
Unleashing the Power of Gradient Signal-to-Noise Ratio for Zero-Shot NAS

Zihao Sun1, 3 †, Yu Sun2, 3 †, Longxing Yang1, 3, Shun Lu1, 3, Jilin Mei1, Wenxiao Zhao2, 3 ∗, Yu Hu1, 3 ∗

1Research Center for Intelligent Computing Systems,
Institute of Computing Technology, Chinese Academy of Sciences

2Key Laboratory of Systems and Control,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences

3University of Chinese Academy of Sciences
{sunzihao18z, yanglongxing20b, lushun19s, meijilin, huyu}@ict.ac.cn, {sunyu211}@mails.ucas.ac.cn, {wxzhao}@amss.ac.cn

Abstract

Neural Architecture Search (NAS) aims to automatically
find optimal neural network architectures in an efficient
way. Zero-Shot NAS is a promising technique that leverages
proxies to predict the accuracy of candidate architectures
without any training. However, we have observed that most
existing proxies do not consistently perform well across dif-
ferent search spaces, and are less concerned with general-
ization. Recently, the gradient signal-to-noise ratio (GSNR)
was shown to be correlated with neural network general-
ization performance. In this paper, we not only explicitly
give the probability that larger GSNR at network initializa-
tion can ensure better generalization, but also theoretically
prove that GSNR can ensure better convergence. Then we
design the ξ-based gradient signal-to-noise ratio (ξ-GSNR)
as a Zero-Shot NAS proxy to predict the network accuracy
at initialization. Extensive experiments in different search
spaces demonstrate that ξ-GSNR provides superior rank-
ing consistency compared to previous proxies. Moreover, ξ-
GSNR-based Zero-Shot NAS also achieves outstanding per-
formance when directly searching for the optimal architec-
ture in various search spaces and datasets. The source code
is available at https://github.com/Sunzh1996/Xi-GSNR.

1. Introduction
Neural architecture search (NAS) [16] is a technique

that automates the design of neural network architectures,
easing the burden of human trial and error [19, 44]. The
main challenge of NAS is to evaluate the performance of
each candidate architecture in a given search space. Early
approaches that trained each architecture separately until
convergence were time-consuming and resource-intensive

†Equal contribution. ∗Corresponding authors.

0 2000 4000 6000 8000
GSNR Proxy Score

0.0

0.2

0.4

0.6

0.8

1.0

Gn
er

al
iza

tio
n

Ra
tio

 = 0.82, = 0.60

(a) GSNR vs. Generalization

0 2000 4000 6000 8000
GSNR Proxy Score

1.70

1.75

1.80

1.85

1.90

1.95

2.00

2.05

2.10

Tr
ai

ni
ng

 L
os

s

 = -0.87, = -0.67

(b) GSNR vs. Convergence

Figure 1. (a) Networks with larger GSNR tend to have a higher
generalization ratio, indicating better generalization. Generaliza-
tion Ratio: the ratio between one-step validation loss and training
loss reduction. (b) Networks with larger GSNR have lower train-
ing loss, thus better convergence.

[3, 68, 42, 41]. To improve the search efficiency, ENAS
[38] proposed to share the same operation weights in a
super-network. This reduces the training cost to only one
super-network, namely One-Shot NAS [4]. Gradient-based
NAS [32, 64, 8, 57, 14, 11, 9, 58] and Sampling-based NAS
[17, 10, 61, 65, 62] are two mainstream paradigms for train-
ing super-networks. However, they still require training be-
fore evaluating each candidate architecture, suffering from
extra search overhead.

In order to eliminate the need for training in NAS, Zero-
Shot NAS [35] was developed to evaluate network perfor-
mance without any training, thus significantly promoting
search speed. To achieve this, a series of proxies are de-
signed to predict the performance of a given candidate ar-
chitecture. Some of these proxies are based on empirical
inspiration from the pruning-at-initialization literature, us-
ing saliency metrics such as SNIP [23], GraSP [54], Syn-
Flow [51] and so on. Whereas, recent studies [1, 36] have
shown that these proxies perform poorly in correlating with
network performance. Other Zero-Shot proxies are theo-
retically designed from the deep learning theory of neu-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

5763

ral networks [35, 30, 46, 7, 66, 28]. For example, some
proxies [35, 30] analyzed the relationship between the lin-
ear region [40] and network performance, some leveraged
Neural Tangent Kernel (NTK) [21] to assess the predictive
performance of a network, while others [66, 28] analyzed
the gradients of the sample-wise optimization [2]. Never-
theless, most existing proxies cannot consistently perform
well across different search spaces, and are less concerned
with generalization, motivating us to address this issue.

