in Section 3.4 and 3.5. In Section 3.3, we present our
unsupervised pipeline with the self- and cross-consistency
losses by [47]. However, directly using these losses leads
to suboptimal results due to 3D-CoreNet not having a dis-
entangled latent space. Hence, given an input mesh x, we
further separate its latent representation F (x) ∈ RN×D into
identity Fid(x) ∈ RN×Did and pose Fpose(x) ∈ RN×Dpose

channels. Here, F (·) is the feature extractor, and Fid and
Fpose are the components of F corresponding to the pose
and identity channels, and Did+Dpose = D. Furthermore,
we feed only the identity channels Fid(x

B2) to the refine-
ment module as input, but both identity and pose channels
to the correspondence module as input.

3.3. Unsupervised pose transfer

It is clear that training 3D-CoreNet requires the ground
truth output with the desired pose and identity. This re-
quires training samples with: (i) the same identity in dif-
ferent poses, and (ii) different identities in the same pose.
Whilst (i) is easily satisfied, (ii) is more difficult in practice.
For instance, if the two inputs come from separate datasets
with different sets of identities and poses, there would be no
ground truth for the reconstruction loss (Equation 1).

Unsupervised pose transfer with only condition (i) was
shown to be possible on registered meshes by [47], whose
main idea is that the network should arrive at the same out-
put in two sub-tasks: (a) when both inputs share a com-
mon identity, and (b) when the pose input in (a) is replaced
by a different identity with the same pose. Task (a) is
called “cross-consistency” and is readily available from the
dataset. The pose input in task (b) is unavailable but can
be generated by the network itself, i.e. “self-consistency”.
However, their GCN model and ARAP deformation require
the vertices of both input meshes to be pre-aligned.

Despite these differences, we propose incorporating the
cross- and self- consistency losses from [47] into the task of
pose transfer on unaligned meshes to enable unsupervised
training (see Figure 3). Following [47], meshes xA1,xA2 ∈
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Figure 3. Our unsupervised learning pipeline. During CC, the model receives two inputs with the same identity. During SC, the pose
input in the second pass is of a different identity but in the same pose as that in CC, generated by the model itself in the first pass. The
model should learn to produce the same output in both stages. This framework is based on [47].

RNpose×3 and xB3 ∈ RNid×3 are required as inputs during
training. In addition, whilst vertex order can vary across
identities, it must be the same between xA1 and xA2.

Cross-consistency (CC). Given pose input xA1 and
identity input xA2, which have the same identity but dif-
ferent poses, the network should reconstruct xA1 through
x̂A1 = G(xA1,xA2) (Figure 3, left). This is enforced via

Lcc = λrecLrec(x̂
A1;xA1) + λedgeLedge(x̂

A1;xA2). (4)

Self-consistency (SC). CC alone is insufficient as it
does not train the network to perform transfers between
meshes with different identities. As mentioned previously,
the model should reconstruct the same output as that in CC
when its pose input is replaced by a different identity with
the same pose – which is usually not available from the
training data. [47] proposed to let the network itself gen-
erate such examples as proxy inputs for training in a two-
pass manner (Figure 3, centre and right). In the first pass,
given pose input xA1 and identity input xB3, the network
generates a proxy x̂B1 = G(xA1,xB3). This is then used
as the pose input in the second pass to reconstruct the ini-
tial pose input x̃A1 = G(SG(x̂B1),xA2), where SG stops
the gradient from passing through. The purpose of SG is
to prevent the model from exploiting shortcuts such as us-
ing the input xA1 from the first pass to directly reconstruct
the output in the second pass. Incidentally, this also avoids
extra computational overhead. The SC loss is given by

Lsc = λrecLrec(x̃
A1;xA1) + λedgeLedge(x̃

A1;xA2). (5)

Finally, the overall unsupervised loss is given by

Lus = Lcc + Lsc. (6)

3.4. Mesh contrastive learning

As mentioned in 3.2, we disentangle the latents into pose
and identity channels. This allows us to impose direct con-
straints on the meaning of these channels to improve the
accuracy of the model output. For instance, we can com-
pare the output against the inputs in terms of pose and iden-
tity and impose losses to enforce consistency. In addition,

during unsupervised learning, the network may also exploit
potential shortcuts such as taking both pose and identity in-
formation from one input only and ignoring the other input.
Disentangling the latent space and imposing additional con-
straints makes these shortcuts more difficult to exploit.

For these purposes, we propose mesh-level contrastive
learning losses for pose and identity. As we cannot compare
pose and identity directly in the mesh space, we take a self-
supervised approach by feeding meshes through the feature
extractor F and imposing the triplet loss [32] on the latent
representations (see Figure 4). Specifically, given an anchor
latent a, a positive latent p, and a negative latent n which
are all in RN×D, our mesh triplet loss is given by

l(a,p,n) =

m+
1

N

N∑
j=1

d(aj ,pj ,nj)

+

, (7)

where (·)+ = max(0, ·), m is the margin, and

d(aj ,pj ,nj) = ∥aj − pj∥2 − ∥aj − nj∥2, (8)

where aj ,pj ,nj ∈ RD are the latents of the j-th ver-
tex from a,p,n respectively. In equation 7, we enforce
the margin m on the whole mesh rather than on individ-
ual points since pose and identity are global patterns. We
will now discuss how equation 7 is incorporated into our
unsupervised and supervised pipelines.

Contrastive learning in CC. Recall that in CC, the net-
work tries to predict the output from two inputs with the
same identity. Given identity input xA2 and pose input xA1,
let wA1 be the resulting warped output. By intuition, the
pose representation of xA1 should be closer to that of wA1

than xA2, as the pose of xA1 should be inherited by wA1.
Whilst wA1, xA2, and xA1 should all have the same iden-
tity, the identity representation of xA1 should be closer to
that of xA2 than wA1 as wA1 should generally avoid inher-
iting the identity representation from the pose input. Hence,
the triplet loss formulation for CC is

Lcc
mesh =l

(
Fpose(x

A1), Fpose(w
A1), Fpose(x

A2)
)

+ l
(
Fid(x

A1), Fid(x
A2), Fid(w

A1)
) (9)
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Figure 4. Mesh and point contrastive learning. Left: the triplet formulation for CC, where xA1 and xA2 have the same identity and
vertex order but different poses. Centre: the triplet formulation for SC (and supervised pipeline), where u and v do not have the same
identity, poses, or vertex order. Right: the triplet formulation for point contrastive learning, where u and w share the same vertex order.

We use the warped output here (and later in SC) instead
of the final output for two reasons. First, this forces the
warped output to be closer to the desired final output, mak-
ing it easier to be refined. Second, this has a lower compu-
tational cost as it does not involve the refinement module.

Contrastive learning in SC. Recall that in SC, the
model should produce the same output as that in CC through
two consecutive passes, and the two inputs for each pass
have different identities and poses. Given identity input
u ∈ RNid×3 and pose input v ∈ RNpose×3, let w ∈ RNid×3

be the resulting warped output. Naturally, the pose repre-
sentation of w should be closer to that of v than u, and the
identity representation of w should be closer to that of u
than v. This logic applies to both passes within SC.

However, unlike CC, the vertex orders of u and v in
SC are not aligned. As a result, equations 7 and 8 cannot
be applied directly as they only compare distances between
aligned vertices. We again take a self-supervised approach
to “reorder” the feature of v by utilising the OT matrix T.
As the cost matrix for OT is based on the pairwise similar-
ities between point features of u and v, most entries in T
are made close to zero except for a small portion which are
more likely to be corresponding points. Therefore, we use
the following binary version of T to select vertices from v

Bjk = I{Tjk = max
l

Tjl}, (10)

where I is the indicator function. In other words, each row
of B ∈ {0, 1}Nid×Npose is a binary vector marking the lo-
cation of the maximum value in the corresponding row of
T. We further constrain the rows of B to be one-hot in case
of multiple maximum entries. Now, the triplet loss for SC
with the “reordered” pose feature is given by

Lss
mesh =l (Fpose(w),BFpose(v), Fpose(u))

+ l (Fid(w), Fid(u),BFid(v)) .
(11)

Contrastive learning in supervised pipeline. Equation
11 can also be applied to our supervised learning pipeline
by replacing u,v,w with xB2,xA1,wB1, respectively.

3.5. Point contrastive learning

Intuitively, the final output would be more accurate if
the warped output more closely resembles the ground truth.
However, as later experiments will demonstrate, both 3D-
CoreNet and Lmesh have a shrinking effect on the warped
output, particularly on the head and lower limbs. We pro-
pose to address this problem by enforcing similarity be-
tween corresponding points and dissimilarity between non-
corresponding points across different meshes. Specifically,
given identity input u and warped output w, we propose the
following triplet loss for point-level contrastive learning

Lpoint =
1

Nid

Nid∑
j=1

(m+ d(F (w)j , F (u)j , F (u)k))
+
,

(12)
where d is from equation 8 and k ∈ {1, . . . , Nid} \ {j}.
Unlike equation 7, the margin m here is enforced on in-
dividual points instead of the whole mesh. In our im-
plementation, we set k = j + 1, and consequently set
F (u)Nid+1 := F (u)1. In other words, the negative points
are simply u with its first point moved to the end and all
others shifted down in index by 1. As all input points of
a mesh are randomly re-ordered during pre-processing (see
Section 4), the negative point can come from any region of
the feature F (u) throughout training. In addition, this loss
can be applied in all cases including supervised learning and
both CC and SC in unsupervised learning.

3.6. Overall training losses

The overall objective of our framework when ground
truth is available is given by the labelled loss:

LL = Ls + λm,sLss
mesh + λpLpoint. (13)

When ground truth is unavailable, we instead minimise:

LU = Lus + λm,cLcc
mesh + λm,sLss

mesh + λpLpoint. (14)

In our full models, we set λm,s = λm,c = λp = 1.
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Test set Mode Method PMD ↓ CD ↓ EMD ↓

SMPL

S

(A) DT [35] 1.50 3.50 22.10
(B) NPT [40] 6.60 14.20 42.20
(C) 3D-CoreNet (Baseline) [33] 0.36 1.18 1.35
(D) MAPConNet (Ours) 0.30 1.04 1.15
(E) 3D-CoreNet (Baseline) [33], 50% labelled 4.99 10.34 10.13
(F) MAPConNet (Ours), 50% labelled 3.69 6.67 9.25

SS (G) MAPConNet (Ours), 50% labelled + 50% unlabelled 0.40 1.32 1.45

US
(H) 3D-CoreNet (Baseline) [33], without LD 14.09 32.34 18.85
(I) 3D-CoreNet (Baseline) [33], with LD 0.76 2.20 2.58
(J) MAPConNet (Ours) 0.56 1.71 1.83

SMAL
S

(K) DT [35] 133.70 357.70 159.00
(L) NPT [40] 67.50 145.20 116.50
(M) 3D-CoreNet (Baseline) [33] 27.04 51.55 29.31
(N) MAPConNet (Ours) 25.34 47.81 26.22
(O) 3D-CoreNet (Baseline) [33], 50% labelled 59.66 130.99 49.26
(P) MAPConNet (Ours), 50% labelled 51.36 112.25 43.80

SS (Q) MAPConNet (Ours), 50% labelled + 50% unlabelled 29.80 55.16 30.85
US (R) MAPConNet (Ours) 29.29 54.64 30.00

DFAUST

US
(S) 3D-CoreNet (Baseline) [33], without LD 468.10 441.74 128.08
(T) 3D-CoreNet (Baseline) [33], with LD 92.45 176.21 55.71
(U) MAPConNet (Ours) 61.22 60.97 32.07

S (C) 3D-CoreNet (Baseline) [33], trained on SMPL only 138.56 159.11 58.95
(D) MAPConNet (Ours), trained on SMPL only 120.10 133.09 49.75

SS (V) MAPConNet (Ours), SMPL labelled + DFAUST unlabelled 36.23 35.69 23.30
Table 1. Quantitative results. PMD and CD are in units of 10−4, and EMD is in units of 10−3. Lower values are better. The modes “S”,
“SS”, and “US” are short for “supervised”, “semi-supervised”, and “unsupervised”, respectively. “LD” is short for “latent disentanglement”
which is described in Section 3.2. Note: Training and test sets are from the same dataset unless otherwise specified.

4. Experiments

4.1. Data

SMPL. This is a synthetic dataset [40] of 24,000 human
meshes generated by SMPL [20] from 30 identities and 800
poses. Each mesh has 6,890 vertices. Ground truths are
available for evaluation and supervised learning as all iden-
tities share a common set of poses. Following [33], we ran-
domly sample a training set of 4,000 meshes from a ran-
domly sampled list of 16 identities and 400 poses. For eval-
uation, we use the same fixed set of 400 mesh pairs as [33]
which are randomly sampled from the remaining 14 identi-
ties and 200 poses that are unseen during training.

SMAL. This is a synthetic dataset of 24,600 animal
meshes generated by SMAL [49] from 41 identities and 600
poses. Each mesh has 3,889 vertices. All identities also
share a common set of poses. Following [33], we randomly
select a training pool of 11,600 meshes from a random list
of 29 identities and 400 poses. For evaluation, we again use
the same fixed set of 400 mesh pairs as [33] from the unseen
12 identities and 200 poses. Compared to SMPL, this is a
more challenging dataset as it consists of a wider variety of
shapes and sizes of animals.

DFAUST. Unlike SMPL and SMAL, which are syn-
thetic datasets, DFAUST [6] is a more challenging collec-
tion of registered human meshes obtained from real 3D
scans which allows us to validate our model in realistic un-
supervised settings. The dataset consists of 10 subjects, 5
males and 5 females, each performing multiple motion se-
quences. There are no direct ground truths available since
different subjects are not in precisely the same pose, and
as a result we use the SMPL+H model [30] to generate
pseudo ground truths for evaluation. We randomly select
4,000 meshes from 3 males and 3 females for training and
399 meshes from the unseen subjects for evaluation.

MG. The Multi-Garment (MG) dataset [5] includes reg-
istered meshes of humans in clothing from real 3D scans.
Each mesh has 27,554 vertices – significantly more than
SMPL and DFAUST. We use MG to qualitatively validate
our method’s ability to handle complex unseen topologies.

4.2. Implementation details

Pre-processing. We pre-process all inputs in two steps.
First, the vertices of each pair of pose and identity inputs are
randomly and independently re-ordered to remove the cor-
respondence between them. Second, they are zero-centred
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Identity input Pose input NPT (B) 3D-CoreNet (C) Ours (D)
(supervised)

Ours (J)
(unsupervised) Ground truthOurs (G)

(semi-supervised)

Figure 5. Qualitative comparison on unseen SMPL inputs. This shows pose transfer results using prior and our methods (labels defined
in Table 1) trained on SMPL. The first and second rows show the rendered surfaces and point clouds respectively. The colours of the model
output point clouds represent PMDs against the ground truth, with dark red and dark blue indicating high and low PMDs respectively.

Identity input Pose input 3D-CoreNet (M) Ours (N)
(supervised)

Ours (R)
(unsupervised) Ground truthOurs (Q)

(semi-supervised)

Figure 6. Qualitative comparison on unseen SMAL inputs. Similar to Figure 5 (with method labels defined in Table 1), the first and
second rows are the rendered surfaces and point clouds respectively, with PMD heatmaps visualised on model output point clouds.

based on their bounding boxes. We perform the same pro-
cedure for both training and evaluation.

Parameter settings. Our experiments are based on the
official implementation of 3D-CoreNet [33]. We set a batch
size of 2 for all experiments. Following [33], all hyperpa-
rameters are kept at their default values including λrec =
1000 and λedge = 0.5. As for Lmesh and Lpoint, we set the
margin at m = 1. The network is trained for 200 epochs
using the Adam optimiser [17] with an initial learning rate
of 1 × 10−4 which is kept constant for the first 100 epochs
and then linearly decayed to 0 in the last 100 epochs.

Training. The detailed training procedures for super-
vised, unsupervised, and semi-supervised settings are in Al-
gorithms 1, 2, and 3 in the Appendix, respectively. For
semi-supervised learning in SMPL or SMAL (Table 1 meth-
ods (G) and (Q)), we alternate iterations between optimis-
ing LL and LU . On the other hand, for semi-supervised
learning on SMPL and DFAUST (Table 1 method (V)), as
we would like to run inference on DFAUST with the final
model, we train the first 100 epochs on SMPL in a super-
vised manner and the remaining epochs on DFAUST in an
unsupervised manner. During an unlabelled iteration, we
also allow either pose or identity input (not both) to come
from the labelled dataset (see Algorithm 3 in the Appendix).

4.3. Evaluation

We evaluate model performance at epoch 200 by com-
paring its outputs against ground truths using three metrics.

Pointwise Mesh Distance (PMD). The PMD [40, 33] is
in the same form as Equation 1 and takes into account both
the positions and ordering of the vertices measured.

Chamfer Distance (CD). The CD [11] measures the
discrepancy between two point clouds without taking into
account the ordering of their points. Given point clouds
P,Q ⊂ R3, the CD between P and D is given by

1

|P |
∑
p∈P

min
q∈Q

∥p− q∥22 +
1

|Q|
∑
q∈Q

min
p∈P

∥p− q∥22. (15)

Earth Mover’s Distance (EMD). The EMD [11] first
solves the assignment problem between two point clouds
before taking the pointwise distance by aligning the two
point clouds using the resulting assignment function.
Specifically, given point clouds P,Q ⊂ R3 such that |P | =
|Q|, the EMD between P and Q is given by

min
ϕ:P→Q

1

|P |
∑
p∈P

∥p− ϕ(p)∥2, (16)

where ϕ is a bijective mapping from P to Q.
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Identity input Pose input 3D-CoreNet (S)
(unsupervised, no LD)

3D-CoreNet (T)
(unsupervised, with LD)

Ours (U)
(unsupervised) Ground truth3D-CoreNet (C)

(supervised on SMPL)
Ours (V)

(semi-supervised)
Ours (D)

(supervised on SMPL)

Figure 7. Qualitative comparison on unseen DFAUST inputs. Similar to Figure 5 (with method labels defined in Table 1), the first and
second rows are the rendered surfaces and point clouds respectively, with PMD heatmaps visualised on model output point clouds.

For all metrics, lower values are better. As mentioned
in section 4.2, we randomly and independently re-order the
input vertices in evaluations (similar to training) but with a
fixed seed for all experiments to ensure fairness.

4.4. Quantitative results

We compare our method with previous state-of-the-art
pose transfer models using the aforementioned metrics and
evaluation procedure (see Table 1). For DT [35] and NPT
[40], we quote the results obtained by [33]. For 3D-CoreNet
[33], we retrain their model from scratch using their offi-
cial implementation. As we use a smaller batch size dur-
ing training than that used in the original 3D-CoreNet work
[33] but keep the total number of epochs unchanged, there
are more gradient descent steps during our training which
causes the baseline numbers we obtained to be different
from the original numbers reported by [33]. However, our
replicated results are close to the original ones or even bet-
ter. We also emphasise that we keep all data pre-processing,
training, and evaluation procedures identical across experi-
ments to ensure any comparisons between the baseline and
our method are fair.

We outperform prior state-of-the-art methods in the su-
pervised setting on SMPL and SMAL as shown by method
(D) and (N) in Table 1. Our method also enables unsu-
pervised learning in (J) and (R) where we achieve results
comparable to the supervised ones while still outperform-
ing earlier supervised methods DT and NPT. Training 3D-
CoreNet [33] directly using the CC and SC losses for unsu-
pervised learning [47] does not yield ideal results as shown
by (H), but applying our latent space disentanglement leads
to a substantial improvement as shown by (I) and (J). Sim-
ilar improvement can also be observed on the more chal-
lenging DFAUST dataset as shown by (S), (T), and (U).
This demonstrates that it can be difficult for the model to
disentangle pose and identity effectively in an unsupervised
setting without proper architectural constraints.

Table 1 also demonstrates that our method is more effec-
tive in settings with limited labelled data. In methods (E),
(F), (O), and (P), we randomly remove 50% identities and
50% poses from the training set, which means the model
only sees 25% of all available meshes during training. As
expected, this leads to a dramatic increase in PMD and CD
which indicates reduced model generalisability. However,
our model is still able to outperform 3D-CoreNet under this
limitation. Since our method also supports unsupervised
learning, we can introduce meshes with the remaining 50%
identities and 50% poses to our model as unlabelled samples
in addition to the labelled ones. Note that the model still
only sees 50% of all available training meshes since meshes
whose identity is in the labelled set and whose pose is in
the unlabelled set (and vice versa) are not included. Under
this semi-supervised setting, our model achieves substan-
tial improvement in accuracy as shown by (G) and (Q), ap-
proaching the fully supervised results. In addition, by using
all SMPL training data as the labelled set and all DFAUST
training data as the unlabelled set, we achieve further im-
provement when testing on DFAUST as shown by (V).

4.5. Qualitative results

We visually compare the outputs of various methods on
SMPL and SMAL in Figures 5 and 6, respectively. We can
observe that the output surfaces of our method are smoother
compared to NPT which produces numerous concavities.
We visualise the PMDs between the outputs and ground
truths through heatmaps which show that our method gen-
erates more accurate outputs indicated by the darker blue.
We also visualise various models on DFAUST in Figure
7, which clearly shows that our unsupervised model (U)
is more accurate than (S) and (T) which do not employ
our contrastive losses, and our semi-supervised model (V)
trained on both SMPL and DFAUST outperforms the super-
vised models (C) and (D) trained only on SMPL. Finally,
Figure 8 demonstrates that our model can handle complex

14459



Identity input Pose input Model output (V) Identity input Pose input Model output (V)

Figure 8. Qualitative results on unseen MG and DFAUST inputs. The above shows two instances of pose transfer using our semi-
supervised model (V) defined in Table 1, with MG meshes as identity inputs and DFAUST meshes as pose inputs.

Identity input Pose input Ground truth output

Figure 9. Warped outputs in the ablation study (supervised). This is a visual comparison of the warped outputs from the supervised
models in the ablation study (Table 2), with the input and ground truth output meshes as references.

Mode λm,c λm,s λp PMD ↓ CD ↓ EMD ↓

S

N/A 0 0 0.36 1.18 1.35
N/A 0 1 0.35 1.16 1.26
N/A 1 0 0.31 1.08 1.17
N/A 1 1 0.30 1.04 1.15

US

0 0 0 0.76 2.20 2.58
0 0 1 0.59 1.81 2.00
1 0 0 0.60 1.81 1.98
1 1 0 0.59 1.79 1.96
1 1 1 0.56 1.71 1.83

Table 2. Ablation study. PMD and CD are in units of 10−4, and
EMD is in units of 10−3. The modes “S” and “US” are short for
“supervised” and “unsupervised” respectively.

unseen input meshes with different topologies and vertex
numbers. Additional results can be found in the Appendix.

4.6. Ablation study

In Table 2, we study the individual effectiveness of our
proposed losses Lmesh and Lpoint on SMPL by changing
their associated weights λm,c, λm,s, and λp. It can be seen
that setting any of them to 1 can improve the result, and
setting all to 1 yields the best result. In the unsupervised
setting, we also observe that setting λm,c = λm,s = 1 is
more effective than setting λm,c = 1 only. The warped out-
puts of the supervised experiments are shown in Figure 9.
Setting λp = 1 leads to a visible improvement in the qual-

ity of the warped output particularly in the head and lower
limbs, mitigating the shrinking effect as mentioned in Sec-
tion 3.5. On the other hand, setting λm,s = 1 allows the
warped output to have a better resemblance with the ground
truth. This is shown by the corresponding warped outputs
in Figure 9 which are thinner compared to the ones with
λm,s = 0. However, this causes a side effect where the head
and limbs are drastically shrunk. Combining both losses
leads to an improved resemblance between the warped out-
put and ground truth whilst reducing excessive shrinking.

5. Conclusion
We proposed MAPConNet, a self-supervised 3D pose

transfer framework without requiring correspondence labels
or ground truth outputs for supervision. We introduce dis-
entangled latent spaces for pose and identity to improve un-
supervised learning, and mesh and point level contrastive
learning to improve the model’s intermediate output and in
turn, final output. We achieve state-of-the-art results in su-
pervised learning, and competitive results in unsupervised
and semi-supervised settings that are generalisable to un-
seen human and animal data with complex topologies.
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