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Abstract

Creating relightable and animatable human characters
from monocular video at a low cost is a critical task for dig-
ital human modeling and virtual reality applications. This
task is complex due to intricate articulation motion, a wide
range of ambient lighting conditions, and pose-dependent
clothing deformations. In this paper, we introduce a novel
self-supervised framework that takes a monocular video of
a moving human as input and generates a 3D neural rep-
resentation capable of being rendered with novel poses un-
der arbitrary lighting conditions. Our framework decom-
poses dynamic humans under varying illumination into neu-
ral fields in canonical space, taking into account geometry
and spatially varying BRDF material properties. Addition-
ally, we introduce pose-driven deformation fields, enabling
bidirectional mapping between canonical space and obser-
vation. Leveraging the proposed appearance decomposi-
tion and deformation fields, our framework learns in a self-
supervised manner. Ultimately, based on pose-driven defor-
mation, recovered appearance, and physically-based ren-
dering, the reconstructed human figure becomes relightable
and can be explicitly driven by novel poses. We demonstrate
significant performance improvements over previous works
and provide compelling examples of relighting from monoc-
ular videos of moving humans in challenging, uncontrolled
capture scenarios.

1. Introduction
Capturing the human appearance under varying poses,

viewpoints, and environmental lighting is essential. This
capability enables a range of applications from digital 3D
human creation to immersive experiences for X-R expe-
riences. Traditional pipelines, utilizing specialized equip-

Figure 1. Given a monocular human motion video as input, our
framework enables human relighting under novel illuminations
and poses.

ment for multi-view human scanning [12, 10, 16], rely on
expensive hardware and are not feasible in uncontrolled en-
vironments, making them unsuitable for individual users.
In contrast, recent neural rendering methods such as NeRF
[27] and its variants [51, 49, 14, 48, 28, 24, 24] have
achieved significant progress in generating realistic human
rendering effects. These methods are simple yet effective,
offering a promising alternative to traditional pipelines. It
has been demonstrated that the human body can be rep-
resented as neural fields, enabling control and relighting,
which expands the potential for creating more flexible and
adaptive virtual human models.

Different from existing methods that rely on multi-view
static scans [21, 53, 8], we focus on the problem of relight-
ing dynamic humans using only a single monocular video.
As illustrated in Fig. 1, we model the dynamic human body
by employing a neural human appearance field and a pose-
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driven deformation field. The former encodes the dynamic
human, accounting for varying illumination, into a canon-
ical volume, while the latter allows explicit control of the
canonical model using a condition code (such as SMPL or
SMPL-X [23, 32]). Following the paradigm of recent work
[5], we utilize a set of multi-layer perceptron (MLP) net-
works as an implicit representation to store the geometry
and spatially varying BRDF (Bidirectional Reflectance Dis-
tribution Function) of the human body within the canoni-
cal volume. Geometry represents the human shape, encom-
passing characteristics like density, color, and normal. The
spatially varying BRDF is broken down into three compo-
nents: base color, roughness, and metalness. In summary,
our work has the following contributions:

We present a principled framework, which is the first to
build a relightable and animatable human in complex mo-
tion from a single video. we introduce a dense bidirectional
mapping to modify rotation-related and rotation-unrelated
parameters based on the deformation process.

We propose a progressive training strategy that enables
learning BRDFs, surface normal, and ambient lighting in a
self-supervised way under complex motions. Experiments
show that our framework outperforms the state-of-the-art
method in the human relighting task.

2. Related Work
Human Reconstruction. Collet et al. [10] recorded hu-
man performances using a dense array of RGB and IR video
cameras, generating dynamic textured surfaces, and com-
pressing them into a streamable 3D video format. Guo et
al. [16] introduced a volumetric capture system designed
for photorealistic and high-quality relightable full-body per-
formance capture. However, these works demand complex
multi-view configurations and costly hardware. Recent re-
search [2, 54] has aimed at reconstructing detailed geometry
and textures from color images through the use of paramet-
ric mesh fitting. For example, Alldieck et al. [2] fitted the
SMPL model to all frames and optimized per-vertex off-
sets using dynamic human silhouettes. A core contribution
of this paper lies in the transformation of a dynamic body
into a canonical frame of reference, a method frequently
employed to handle dynamic human bodies. Nevertheless,
the main limitation of these techniques is their heavy re-
liance on a fixed base topology, resulting in poor gener-
alization for loose clothing. Pifu [36], employing pixel-
aligned implicit functions for human reconstruction, can
predict high-resolution 3D shapes of individuals, including
complex hairstyles and various clothing, even in largely un-
seen regions, from single or multi-view RGB input. De-
spite its capabilities, the reconstructed surfaces in Pifu are
not rigid and thus cannot be relighted.
Human Neural Representation. The Neural Radiance
Field (NeRF) is a cutting-edge method for 3D implicit

representation that utilizes Multilayer Perceptron (MLP)
to model a scene’s geometry and view-dependent appear-
ance. NeRF can be optimized from calibrated RGB im-
ages through differentiable volumetric rendering techniques
[25]. Over the past two years, it has demonstrated ex-
ceptional performance across a variety of 3D applications,
such as scene/object reconstruction [47, 41], relighting
[5, 4, 38, 46], and generation [15, 19, 42]. Some researchers
have extended NeRF to dynamic scenes by introducing a
neural deformation field, allowing for the handling of de-
formations or pose synthesis through latent space interpola-
tion [30, 40, 31, 35]. However, these works tend to struggle
with rapid human motion and fail to generate images with
specific pose inputs. To build a human model from mo-
tion sequences, several studies [45, 33, 22, 29] have repre-
sented a dynamic human using a neural field coupled with
a pose-driven deformation field. This approach captures
a human in a canonical volume through an implicit neu-
ral function that takes a position x as input and returns the
corresponding human appearance value (such as geometry
or color). A pose-driven deformation field depicts the de-
formation between the canonical space and the observed
view, often decomposed into skeleton-driven deformation
(for coarse body movements) and non-rigid deformation
(for local deformities between the SMPL model and clothed
human) [45, 33]. However, these methods, by incorporating
all color information within the implicit functions, prove
unsuitable for human relighting.

Human Relighting. Previous research [26, 18] approaches
this task by framing it as an inverse rendering problem,
with the objective of jointly recovering human geometry, re-
flectance, and illumination from images. Building on con-
volutional neural networks and extensive datasets that in-
clude labeled geometry and materials, LeGendre et al. [20]
are able to predict high dynamic range, omnidirectional illu-
mination from a single low dynamic range image. However,
similar methods often heavily depend on the one-light-at-a-
time image capture technique. This approach is not only
challenging to execute but also limits the ability to relight
subjects with novel poses, as it lacks appropriate 3D repre-
sentations for such manipulations.

Recent research has explored the benefits of implicit
NeRF representations, with significant advancements in
various applications [5, 4, 38]. For example, Zhang et al.
[50] utilized mixtures of spherical Gaussians to represent
specular BRDFs and environmental illumination, while pa-
rameterizing geometry as a signed distance function. Boss
et al. [5] introduced a neural reflectance decomposition
framework, employing physically-based rendering to sep-
arate static scenes into shape and spatially varying BRDF
material properties. This method, however, is limited to
static scenarios and necessitates accurate extrinsic camera
calibration. Relighting4D [9] takes a different approach,
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Figure 2. Overview of our proposed framework. Given an image with human poses, we sample points along the camera ray in frame
view and transform these points to canonical volume with forward mapping. The canonical volume output the corresponding geometry
and BRDFs. The photometric loss is imposed between the classical volume rendering results and input. Then, we warp back geometry and
BRDFs from canonical volume to frame view with inverse mapping. We employ physically based rendering with these warped parameters
to generate the re-render color. The re-render loss is constructed by distance between the re-render color and the input color. Our framework
is optimized by minimizing photometric loss the re-render loss. Other priors are also employed during training..

disassembling the human model into geometry and 3D re-
flectance fields, and adopting the method from [29] to man-
age human motion. A limitation in this work is its reliance
on articulated latent codes rather than explicit deformation,
leading to difficulties for Relighting4D in producing accu-
rate render results for complex motions. Additionally, the
dependence on time steps further complicates the rendering
process, causing the method to struggle when faced with
poses that were not included in the training data.

Our reconstruction framework capitalizes on the
strengths of multiple representations, harmoniously com-
bining them to achieve specific goals. The implicit neu-
ral human appearance field facilitates realistic relighting ef-
fects across various illumination conditions, while the pose-
driven deformation field offers precise articulation-based
control. By incorporating the parameters of the SMPL
model and illumination code, our framework has the capa-
bility to generate high-resolution images and finely-tailored
3D surface geometry through the utilization of physically-
based rendering.

3. Method

Fig. 2 provides an overview of our framework. This sec-
tion is organized as follows: We begin with a brief review
of the basic NeRF formulation in Sec. 3.1. Next, we out-
line the human appearance field, denoted by F , in Sec. 3.2,
followed by an explanation of the pose-driven deformation
field, represented by W , in Sec. 3.3. We then introduce
the specific priors employed during training in Sec. 3.4, and
conclude this section with an overview of our training strat-
egy in Sec. 3.5.

3.1. NeRF Overview

NeRF represents the target scene using a parameterized
MLP, which takes the position x and views direction d as in-
put, and outputs the density σ and radiance color c emitted
by particles at that location along the given viewing direc-
tion. The density σ controls the accumulation of radiance
by a ray passing through the point x. Differentiable vol-
ume rendering [17] is utilized to render the color C of a ray
r(t) = o+ td within the range [tn, tf ], where o is the cam-
era position, t represents the sampled step of the ray, and
[tn, tf ] defines the bounding box of the scene. The accumu-
lated transmittance along the ray is denoted by T (t), and it
can be expressed as follows:

T (t) = exp(−
∫ t

t−1

σ(t)dt) (1)

Hence, the color C can be represent as:

C =

∫ tf

tn

T (t) · σ(t) · c(t)dt (2)

In practice, to more accurately represent high-frequency
details, both the 3D position x and the viewing direction
d are mapped into a higher-dimensional space using posi-
tional encoding [39].

3.2. Human Appearance Field

Following recent implicit representations of scene [5],
we encode the geometry and BRDFs of the human in the
canonical volume to a set of MLPs, which include color
c ∈ R3, density σ ∈ R, normal n ∈ R3 and BRDF b ∈ R5.
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Instead of independently predicting diffuse and specular re-
flection colors, we employ the paradigm of Disney BRDF
Base color Metallic parameterization [7]. The above canon-
ical volumes are encoded as continuous filed F :

F : (xc)→ [c, σ, n, b] (3)

Where xc is the point located in canonical space. Follow-
ing Boss et al. [6], the [σ, n, b] and illumination τ can be
served into physically based rendering for relighting. The
rendering equation is:

C ≈
∑24

m=1ρd(ωo, τm, n, b) + ρs(ωo, τm, n, b) (4)

Where τm is the spherical Gaussian illumination map.
ρd and ρs are the functions evaluated diffuse and specular
lobes[43], which related with σ, we refer readers for more
details in [6].
Illumination The environment map τ is represented by
spherical Gaussian mixtures with parameters Γ ∈ R24×7

(24 lobes). Each lobe is composed of axis∈ R3, sharpness∈
R1, and amplitude ∈ R3 which is initialized in a uniform
distribution, the environment map τ as a parameter is also
optimized. Consider a scene with fixed illumination; the in-
coming light from a certain viewpoint is related to the global
rotation of the human. We use the global rotation at each
frame to calculate illumination under different viewpoints
during training. The axes of τ are corrected after each itera-
tion to remain orthogonal. Moreover, rendering can produce
an extensive value range depending on the incident light and
the object’s specularity, So sRGB curve is applied for this
scenario.

3.3. Pose-driven Deformation Field

The pose-driven deformation field bridge the canonical
volume and live frame view. It consists of two part: for-
ward mapping

−→
W and inverse mapping

←−
W .
−→
W deflects the

observation in frame view to canonical volume, and
←−
W map

BRDFs and normal back to frame view.

3.3.1 Forward Mapping

Following [45], we decouple the deformation W⃗ which
represents from frame view to canonical volume into two
stages: skeleton motion W⃗s(x, θ) and non-rigid motion
W⃗nr(x, θ). The warping process of point xo can divided
into two steps:

W⃗ : (xo, θ)→ W⃗s → (xs, θ)→ W⃗nr → (xc) (5)

where xc is a 3D position in canonical volume, θ is the
current human pose in SMPL format. The skeleton-driven
deformation W⃗s, which represents the coarse deformation

produced by joint rotation. It wraps point xo to xs(in canon-
ical space). W⃗nr starts from xs and produces an offset △x
to it, W⃗nr provides the non-rigid effects caused by cloth-
ing. The W⃗nr is considered as a offset △x to the skeleton-
driven result xs. To be specific, point xo is warped by W⃗s to
the skeleton-driven position xs. Then, the non-rigid motion
MLP estimates the offset to the xs and gets the final position
xc = xs +△x in canonical space: W⃗nr : (xs, θ) → △x.
Details are given in supplementary material.

3.3.2 Inverse Mapping

Based on the forward mapping W⃗ and volume rendering
equation Eq. (2), the estimated density σ and color c will
generate illumination-independent color

−→
C r. During this

process, only density and color back the propagation gradi-
ent. To optimize other decomposed parameters like BRDFs
and normal, we introduce the inverse mapping, which warps
point xo in canonical space back to xc in frame view. The
warped BRDF b, density σ, normal n, and illumination τ
are fed to a physically based rendering to generate the re-
rendered color value

←−
C r.

Figure 3. Visualization of the inverse mapping process of normal.

The inverse mapping
←−
W warp the [n, σ, b] back to the ob-

servation view. These decomposed parameters are divided
into two categories: rotation-unrelated and rotation-
related. The first category includes BRDFs b, density σ,
and color c. The BRDFs, density, and color of the human
body are consistent in observation and canonical spaces.
We represent them with the queried result in the canonical
volume. In the training iteration, we obtained the point-
to-point mapping from frame view to canonical volume via
forward mapping; in the inverse mapping process, the dense
associated pairs can directly map the rotation-unrelated pa-
rameters back to observation. Hence, the

←−
W for [σ, b] are

computed by inverse the
−→
W . The second category is the

rotation-related parameter: normal. It cannot simply repre-
sent warping by adding translation offset(we show an ex-
ample in Fig. 3). Therefore, we need to compute the normal
of the human body in frame view. To distinguish, we useR
to represent the

←−
W for n. The inverse mapping of normal is

similar to the forward mapping process, but the final output
is the △α which rotates the normal in canonical space into
observation. We break it into two steps: inverse skeleton
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Figure 4. Novel view comparison with Relighting4D and a variant of Relighting4D (single view). We show the novel view of normal and
re-rendered results on ZJU-Mocap dataset. Relighting4D and the variant method fail to give an accurate normal and physically incorporate
the lighting.

rotation Rs and non-rigid rotation Rnr. The final normal
no in observation space can be compute as :

no = nc · Rs (xo, θ) · Rnr (Rs (xo, θ) , θ) (6)

Where nc ∈ R3 is the queried normal in canoni-
cal space, Rs (xo, θ) ∈ R3 is skeleton-driven rotation,
Rnr (Ws (xo, θ) , θ) ∈ R3 is the rotation caused by non-
rigid effect. As shown in Fig. 3, we visualize how the incor-
rect normal in the canonical space is corrected by skeleton
and non-rigid rotations.
Inverse Skeleton Rotation. The inverse skeletal rotation
warps the direction of a given point in the canonical space
to the frame view. The process can be denoted:

Rs(xo, θ) =

∑24
i=1
←−w i(Rixo)∑24

i=1
←−w i(xo)

(7)

Similar to the skeleton motion in forward mapping, the
←−w i(xo) is the i-th blend weight of xo corresponding to i-
th bone which is stored in a weight volume

←−
V . The current

weight for a given point xo in the observation space is cal-
culated as ←−w i =

←−
V (Rixo + ti), R̂i is the corresponding

rotation matrix which is computed from pose θ.
Inverse Non-rigid Rotation. The inverse non-rigid motion
output the offset rotation△α toRs(xo, θ). △α is estimated
using an MLP in the form of Euler angles. Rs(xo, θ) is en-
coded with sinusoidal positional encoding, it can be denoted
as:

Rnr : (xs, θ)→△α (8)

3.4. Priors of Decomposed Parameters

Normal Prior. Previous work [5] define normal as the nor-
malized inverse gradient of the local density field:

n = − ∇xσ

∥∇xσ∥
(9)

However, such expression leads to uneven surfaces in dy-
namic scenes. We employ n to initialize the network by
Eq. (10), and adopt a MLP network Fnc to predict the nor-
mal nc in canonical space and using n as weak supervision:
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Figure 5. Decomposition and relighting results of dynamic human. Our method produces plausible BRDFs and normal of a dynamic
human. When relighting with unseen illuminations, the appearance is well reproduced.

nc =

{
− ∇xσ

∥∇xσ∥ step <= t;

Fnc
(x, θ) step > t;

(10)

Local Smooth Prior. We measure the local smoothness of
metalness by adding 3D perturbation ε which is sampled
from a Gaussian distribution with zero mean and standard
deviation 0.01. We regularize metalness m in BRDF by L1
penalty: Lm = |m(x+ ε)−m(x)|1.
Sparsity Prior. Previous research [13, 3, 37] has proved
that global minimum-entropy sparsity prior can remove
shadow effectively. Base color should be sparse enough.
Given n sampled rays, the PDF of the base color B(x) can
be estimated using a Gaussian KDE (Kernel Density Esti-
mator). The entropy of B(x) is computed as an expectation:

Ls = E[−log( 1
n

n∑
i=1

KG(B(x)−Bi(x)))] (11)

Where KG is the standard normal density function.

3.5. Progressive Training

The proposed framework concurrently optimizes the hu-
man’s normal, shape, BRDFs, illumination, and deforma-
tion field. Achieving this is particularly challenging when
only video input is provided, and the illumination is un-
known. To address this, we utilize a progressive end-to-
end training strategy. Specifically, we minimize the dif-
ference between the illumination-independent color and the
ground truth color, a metric referred to as the photometric
loss. In addition to the photometric loss, we leverage the
re-rendered color for further supervision. Weak supervision
is also provided through the use of a sparsity prior and pre-
dicted normal, which align with the inverse gradient of the

density field. The total loss is defined as follows:

L =
−→
λ

∑
r∈R

||
−−→
C(r)− C(r)||+

←−
λ

∑
r∈R

||
←−−
C(r)− C(r)||

+
←−
λ (λnLn + λsLs + λmLm)

(12)
where λn =

∑
||nc − n||, R is the set of rays in

each batch, and C(r) is the ground-truth color.
−−→
C(r) is

illumination-independent colors which generate by human
appearance field F ,

←−−
C(r) is re-render colors by physically

render. As shown in Eq. (12), we assign a weight
−→
λ =

0.9
iter
5000 to the illumination-independent loss at the start of

training, and this weight will gradually fade out through-
out the training process. Details are given in supplementary
material.

4. Experiment
To validate the efficiency of our approach in handling dy-

namic humans across a broad spectrum of motions, we con-
ducted a series of experiments. These experiments focused
on parameter decomposition, relighting, free-view render-
ing, and animation to thoroughly assess the capabilities of
our method.
Comparison methods. We compare our method with
the state-of-the-art human-relighting method Relighting4D
[9], and dynamic human modeling method HumanNeRF
[45]. Relighting4D predicts diffuse and specular char-
acteristics to perform relighting but requires a pre-trained
model as a geometry proxy and relies on multi-view videos
from the ZJU-Mocap dataset. This method struggles with
representing dynamic humans over a large range of mo-
tions and cannot ensure physical accuracy. Furthermore,
we crafted a single-view version of Relighting4D, named
Relighting4DS, which is trained on monocular videos to

402



provide a fair comparison with our method. On the other
hand, HumanNeRF is adept at modeling dynamic humans
exhibiting large motions but falls short in relighting them
under varying lighting conditions (visual results are avail-
able in the supplementary material).
Datasets: We validate our method on the ZJU-Mocap
dataset [34] qualitatively. This dataset captures dynamic
humans engaged in complex motions using a multi-camera
system; however, for our training data, we exclusively uti-
lize images captured by camera 1. To further illustrate the
efficacy of our approach, we generate a challenging syn-
thetic dataset using the Blender engine [11] for both quali-
tative and quantitative assessments. This dataset is crafted
around a 3D human character animated with intricate dance
movements. We render the character under eight different
lighting conditions, selecting one video for training and re-
serving the others for evaluation. Additional details are pro-
vided in the supplementary material.
Evaluation metrics. For quantitative analysis, we use Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM) [44], and Learned Perceptual Image Patch
Similarity (LPIPS) [52] as metrics. We use the mean square
error (MSE) as an evaluation metric for the normal map.

Results are rendered in the ambient lighting and the
OLAT setting. We use publicly available HDRi maps [1] for
ambient lighting. We generate one-hot light probes given
the incoming light directions as the HDRi maps.

4.1. Result on Real Dataset

Relighting with novel views. Fig. 4 presents the qualitative
results on the ZJU-Mocap dataset. Each method trains a
distinct model for each subject and re-renders the human in
accordance with the input illuminations. Specifically, Re-
lighting4D is trained using videos captured from four dif-
ferent viewpoints, and in the original paper, the input frame
size is set to 60. A variant, Relighting4DS, is trained using
a monocular video taken by camera 1, employing the entire
video frames as input (1000 frames for Subject 313, 510
frames for Subject 387, and 554 frames for Subject 392).
Our method and HumanNeRF adhere to the same training
settings as those used for Relighting4DS.

Fig. 4 reveals that both Relighting4D and Relighting4DS
struggle to accurately estimate the normal of the human
in scenarios with extensive movement, resulting in re-
rendering results that appear unreasonable. Despite these
challenges, our method continues to produce satisfactory
rendering results. A specific issue with Relighting4D oc-
curs when the dynamic color range is narrow and the motion
extensive (as with subject 387); the method fails to correctly
distinguish the foreground from the background. This leads
to the disappearance of the person’s legs in the image. In
contrast, our method consistently provides well-re-rendered
images and accurately captures the normal of the dynamic

Figure 6. Animated results under different lighting conditions. Our
method can be driven by pose data and re-rendered under unseen
illuminations.

human subject (a visual comparison with HumanNeRF is
provided in the supplementary material).
Decomposition and relighting of moving human. Fig. 5
presents the decomposition and relighting results for the dy-
namic human subjects within the ZJU-Mocap dataset. Our
method successfully models dynamic humans with exten-
sive movement and renders images under various lighting
conditions. Although the estimated BRDF parameters may
exhibit imperfections in certain areas, our method still man-
ages to reproduce the images, even in a setup with purely
passive unknown illumination. These deviations can be at-
tributed to the inherent ambiguity of the dynamic decompo-
sition problem and to differences in shading based on spher-
ical Gaussians (SGs).
Animated results. Since our entire network is driven by
human pose, it enables the use of pose-driven data for ani-
mation. We tested this capability on the ZJU-Mocap dataset
by evaluating motions that were not included in the training
set. Our approach produces convincing animated results,
and the model can be re-rendered under diverse lighting
conditions, as illustrated in Fig. 6. Additional results are
provided in the supplementary material.

4.2. Results on Synthetic Dataset

Figure 7. OLAT results on the synthetic dataset. The shadow cast
by limbs and clothes proves that our rendering results are physi-
cally correct.

We conducted a quantitative comparison with Relight-
ing4D on the simulation dataset, as shown in Tab. 1. Due
to slight differences in the normal coordinates, we focus
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solely on comparing the effects of the re-rendered results.
Our method is better able to capture the dynamic deforma-
tion process and surpasses Relighting4D across all evalua-
tion metrics.

RelightingMethod PSNR↑ SSIM↑ LPIPS*↓
Relighting4DS 26.58 0.9742 34.03
Relighting4D 27.57 0.9543 23.46

Ours 29.87 0.9889 22.65
Table 1. Comparison with Relighting4D on the synthetic dataset.
Our method outperform Relighing4D in all evaluation metrics

We also present our qualitative results in the challeng-
ing OLAT setting, as illustrated in Fig. 7. The one-hot
OLAT HDRi maps are represented using a set of SGs, and
our method delivers plausible results, with convincing high-
lights on the limbs and clothes. Additional results are pro-
vided in the supplementary material.

4.3. Ablation Experiment

Figure 8. The normal obtained using the inverse gradient is uneven
due to large human motions. Accurate normal cannot be obtained
by MLP prediction because of lacking constraints. Using inverse
gradient as weak supervision leads to better results.

Normal prior. We evaluated different methods for estimat-
ing the normal, including: 1. Directly utilizing the inverse
gradient of the density field; 2. Predicting the normal using
an MLP without a normal prior; 3. Estimating the normal
with an MLP alongside a normal prior. We present the nor-
mals and re-rendered results for both the ZJU-Mocap and
synthetic datasets in Fig. 8 and Tab. 2. Our strategy, em-
ploying the gradient as weak supervision, yields more pre-
cise results. Using the inverse gradient as the normal leads
to a slight improvement in normal estimation (a 7% reduc-
tion in error) compared to direct estimation using the MLP.
However, it also results in a worse re-rendered outcome (a
3% drop in PSNR performance). In comparison to the in-
verse gradient, our method produces more accurate normals
(a 37% reduction in MSE error) and improved re-rendered
results (a 11% enhancement in PSNR performance).
Sparsity prior. Utilizing the sparsity prior helps to elim-
inate most of the shadows in the base color, as shown in
Fig. 9. While this approach may slightly reduce the accu-
racy of the normal estimation (resulting in a 3% increase in

Method Relighting Normal map
PSNR↑ SSIM↑ LPIPS*↓ MSE↓

inverse gradient 26.76 0.9751 33.97 0.0979
w/o normal prior 27.63 0.9832 30.02 0.1051
w/o sparsity prior 29.41 0.9877 22.88 0.0598

full mode 29.87 0.9889 22.65 0.0617
Table 2. Ablation studies of normal and sparsity prior on the syn-
thetic dataset. Estimating normal using MLP with normal prior
achieves the best overall performance across all metrics. (best:
red; second: yellow; LPIPS* = LPIPS × 103.)

error), it enhances the overall re-rendering results (yielding
a 2% improvement in PSNR performance).

Figure 9. Visualization result of the base color. Using sparsity
prior can effectively remove the shadow residual in the base color.

Inverse mapping network. Without inverse mapping, the
results are constrained by the representation of point posi-
tions in canonical space. This limitation prevents accurate
outcomes for a large range of motions and non-rigid body
deformation. On the other hand, the use of inverse mapping
enhances the normal’s accuracy, as illustrated in Fig. 10.
Moreover, we conducted a quantitative comparison on the
synthetic dataset, detailed in Tab. 3. Fine-tuning with in-
verse mapping further elevates the performance, leading to
more convincing re-rendered results (a 3% improvement in
PSNR) and a more precise normal (6% MSE error drop).

Figure 10. The inverse mapping method can modify the queried
results in canonical space. The correction is made for the normal
rotation caused by skeleton-driven motion and non-rigid deforma-
tion. This results in a more accurate normal in observation space.

Progressive training. Progressive training is instrumental
within our framework, leading to refined estimation out-
comes. As delineated in Tab. 3, the application of pro-
gressive training engenders an enhancement in re-rendered
images (evidenced by a 6% increment in PSNR) and an
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Method Relighting Normal map
PSNR↑ SSIM↑ LPIPS*↓ MSE↓

w/o inverse mapping 28.40 0.9821 30.34 0.0648
w/o progressive 27.61 0.9731 35.01 0.0756

full mode 29.87 0.9889 22.65 0.0617
Table 3. Ablation studies of inverse mapping on the synthetic
dataset. Using inverse mapping leads to better render results and
more accurate normal.(best: red; second: yellow; LPIPS* =
LPIPS × 103.)

Figure 11. Visualization of the LPIPS during training on ZJU-
Mocap dataset (t = 200000). Progressive training makes more
plausible decomposition initialization, which leads to more precise
results.

augmentation in the precision of normals (manifested by
a 20% reduction in MSE error). Moreover, an illustration
of the correlation between LPIPS and iterations during the
training process on the ZJU-Mocap dataset is presented in
Fig. 11. The initialization facilitated by progressive training
steers the process towards more accurate results.

5. Discussion
Limitations: Our framework necessitates a relatively pre-
cise initial prediction of SMPL parameters. Any inaccu-
racies in these parameters may result in an imprecise re-
construction, rendering the decomposed parameters unre-
alistic, particularly in scenes characterized by continuous
illumination changes and the absence of necessary con-
straints. Therefore, potential avenues for future research in-
clude the incorporation of a human pose estimation module
or the modeling of more nuanced appearance aspects, such
as shadows or high-frequency lighting effects.
Conclusion: In this work, We introduce a novel framework
that facilitates the recovery of a relightable and animatable
human model from a monocular video. This framework dis-
sects the human appearance into geometry and reflectance,
both represented as neural fields. Furthermore, it incorpo-
rates pose-driven deformation fields, which facilitate bidi-
rectional mapping of human appearance between canoni-
cal space and observation. This deformation field aligns
the surface normal with the human body during optimiza-
tion, enabling our framework to realistically simulate re-

lighting effects under arbitrary, unseen illuminations. Ex-
tensive experiments conducted on both synthetic and real
datasets confirm that our approach is adept at high-quality
relighting of dynamic human subjects, even when assuming
novel poses.
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Rezende. Nerf-vae: A geometry aware 3d scene generative
model. https://arxiv.org/abs/2104.00587, 2021. 2

[20] Chloe LeGendre, Wan-Chun Ma, Rohit Pandey, S. Fanello,
Christoph Rhemann, Jason Dourgarian, Jay Busch, and
Paul E. Debevec. Learning illumination from diverse por-
traits. SIGGRAPH Asia 2020 Technical Communications,
2020. 2

[21] Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu
Sarkar, Jiatao Gu, and Christian Theobalt. Neural actor:
Neural free-view synthesis of human actors with pose con-
trol. ACM Trans. Graph.(ACM SIGGRAPH Asia), 2021. 1

[22] Lingjie Liu, Marc Habermann, Viktor Rudnev, Kripasindhu
Sarkar, Jiatao Gu, and Christian Theobalt. Neural actor:
Neural free-view synthesis of human actors with pose con-
trol. ACM SIGGRAPH Asia, 2021. 2

[23] Matthew Loper, Naureen Mahmood, Javier Romero, Ger-
ard Pons-Moll, and Michael J. Black. SMPL: A skinned
multi-person linear model. ACM Trans. Graphics (Proc.
SIGGRAPH Asia), 34(6):248:1–248:16, Oct. 2015. 2

[24] Ricardo Martin-Brualla, Noha Radwan, Mehdi Sajjadi,
Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duck-
worth. NeRF in the wild: Neural radiance fields for uncon-
strained photo collections. https://arxiv.org/abs/2008.02268,
2020. 1

[25] N. Max. Optical models for direct volume rendering.
IEEE Transactions on Visualization and Computer Graph-
ics, 1(2):99–108, 1995. 2

[26] Abhimitra Meka, Mohammad Shafiei, Michael Zollhöfer,
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