As revealed in recent studies [47, 53], architectures with
faster convergence are preferred by NAS algorithms, but
may not guarantee good generalization performance. This
insight motivates us to consider both generalization and
convergence when designing proxy indicators. The gradient
signal-to-noise ratio (GSNR) was proposed in [33], and is
defined as the ratio between the squared mean and variance
of the parameter gradient. In this paper, we clearly give the
probability guarantee of good generalization is positively
correlated with higher GSNR. Moreover, we have further
provided theoretical evidence of a strict correlation between
larger GSNR and better network convergence. To verify
our theory, we conduct a toy experiment in NAS-Bench-201
on CIFAR-10. We randomly sample 800 architectures and
train them for one epoch. As illustrated in Fig.1, GSNR is
positively correlated with the generalization ratio and neg-
atively correlated with the training loss. This result sug-
gests that GSNR can effectively capture the generalization
and convergence at network initialization.

In this paper, we further develop a novel Zero-Shot
NAS proxy called ξ-based gradient signal-to-noise ratio (ξ-
GSNR), which introduces a fairly small ξ term to smooth
the variance of the parameter gradient. The network per-
formance is then predicted by ξ-GSNR proxy at network
initialization without any training. A larger ξ-GSNR value
indicates better network performance. We conduct exper-
iments in various NAS-Benches and observe that the ξ-
GSNR proxy exhibits significant ranking consistency with
network performance, surpassing existing Zero-Shot NAS
proxies. In addition, when directly searching for architec-
tures in different search spaces, the accuracy has also been
boosted due to the effectiveness of ξ-GSNR proxy.

To this end, we summarize our contributions as follows:

• We provide theoretical proof that gradient signal-to-
noise ratio (GSNR), which is the ratio between the
squared mean and variance of the parameter gradi-
ent, is positively correlated with the generalization and
convergence of the network at initialization.

• We develop a novel Zero-Shot NAS proxy called ξ-
based gradient signal-to-noise ratio (ξ-GSNR) by in-
troducing a fairly small ξ term to smooth the variance
of the parameter gradient. ξ-GSNR is more accurate
than vanilla GSNR in predicting network performance.

• Our experimental results indicate that ξ-GSNR proxy
achieves significant ranking consistency with network
accuracy in various NAS-Benches. In addition, the
performance of the searched architecture has also been
improved when involving ξ-GSNR proxy during the
searching procedure of NAS.

2. Related Works
We reviewed related works of One-Shot NAS and Zero-

Shot NAS from the perspective of performance evaluation.
One-Shot NAS. To address the high search overhead

of traditional heuristic methods [3, 68, 42, 41], which
typically require training each architecture to convergence,
One-Shot NAS [4] presents a simpler alternative. This ap-
proach involves training only one super-network, allowing
all sub-networks can be evaluated through weight-sharing
[38]. DARTS [32] and SPOS [17] thereafter became two
popular paradigms for super-network training. Specifically,
DARTS and its variants [64, 8, 57, 14, 11, 9, 58] alternately
optimize architecture parameters and network weights. The
final architecture is derived from the optimal architecture
parameters on each edge in a cell. Path sampling-based ap-
proaches [10, 61, 65, 62] focus on ensuring the fairness
and robustness of super-network training. In this way, the
performance of sub-networks is evaluated by inheriting the
super-network weights. Despite alleviating the cost of eval-
uating candidate architectures, One-Shot NAS still bears the
burden of super-network training.

Zero-Shot NAS. To completely liberate NAS from train-
ing, Zero-Shot NAS [35] was proposed to evaluate the net-
work performance without any training. By designing a se-
ries of Zero-Shot NAS proxies to estimate the performance
of candidate architectures at initialization, the search speed
has been significantly promoted. We broadly categorize ex-
isting proxies as empirically designed or theoretically de-
signed ones. On the one hand, some Zero-Shot NAS proxies
are designed to identify the saliency metric from the per-
spective of pruning-at-initialization, including SNIP [23],
GraSP [54], SynFlow [51] and so on. However, some stud-
ies [1, 36] have shown that these training-free proxies are
not robust in ranking candidate architectures across differ-
ent search spaces. Moreover, the simplest metric, such as
the number of parameters or FLOPs, can outperform empir-
ically inspired proxies [1, 36].

On the other hand, some Zero-Shot NAS proxies are in-
spired by the deep learning theory of neural networks. For
instance, linear region analysis [40] helps to assess network
predictive performance. Different from NASWOT [35],
Zen-NAS [30] defined the expected Gaussian complexity to
measure network expressivity. As another example, Neural
Tangent Kernel (NTK) [21] discusses the training dynamics
of infinite-width neural network. NASI [46] leveraged the
capability of Neural Tangent Kernel (NTK) to characterize

5764

network performance at initialization. TE-NAS [7] traded
off the theory of Neural Tangent Kernel (NTK) and the lin-
ear regions of networks to evaluate its trainability and ex-
pressivity. NNPG [37] approximated network performance
by fitting the kernel regression parameters. GradSign [66]
and ZiCo [28] analyzed the sample-wise gradient optimiza-
tion of a network to quantify its performance. However,
as illustrated in [47, 53] that the architecture with faster
convergence does not necessarily generalize better, indicat-
ing that both generalization and convergence are crucial in
characterizing network performance. This motivates us to
design a novel Zero-Shot NAS proxy, taking into account
of generalization and convergence simultaneously.

3. Methodology
We first give the preliminary of gradient signal-to-noise

ratio (GSNR) illustrated in [33] (Sec.3.1). Then we analyze
the property of GSNR (Sec.3.2). We further provide theoret-
ical evidence that GSNR has a strong correlation with net-
work generalization (Sec.3.3) and convergence (Sec.3.4).
Finally, to enhance the performance, we develop a novel
Zero-Shot NAS proxy named ξ-GSNR (Sec.3.5).

3.1. Preliminary

Let θ ∈ RP represent the parameters of the neural net-
work f(x, θ) function, θj denotes the j-th parameter θ.
Dataset D = {(xi, yi), i = 1, ..., n}, (xi, yi) ∼ Z . θ is
optimized with loss function L via gradient descent:

gD(θj) =
1

n

n∑
i=1

g(xi, yi, θj) :=
1

n

n∑
i=1

∂L(yi, f(xi, θ))

∂θj

(1)

The gradient signal-to-noise ratio (GSNR) of one parameter
θj is defined as:

GSNR(θj) :=
(E(x,y)∼Zg(x, y, θj))

2

V ar(x,y)∼Zg(x, y, θj)
(2)

GSNR(θj) measures the similarity of parameter gradi-
ents across different training samples. Large GSNR(θj) im-
plies that the parameter gradients tend to be in the similar
direction, leading to better generalization and convergence.

3.2. Property of GSNR

To facilitate the proof, we introduce the gradient signal-
to-noise ratio of parameter θj via the output of network:

gsnr(θj) :=
(E(x,y)∼Zg

′(x, θj))
2

V ar(x,y)∼Zg′(x, θj)
(3)

where g′(x, θj) = 1
n

∑n
i=1

∂f(xi,θ)
∂θj

. Next, we deduce the
correlation between GSNR(θj) and gsnr(θj) is positive, and

(a) The same flatness of losses (b) The different flatness of losses

Figure 2. (a) For cases where the loss function flatness of the train-
ing set and validation set is similar, the difference between their
loss values (red star and blue star) corresponding to the fixed pa-
rameter θt is small. (b) For cases where the loss function flatness
of the training set and validation set is not similar, their loss values
(red star and blue star) differ significantly for fixed parameter θt.

thus can associate network generalization and convergence
with gsnr(θj) at initialization.

Theorem 1 ∀1 > ϵ > 0, j = 1, ..., P , ∃M1 such that
with probability at least (1 − ϵ) over randomly initialized
parameters θ0,

M1

(16M2 −M1) +
16M2

GSNR(θ0
j)

≤ gsnr(θ0j) (4)

where M is the upper bound of the output.

The proof details are provided in Appendix A.1. Theo-
rem 1 shows that with probability arbitrarily close to 1 over
random network initialization, the larger GSNR(θ0j), the
larger gsnr(θ0j) is. In the following sections, we will prove
the generalization and convergence effect brought by the in-
crease of gsnr(θ0j), and thus associate it with GSNR(θ0j).

3.3. Generalization Analysis

As illustrated in [33] that at each step of gradient de-
scent, the larger GSNR implies a greater proximity between
the expected reductions in validation loss and training loss.
Unfortunately, this does not indicate the probability that the
loss reduction of any given validation set will be similar to
that of the training set. After several steps of gradient de-
scent, the accumulation of bias can lead to substantial dis-
crepancies between the training loss and validation loss. As
a result, we provide a novel and comprehensive proof of the
generalization guarantee.

The maximum eigenvalue of the training loss Hessian
matrix is a measurement of the flatness of the loss land-
scape, which is highly correlated with the generalization
ability of a neural network [43, 24, 22, 12]. When the min-
imum point of validation loss is similar to that of training
loss and both losses are flat, it can ensure that the differ-
ence between the two losses is minimal (see Fig.2(a)). On

5765

the other hand, if the validation loss is sharp, the difference
between the two losses will be significant, resulting in poor
generalization (see Fig.2(b)). