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Abstract

Since image editing methods in real world scenarios
cannot be exhausted, generalization is a core challenge
for image manipulation detection, which could be severely
weakened by semantically related features. In this paper
we propose SAFL-Net, which constrains a feature extrac-
tor to learn semantic-agnostic features by designing spe-
cific modules with corresponding auxiliary tasks. Applying
constraints directly to the features extracted by the encoder
helps it learn semantic-agnostic manipulation trace fea-
tures, which prevents the biases related to semantic infor-
mation within the limited training data and improves gener-
alization capabilities. The consistency of auxiliary bound-
ary prediction task and original region prediction task is
guaranteed by a feature transformation structure. Experi-
ments on various public datasets and comparisons in mul-
tiple dimensions demonstrate that SAFL-Net is effective for
image manipulation detection.

1. Introduction

The proliferation of novel image editing techniques has

greatly enriched our visual world. However, these tech-

niques have also brought significant challenges to the au-

thenticity and security of graphic media content. To ad-

dress these issues, image manipulation detection methods

have been proposed to identify the specific regions that have

been modified. These techniques are crucial for enabling us

to distinguish between virtual and authentic components of

rich multimedia content.

The majority of tampering operations take place in re-

gions that exhibit strong correlations with semantic proper-

*Corresponding author.

Tampered Gt OursMVSS-NetSPANMantra-Net PSCC-Net

Figure 1. Some cases of the phenomenon exhibit methods encoun-

tering noticeable semantic-related false alarms, as indicated by the

green boxes. Additionally, there are instances of significant missed

detection, as denoted by the red boxes.

ties. However, the limited and biased nature of the available

training data means that this correlation is insufficient to

accurately represent the distribution of real-world scenes.

For example, a dataset where tampered areas are concen-

trated in human regions can cause the detection model to

display significant semantic association, leading to incor-

rect predictions, as illustrated by the regions marked with a

green box in Figure 1. Consequently, this semantic corre-

lation can impact the learning of tampering trace features,

even though it may improve the model’s fit to the training

data. When detecting tampering in an unseen scene, it is es-

sential to identify evidence of tampering rather than rely on

the probabilistic semantic distribution inherent in this con-

strained training data. Therefore, the most critical issue for

generalization is to learn semantic-agnostic features.

To enhance the generalization ability of semantic-

agnostic tampering trace features, existing methods have

focused on restricting the semantic information of the in-

put by utilizing hand-crafted feature extraction modules

[14, 26, 25, 10, 13], or by removing the guidance of seman-

tic masks through the conversion of the task and changing

the structure of the segmentation network [19, 28, 2, 22].
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the final published version of the proceedings is available on IEEE Xplore.
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Figure 2. An overview of SAFL-Net. Based on baseline, the plug-and-play SSM and BGM achieve semantic-agnostic feature learning.

The effective extraction of specific features enables the con-

version of the RGB space, which contains rich semantic

content, into an underlying noise space or high-frequency

space that is unrelated to semantics. However, the absolute

noise and high-frequency information are easily erased or

changed by post-processing operations, such as compres-

sion and blurring, and much available knowledge is also re-

moved. Redesigning the network structure and converting

the task can break the semantic segmentation supervision.

However, when the auxiliary task conflicts with the original

task, balancing the two tasks becomes a difficult problem.

In contrast, we propose a method that constrains the fea-

ture extractor to learn semantic-agnostic features through

modular auxiliary tasks, based on the common feature ex-

traction network without any modification as the backbone.

We directly restrict semantic information in the features

with the assistance of benchmark semantic representation.

Additionally, we leverage boundary supervision to identify

inconsistencies in the features around the tampered bound-

ary, and design a feature conversion structure to ensure the

coherence of the auxiliary task and the primary task. We

have conducted experiments on several widely used im-

age tampering datasets, namely CASIA [5], Columbia [20],

Coverage [24], NIST16 [7], and IMD20 [18]. Our results

demonstrate that SAFL-Net outperforms existing state-of-

the-art methods for tampering detection and localization.

We contributes to the following key aspects:

• We propose SAFL-Net, a network with two auxiliary

plugins for image manipulation detection and localiza-

tion shown in Figure 2.

• We introduce plug-and-play Semantic Suppression

Module and Boundary Guidance Module to directly

constrain the feature extractor to learn semantic-

agnostic feature.

• We conduct extensive experiments on various bench-

marks which demonstrate that SAFL-Net achieves

state-of-the-art tampering detection performance.

2. Related Work

In real-world scenarios, acquiring features with reliable

trace evidence is a crucial yet challenging task, and such

efforts may be significantly impeded by the issue of over-

fitting to the correlation between manipulation and specific

semantic meaning in the training data. In the following sec-

tion, we provide a brief summary of recent deep learning

methods. Subsequently, we introduce our novel contribu-

tions in light of these advancements.

Various methods have proposed hand-crafted feature ex-

traction modules to convert inputs from the RGB space,

which contain abundant semantic content, into the under-

lying noise space or high-frequency space that is unrelated

to semantics. This allows for the isolation of semantic in-

formation from the root. For example, Li and Huang [14]

propose to supplement the network’s forefront with train-

able high-pass filters. Yang et al. [26] use BayarConv as

the first convolution layer of their model. Recent meth-

ods have proposed more complex two-stream networks to

fuse features from multiple views, fully utilizing the knowl-

edge in the original RGB space. However, this approach

risks reintroducing semantic information. Wu et al. [25]

and Hu et al. [10] use both BayarConv and SRM as noise

extractors. Chen et al. [2] use the RGB image and its noise

counterpart generated by BayarConv as input. Wang et al.
[22] extract high-frequency features from images and com-

bine them with RGB features as multi-modal patch embed-

dings. To fully exploit all available knowledge in the orig-

inal image while suppressing unreliable semantic distribu-

tion in limited training data, we use raw RGB image as the

only input and introduce two plug-and-play auxiliary mod-

ules. These modules directly restrict semantic-related fea-

tures and assist the encoder in mining higher-quality trace

features for better performance.

Artifacts resulting from image editing operations and in-

consistencies in features across adjacent local regions of-

ten manifest at the boundary of tampered regions. Leverag-

ing such artifacts can help models extract subtle trace fea-
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tures, resulting in better performance. For instance, Sal-

loum et al. [19] propose a multi-task fully convolution net-

work that predicts both the tampered region and its bound-

ary. Zhou et al. [28] provide a branch for edge identifica-

tion and refine features at multiple levels. Chen et al. [2]

design an edge-supervised branch that learns edge informa-

tion enhanced by the Sobel layer and edge residual block.

Wang et al. [22] employ a boundary-sensitive contextual in-

coherence modeling module to detect pixel-level inconsis-

tency and improve the sharpness of the predicted tampering

masks. Instead of directly learning pixel-level artifacts on

the boundary, we propose to use boundary supervision to

guide the model to focus on subtle feature differences be-

tween authentic and tampered regions near the boundary.

A feature conversion module transforms features into their

differences, corresponding to region prediction and bound-

ary prediction, respectively. This approach ensures the uni-

fication of the two tasks.

3. Methods

We denote the input as X ∈ H×W×3 , the tampered

region pixel-level annotation of X as g ∈ {0, 1}H×W ,

and the image-level label indicates that whether the image

has been altered with as y ∈ {0, 1} (authentic/tampered),

where H , W and C are the height, width and channel

of the image, respectively. The tampered trace features

extracted from different block by encoder in baseline is

(Ftri), Ftri ∈ Hsi×Wsi×Csi , where i ∈ {1, 2, 3, 4} de-

notes the level of feature, and Hsi, Wsi, Csi are the height,

width and channel of the feature, respectively. Let Seg de-

note the Unet architecture decoder and segmentation head

to output probability of each pixel being manipulated, and

Cls be the classification head to estimate probability of the

image being altered.

In this section, we introduce SAFL-Net, consisting of

Semantic Suppression Module (Section 3.1) and Bound-

ary Guidance Module (Section 3.2), that achieves semantic-

agnostic feature learning based on the baseline model. Fig-

ure 2 gives an overview of the framework. It is worth noting

that the proposed method is designed as a plug-and-play ap-

proach, which only operates on the feature (Ftri) and does

not require any modifications to the encoder and decoder.

3.1. Semantic Suppression Module

The strong association between image manipulation and

semantic information can be easily learned with limited

data, but it becomes unreliable in real-world scenarios, and

may even mislead predictions of tampered regions. Pre-

vious research has acknowledged this issue but has only

attempted to limit the learning of semantic information

through indirect methods, such as extracting high-frequency

or noise features. To address this, we propose a semantic
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Figure 3. The details of Semantic Suppression Module. The mod-

ule mainly consists of two parts: Image-level Constraint (in blue)

and Patch-level Contrast (in green).

suppression module, as illustrated in Figure 3, which more

directly restricts semantic-related features.

Since shallow feature are less likely to carry semantic in-

formation, while deeper feature learned by the encoder tend

to capture richer semantic information, the semantic sup-

pression module is specifically applied to the deepest fea-

ture Ftr4 , referred to as Ftr throughout this section.

3.1.1 Benchmark Semantic Representation

Before implementing the semantic suppression module, it

is necessary to establish a concrete representation of se-

mantics. In light of the significance of semantic segmen-

tation tasks, we propose to define the features derived from

a semantic segmentation model as the benchmark seman-
tic representation, serving as the reference for limiting se-

mantic information.

E1

E2

ConvBlock

ConvBlock

ProjHead

ProjHead

D1
Semantics Segmentation 

Task on Dataset1

D2
Semantics Segmentation 

Task on Dataset2

frozen parameters

Benchmark 
Semantics 

Representation 
Pipeline frozen parameters

Figure 4. The details of Benchmark Semantic Representation.

Specifically, semantic features of inputs are extracted

from a backbone encoder E1, which is pretrained under

semantic segmentation task, and the benchmark seman-

tic representation is obtained by a ConvBlock , denote as

Fse = ConvBlock(E1(X)) ∈ Hs×Ws×Cs which has the

same dimensions as tampered trace feature Ftr. Bench-

mark semantic representation Fse is then mapped to a low-

22426



dimensional vector zse = Proj(Fse) by a projection head

Proj for further operation, which has been proved effective

in previous work[11].

Additionally, in order to minimize the influence of the

pretrained dataset and the encoder structure and to maintain

semantic information as much as possible in Fse, we have

designed a symmetric framework to pretrain ConvBlock
and Proj as shown in Figure 4. Another backbone encoder,

E2, which is pretrained on a different dataset than E1, along

with its corresponding ConvBlock and Proj are integrated

to obtain another benchmark semantic representation z2
se

for the same input X . The two benchmark semantic repre-

sentations z1
se and z2

se are expected to be highly consistent

through the optimization of the loss function

Lsim(X) = Sim(z1
se, z

2
se), (1)

where Sim indicates cosine similarity. Eventually, the

benchmark semantic representation Fse and vector zse can

be obtained via pretrained E1 and trained ConvBlock, Proj
(blue in Figure 4). The parameters of pretrained E1, E2 are

always frozen.

3.1.2 Image-level Constraint

Based on the feature Ftr, a vector ztr can be obtained

through Proj with the same structure as previously intro-

duced, which has a global receptive field. The aim is to en-

sure that this traces feature vector ztraccurately reflects the

information pertaining to tampering traces, while remaining

independent of any abnormal semantic information present

in the image content.

As shown blue in Figure 3, we calculate the similarity

between ztr and zse, and minimize the similarity by

Lcons(X) = Sim(zse, ztr). (2)

This image-level constraint imposes semantic restric-

tions on tampering features from a global perspective.

3.1.3 Patch-level Contrast

We also introduce contrastive learning[8, 11, 23] in the se-

mantic suppression module to reduce the sensitivity to the

semantic information of the tamper region at pixel-level.

Denote Ftr = {tij}, Fse = {sij}, i = 1, · · · , Hs, j =
1, · · · ,Ws. The convolution operation will continuously

expand the receptive field of the feature, thus the pixel-level

vector tij and sij , where contrastive learning is exactly im-

plemented, correspond to a specific patch in the original in-

put image. To distinguish whether the image patch corre-

sponding to the vector tij is located in the tamper region,

we define a subset T = {tk} ⊂ Ftr, k = 1, · · · , |T |, which

consists of the vectors whose corresponding image patch

is in the tampering region. Specifically in the experiment,

an image patch is regarded in the tampering region, if more

than 95% of the pixels in the image patch are tampered with.

Randomly select an anchor tk ∈ T , a positive set P (tk)
and a negative set N(tk) is necessary for contrastive loss

Lcont(tk; τ)

=− 1

|P (tk)|
∑

tp∈P (tk)

log
exp (tk · tp/τ)∑

ta∈P (tk)∪N(tk)

exp (tk · ta/τ)
,

(3)

where · denotes inner product equivalent to cosine similar-

ity between two L2-normalized vectors, τ > 0 is a temper-

ature hyper-parameter.

Positive set. We expect that the tempered trace features

of the tamper region are only related to the local pixels

rather than the semantic information of the image content,

which means tk, tp ∈ T should be pulled together. There-

fore other vectors in the tamper region are selected as posi-

tive set P (tk) = T\{tk}.

Negative set. Similarly, the tampered trace features of

the untampered region are also expected only related to the

local pixels rather than the semantic information of the im-

age content. Further, suppose a tampered vector tp ∈ T and

an untampered vector tij ∈ Ftr\T , if their corresponding

benchmark semantic feature sp and sij have a significant

degree of similarity, that is, they may have similar semantic

information. However, the high similarity is not what we

want between a tampered vector tp and an untampered vec-

tor tij , instead, the two vectors need to be pushed away

to suppress semantic information. Concretely, the set of

benchmark semantic vectors corresponding to the vectors

in T is denoted as Ts. For each positive vector tp ∈ P (tk),
we select a negative vector tn by

tn = tij ,

s.t. (i, j) = argmax
(i,j)

{sp · sij |sij ∈ Fse\Ts}. (4)

Then obtain N(tk) = {tn}, n = 1, · · · , |P (tk)|.
Combining the above two part, the training objective is

LSSM = (1− α)Lcons + αLcont, (5)

where α are weighting factor used to balance the two parts

in LSSM . By default, we set α = 0.5 .

3.2. Boundary Guidance Module

The boundaries of tampered regions often leave de-

tectable traces, making it challenging to conceal tamper-

ing. Previous works have attempted to guide the attention

of model to these boundary traces by treating boundary pre-

diction as an auxiliary task. However, these two tasks serve

distinct objectives in feature learning. The former focuses

on artifacts and manipulation traces at boundaries, while the
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latter facilitates exploration contrasting differences between

tampered and authentic regions. This making it challenging

for the model to independently transform and unify them

[2]. Consequently, as an auxiliary task, the former fails

to guarantee providing gains to the latter. To better utilize

boundary information, we have two goals: 1) to transform

and unify the two tasks in a reasonable manner, and 2) to

not only mine the traces on the boundary but also to guide

the model to focus on subtle feature differences in relatively

large regions inside and outside the boundary.

3.2.1 Differential Block

We design a differential block to achieve a reasonable trans-

formation between the region prediction and the boundary

prediction task. We illustrate our idea for the transforma-

tion through Figure 5. ftr represents the feature map that

focuses on tampered traces that are semantically irrelevant.

Ideally, there should be a noticeable difference in features

between tampered and authentic region. fbd denotes the fea-

ture used for boundary prediction, where there are distinc-

tive features in the boundary. The transformation between

ftr and fbd can be achieved using the convolution kernel as

shown in the Figure 5, i.e., fbd = Conv(ftr). With this, the

conflict between the two tasks is resolved, and learning the

boundary tampering features does not negatively affect the

learning of tampering features, as the boundary supervision

is transformed by the differential block to guide the encoder

to mine subtle differences in regions inside and outside the

boundary.

Conv Kernel

0.125 0.125 0.125

-1.0

0.125 0.125 0.125

0.125 0.125

BayarConv
kernel size = 3 x 3 , no dilation

Figure 5. Illustration of the transformation process.

In practical situations, the feature maps are not as in-

tuitive and orderly as shown above, and a fixed parameter

convolution kernel, which plays a differential role, cannot

be designed reasonably and effectively. This inspired us

to use trainable but constrained BayarConv [1] as the core

component of the transformation module. The purpose is

to learn the differences between the features of the current

convolution operation window’s central position and its sur-

roundings, while the trainable parameters of the BayarConv

allow for greater flexibility in the module’s performance.

As shown in Figure 6, different from the original ver-

sion of BayarConv, we use dilated convolution and set di-

lation scalei for different level of Ftri , then match the

Convscalei of the corresponding scale, the Differential

Block DBi is formed. We can perform a reasonable trans-

formation between two feature maps for different tasks by

Differential 
Block

Segmentation
Head

Conv
scale x scale

BayarConv
kernel size = 3 x 3 
dilation = scale-1

Differential Block

Conv
scale x scale

Figure 6. The details of Boundary Guidance Module.

Fbdi
= DBi(Ftri). Different scale settings let the Differen-

tial Block has different perception ranges on feature maps of

different scales. This is to maximize the impact of bound-

ary supervision over a larger area. The constraints of Ba-

yarConv are

⎧⎪⎨
⎪⎩

ωBayarConv
k (0, 0) = 1,∑

(m,n)

ωBayarConv
k (m,n) = 0, (6)

where spatial index (0, 0) denotes the central value of the

convolution filter. Since we guide the encoder to pay atten-

tion to the subtle feature differences in local regions through

boundary supervision, the receptive field of high-level fea-

tures is limited to a certain extent, and the learning of se-

mantically irrelevant features is further completed.

3.2.2 Soft Boundary Supervision

Local DetailsRegion Groundtruth
Absolute Boundary 

Groundtruth
Soft Boundary 
Groundtruth

G G

Figure 7. Illustration of the extracted soft boundary groundtruth.

Previous methods [19, 28, 2] utilize absolute boundary

groundtruth Gabs extracted by edge detection methods. In

contrast, we employ a sliding window W to measure the

distance of each pixel from the absolute boundary, rather

than a binary label indicating whether the pixel is a bound-

ary or not, and thereby obtain soft boundary groundtruth G,

Gi,j = 1−

∣∣∣∑(m,n)∈Wij
1− 2

∑
(m,n)∈Wij

gm,n

∣∣∣
∑

(m,n)∈Wij
1

, (7)
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where Wij denotes the window centered on (i, j), and gm,n

is the value at (m,n) in the pixel-level manipulation annota-

tion. The soft boundary supervision, illustrated in Figure 7,

is more compatible with the differential block as it provides

a more reasonable expression of the boundary concept and

significantly increases the number of positive pixel-level

samples, which is beneficial for segmentation tasks.

The commonly used binary cross-entropy (BCE) loss

function is unable to provide soft supervision and does not

account for the varying significance of different pixels, so

we adopt pixel-wise weighted BCE loss and combined L1

loss for boundary prediction, denoted as

LBGM =
∑
(i,j)

(Lbce(Si,j , bin(Gi,j))·wi,j+Ll1(Si,j , Gi,j))

(8)

where S = Segbd(X) ∈ �H×W . To obtain a pixel-wise

weight for each pixel Gi,j in G, we binarize the boundary

map G, and then add a small constant γ to the resulting

binary map to obtain a soft label wi,j = Gi,j + γ.

3.3. Learning Objective

In our method’s baseline, we employ the BCE loss func-

tion for manipulation localization and detection, referred to

as Lseg and Lcls respectively. By combining all compo-

nents, we obtain the overall learning objective given by

L = Lseg + λ1Lcls + λ2LSSM + λ3LBGM , (9)

where λ1, λ2, λ3 are weighting factors that are used to bal-

ance the different modules. In our experiments, we set the

default values for λ1, λ2, and λ3 to be 0.2, 0.5, and 0.5 re-

spectively. It is worth noting that authentic images is only

used for calculating the detection loss, Lcls.

4. Experiments
We synthesize the experimental setups and evaluation

metrics used by the latest state-of-the-art method, Object-

Former [22], in order to comprehensively evaluate and

make equitable comparisons. Furthermore, we conduct de-

tailed ablation experiments on the settings related to the

proposed plug-ins and provide necessary visualizations to

illustrate the role of each component more intuitively.

4.1. Experimental Setup

Synthesized Dataset. We modify existing public

datasets to create a rich dataset consisting of four manip-

ulation types and three subsets: 1) ProDEFACTO, obtained

by post-processing the original DEFACTO [17], which in-

cludes a large amount of data, including splicing (spli.),
copy-move (cpmv.), and inpainting (inpa.), and is built

based on MS COCO [15]. 2) PSBattles [9], gathered from

a large community of image manipulation enthusiasts, pro-

vides a more refined form of manipulation (ps.) that is more

Partition Negative Positive spli. cpmv. inpa. ps.

Training 17,554 30,000 5,000 5,000 5,000 15,000

Testing 3,747 4,000 1,000 1,000 1,000 1,000

Table 1. The statistics of the synthesized dataset.

Dataset Negative Positive spli. cpmv. inpa. ps.

Columbia [20] 183 180 180 - - -

Coverage [24] 100 100 - 100 - -

CASIAv1 [5] 800 920 459 461 - -

CASIAv2 [5] 7,491 5,063 3,235 1,828 - -

NIST16 [7] - 564 288 68 208 -

IMD20 [18] 414 2,010 - - - 2,010

Table 2. The statistics of the selected public datasets.

valuable in real scenes and more difficult to detect. 3) Au-

thentic images, collected from MS COCO and PSBattles

corresponding to all selected tampered images. The exis-

tence of semantically related tampering operations in the

dataset ensures that the pre-training data is more aligned

with real-world scenarios. Moreover, this characteristic of

the dataset serves as evidence of our method’s ability to

learn semantic-agnostic features.

We partition the synthetic dataset into a training set and

a test set. Training set is utilized for pre-training our model,

whereas Testing set is utilized to conduct ablation experi-

ments. Table 1 provides detailed statistical information re-

garding this dataset.

Public Datasets. We select five public datasets to evalu-

ate the performance of our model. Table 2 shows the num-

ber of authentic and tampered images, as well as the number

of samples of different tampering types in each dataset. To

ensure fair comparisons with previous work [10, 16, 22],

we use the same training/testing splits for fine-tuning the

model.

Evaluation Metrics. To evaluate both image manipula-

tion detection and localization, we employ metrics at both

pixel-level and image-level. To locate forged regions, we

utilize pixel-level metrics such as Area Under Curve (AUC)

and F1 score, which is the harmonic mean of precision and

recall scores. For detection, we report image-level AUC,

sensitivity, specificity, and F1 score to measure the miss de-

tection rate and false alarm rate. In order to calculate the F1

score, we use binarized prediction masks and labels with a

fixed threshold of 0.5 in the ablation experiments. To ensure

a fair comparison with state-of-the-art methods, we employ

a certain strategy as introduced in [22] to select the best

threshold.

Implementation. We implement SAFL-Net using Py-

Torch and trained it with an NVIDIA A100 GPU. The

input size is set to 512×512, and we use the pre-trained

Efficientnet-b7 [21] as the backbone, which is pre-trained

with ImageNet [3]. AdamW is used for optimization with a
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Setup (Seg+) Colombia Coverage CASIA NIST16 IMD20

0: Cls#0 90.3 74.1 73.8 72.4 83.1

1: Cls#1 (Baseline) 90.2 81.6 77.7 79.6 84.6

2: Cls#1+bdSup#0 91.9 81.7 72.5 77.4 79.7

3: Cls#1+BGM#1 93.4 84.6 80.1 83.2 87.3

4: Cls#1+BGM#2 95.5 88.2 81.9 83.9 89.9

5: Cls#1+BGM#2+SSM#1 97.1 93.8 86.1 86.0 93.1

6: Cls#1+BGM#2+SSM#2 96.9 93.5 90.9 88.8 96.5

Table 3. Ablation study of different modules (pixel-level AUC).

learning rate of 0.0002. In the pre-training stage, we train

the complete model for 25 epochs with a batch size of 16,

and the learning rate is decayed by a factor of 2 every 5

epochs. We only apply flipping as the data augmentation

technique during training.

4.2. Ablation Study

To assess the effectiveness of each component in enhanc-

ing generalization, we conduct ablation studies on public

datasets that the model has not encountered during training.

Setups of the ablation study are listed in Table 3.

Effect of Classification Head. Several of the methods

compared in this study [25, 10, 27] do not include a specific

classification head for image-level prediction. For these

models, image-level supervision can only be performed by

adopting a strategy such as averaging the pixel-level outputs

to calculate the image-level prediction score (Cls#0). How-

ever, this approach may cause the model to be overly con-

servative and biased towards negative predictions, resulting

in a higher specificity and abnormal sensitivity. To address

this issue and ensure performance in image-level detection

task, we introduce a dedicated classification head (Cls#1)

that effectively balances specificity and sensitivity, result-

ing in significant improvements in pixel-level performance.

We consider this configuration as our baseline (Setup#1).

Effect of BGM. Previous works such as MFCN [19] and

GSR-Net [28] have used tampered boundary prediction as

an auxiliary task (bdSup#0). However, since region seg-

mentation and edge detection are inherently different tasks,

it is challenging to find a suitable balance between them [4].

The results in Setup#2 demonstrate the existence of this dif-

ference and the negative impact it can have.

We propose the Boundary Guidance Module (BGM#1),

which includes the Difference Block to establish a transfor-

mation bridge between the two tasks. This transformation

structure guides the model to focus not only on tampering

artifacts along the boundary, but also on discovering subtle

feature differences inside and outside the boundary through

boundary guidance. The experimental results in Setup#3

demonstrate the effectiveness of this module. Moreover, we

develop a loss function LBGM tailored to the proposed soft

boundary supervision (BGM#2), which is used in Setup#4.

Effect of SSM. The SSM module exerts direct con-

Method Data Colombia Coverage CASIA NIST16 IMD20

ManTra-Net 64K 82.4 91.0 81.7 79.5 74.8

SPAN 96K 93.6 92.2 79.7 84.0 75.0

MVSS-Net 12K 87.0 87.8 - 78.8 81.5

MVSS-Net++ 12K 80.7 88.1 - 78.4 81.3

CL-Net 100K 94.5 82.3 81.6 84.7 -

PSCC-Net 100K 98.2 84.7 82.9 85.5 80.6

ObjectFormer 62K 95.5 92.8 84.3 87.2 82.1

Ours 48K 96.9 93.5 90.9 88.8 96.5

Table 4. Performance of pretrained models at pixel-level.

straints on the core tampering feature extractor by lever-

aging benchmark semantic features. From a global fea-

ture perspective, the module constrains the extracted in-

formation from the feature map to deviate from its natural

semantic information via the image constraint loss Lcons

(SSM#1). Furthermore, the module enhances local feature

learning through contrastive learning loss Lcont (SSM#2),

which further stresses semantic-agnostic learning through a

positive-negative sample selection strategy.

Comparing Setup#6 with Setup#5 demonstrates the ef-

fectiveness of Lcont in pixel-level localization tasks. Over-

all, the SSM module provides the most significant improve-

ment for ps. tampering type, suggesting that the module

effectively suppresses the semantic-related feature learning

to extract tampering artifact feature.

4.3. Comparison with the State-of-the-art

We compare our method with other state-of-the-art

methods under two settings: 1) pretraining on an integrated

dataset and evaluating on other test datasets. 2) fine-tuning

the pretrained model on the training split of test datasets and

evaluating on their test split.

Methods to compare. We compare our method with

various models as described following: Mantra-Net [25],

which extracts trace features using SRM and BayarConv

and localize the forgery with a anomaly detection network.

RGB-N [29], which leverages RGB stream and noise stream

to independently identify tampering features and noise in-

consistencies in an image. SPAN [10], which adopts the

feature extractor of Mantra-Net and introduces pyramid

spatial attention architecture. MVSS-Net [2] and MVSS-

Net++ [4], which consist of boundary supervised branch

and noise sensitive branch, and dual attention [6] is adopted

to fuse features from them. CL-Net [27], which propose a

novel representation learning approach based on contrastive

learning. PSCC-Net [16], which introduces a network with

dense cross-connections to leverage features at different

scales. ObjectFormer [22], which combines RGB features

and high-frequency features as patch embeddings, and uses

transformer architecture. We adopt a consistent experimen-

tal setup and utilize the results reported in their respective

papers.
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Pretrained models. The pixel-level localization per-

formance of the pretrained model is presented in Table 4.

SAFL-Net achieves state-of-the-art performance on most

datasets, particularly on the real-world dataset IMD20,

where it achieves 96.5, outperforming ObjectFormer by

14.4. On the Columbia dataset, we surpass CL-Net and Ob-

jectFormer by 2.4 and 1.4, respectively, but falls 1.3 behind

PSCC-Net. We hypothesize that this might be because the

synthesized training data used by PSCC-Net closely resem-

bles the distribution of the Columbia dataset [22]. This can

be further verified by the results on other datasets, which

show that SAFL-Net outperforms PSCC-Net. It is worth

noting that we achieve good results using less pre-training

data compared to other methods except MVSS-Net.

Method AUC F1

ManTra-Net 59.94 56.69

SPAN 67.33 63.48

PSCC-Net 99.65 97.12

ObjectFormer 99.70 97.34

Ours 99.48 98.37

Table 5. Performance of pretrained models at image-level.

We also evaluate our model on CASIA-D, introduced

by [10], to demonstrate the image-level detection perfor-

mance, and the results are listed in Table 5. Our AUC met-

ric lags behind ObjectFormer by 0.22, but our F1 metric

surpasses ObjectFormer by 1.03, achieving state-of-the-art

performance. This highlights the effectiveness of BGM and

SSM in capturing manipulation artifacts.

Method
Coverage CASIA NIST16

AUC F1 AUC F1 AUC F1

RGB-N 81.7 43.7 79.5 40.8 93.7 72.2

SPAN 93.7 55.8 83.8 38.2 96.1 58.2

MVSS-Net 84.9 50.4 87.7 52.2 94.2 81.4

CL-Net 85.7 51.2 89.5 58.4 98.5 82.3

PSCC-Net 94.1 72.3 87.5 55.4 99.6 81.9

ObjectFormer 95.7 75.8 88.2 57.9 99.6 82.4

Ours 97.0 80.3 90.8 74.0 99.7 87.9

Table 6. Performance of fine-tuned models at pixel-level.

Fine-tuned models. Following the approach in [22], we

performed fine-tuning of the pretrained models on specific

datasets, and the results are presented in Table 6. The sig-

nificant improvements in both AUC and F1 score demon-

strate that SAFL-Net is capable of learning tampering fea-

tures without being affected by semantic information.

4.4. Visualization

The visualization of outputs predicted by various meth-

ods and SAFL-Net are presented in Figure 1. Three

high-quality manipulated images that closely resemble real-

world scenarios are selected for this analysis, obtained from

w/o boundary 
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Setup #1
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Setup #2
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Figure 8. Ablation visualization on various setups about BGM.

PSBattles, IMD20 and NIST16, respectively. False alarms

in pixel-level with significant semantic association are iden-

tified and marked by green boxes. For manipulated im-

ages that are more complex and closer to real-world scenes,

traditional methods relying on handcrafted features like

Mantra-Net and SPAN are unable to perform well, while

models with advanced and complex structures like MVSS-

Net suffer from significant semantic-related false alarms.

SAFL-Net learns semantic-agnostic features which enables

it to accurately locate the tampered regions and reduce false

alarms in regions without forgery.

To better exploit the role of BGM, we specifically de-

sign a soft boundary supervision G and a corresponding

loss function LBGM . To highlight the performance gain

achieved with this approach compared to using absolute

boundary mask Gabs and BCE loss Lbce, we visualize the

outputs under various settings, as depicted in Figure 8.

4.5. Robustness Evaluation

Distortion SPAN MVSS-Net PSCC-Net ObjectFormer Ours

no distortion 83.95 78.82 85.47 87.18 88.79

Resize (0.78×) 83.23 78.32 85.29 87.17 88.39
Resize (0.25×) 80.32 77.54 85.01 86.33 86.92

GaussianBlur (k3) 83.10 78.60 85.38 85.97 88.13
GaussianBlur (k15) 79.15 75.81 79.93 80.26 87.68

Compress (q100) 83.59 78.84 85.40 86.37 88.56
Compress (q50) 80.68 78.84 85.37 86.24 88.07

Table 7. Performance on NIST16 dataset under various distortions.

The robustness is also of vital significance due to the in-

evitable various post processing operations when the im-

ages spreads. We evaluate the robustness of our model

by applying different image distortion methods to the raw

images from the NIST16 dataset, following the approach

in [22]. The manipulation localization performance (AUC

score) of our pretrained models and other methods on these

corrupted data is compared, and the results are reported in

Table 7. Our SAFL-Net shows superior robustness against

various distortion techniques compared to other methods.
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Figure 9. Degree of correlation between concepts and “tampered”.

4.6. Statistics of Semantic Correlation

To quantify the correlation between model predictions

and specific semantics within tampered regions, we employ

TCAV [12] for statistical analysis. TCAV serves as an in-

terpretation tool that can quantify the extent of correlation

between user-defined concepts and specific predictions. We

select several frequently encountered semantics in image

tampering datasets as concepts for analysis. These concepts

include character, animal, artwork, architecture, and plant.

In this study, high-level concepts are defined using sets of

example input images sourced from CASIA. This choice is

motivated by the substantial collection of tampered regions

corresponding to selected semantic categories.

The ablation study and the comparison with others in

Figure 9 demonstrates the ability of semantic-agnostic fea-

ture learning. Both the existing research and the baseline

model without additional constraints exhibit strong correla-

tions in predicting tampering, while our design within the

SSM module consistently demonstrates effective semantic-

agnostic feature learning capabilities.

5. Conclusion

We introduced SAFL-Net, a network with two auxiliary

plugins for image manipulation detection and localization.

To restrict the semantics of feature and improve the gen-

eralization performance of the model, Semantic Suppres-

sion Module restricts semantic information directly depend-

ing on the benchmark semantic representation. Besides,

Boundary Guidance Module achieves a unification of the

auxiliary boundary prediction task and the original region

prediction task through a feature transformation structure.

Moreover, it explores subtle difference on both sides of the

tampered region boundary. Extensive experiments on dif-

ferent benchmarks demonstrate the effectiveness of the pro-

posed modules and our framework.

6. Acknowledgements

The research is supported in part by the National Natural

Science Foundation of China (62203425, 62172420), the

Project of Chinese Academy of Sciences (E141020).

References
[1] Belhassen Bayar and Matthew C Stamm. Constrained con-

volutional neural networks: A new approach towards general

purpose image manipulation detection. IEEE Transactions
on Information Forensics and Security, 13(11):2691–2706,

2018.

[2] Xinru Chen, Chengbo Dong, Jiaqi Ji, Juan Cao, and Xirong

Li. Image manipulation detection by multi-view multi-scale

supervision. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14185–14193, 2021.

[3] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,

and Li Fei-Fei. Imagenet: A large-scale hierarchical image

database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[4] Chengbo Dong, Xinru Chen, Ruohan Hu, Juan Cao, and

Xirong Li. Mvss-net: Multi-view multi-scale supervised net-

works for image manipulation detection. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2022.

[5] Jing Dong, Wei Wang, and Tieniu Tan. Casia image tam-

pering detection evaluation database. In 2013 IEEE China
Summit and International Conference on Signal and Infor-
mation Processing, pages 422–426. IEEE, 2013.

[6] Jun Fu, Jing Liu, Haijie Tian, Yong Li, Yongjun Bao, Zhiwei

Fang, and Hanqing Lu. Dual attention network for scene seg-

mentation. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 3146–3154,

2019.

[7] Haiying Guan, Mark Kozak, Eric Robertson, Yooyoung Lee,

Amy N Yates, Andrew Delgado, Daniel Zhou, Timothee

Kheyrkhah, Jeff Smith, and Jonathan Fiscus. Mfc datasets:

Large-scale benchmark datasets for media forensic challenge

evaluation. In 2019 IEEE Winter Applications of Computer
Vision Workshops (WACVW), pages 63–72. IEEE, 2019.

[8] Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensional-

ity reduction by learning an invariant mapping. In 2006 IEEE
Computer Society Conference on Computer Vision and Pat-
tern Recognition (CVPR’06), volume 2, pages 1735–1742.

IEEE, 2006.

[9] Silvan Heller, Luca Rossetto, and Heiko Schuldt. The ps-

battles dataset-an image collection for image manipulation

detection. arXiv preprint arXiv:1804.04866, 2018.

[10] Xuefeng Hu, Zhihan Zhang, Zhenye Jiang, Syomantak

Chaudhuri, Zhenheng Yang, and Ram Nevatia. Span: Spa-

tial pyramid attention network for image manipulation local-

ization. In European conference on computer vision, pages

312–328. Springer, 2020.

[11] Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna,

Yonglong Tian, Phillip Isola, Aaron Maschinot, Ce Liu, and

Dilip Krishnan. Supervised contrastive learning. Advances
in Neural Information Processing Systems, 33:18661–18673,

2020.

[12] Been Kim et al. Interpretability beyond feature attribution:

Quantitative testing with concept activation vectors (tcav). In

International conference on machine learning, pages 2668–

2677. PMLR, 2018.

[13] Myung-Joon Kwon, In-Jae Yu, Seung-Hun Nam, and

Heung-Kyu Lee. Cat-net: Compression artifact tracing net-

22432



work for detection and localization of image splicing. In

Proceedings of the IEEE/CVF Winter Conference on Appli-
cations of Computer Vision, pages 375–384, 2021.

[14] Haodong Li and Jiwu Huang. Localization of deep inpaint-

ing using high-pass fully convolutional network. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, 2019.

[15] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,

Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence

Zitnick. Microsoft coco: Common objects in context. In

European conference on computer vision, pages 740–755.

Springer, 2014.

[16] Xiaohong Liu, Yaojie Liu, Jun Chen, and Xiaoming Liu.

Pscc-net: Progressive spatio-channel correlation network for

image manipulation detection and localization. IEEE Trans-
actions on Circuits and Systems for Video Technology, 2022.
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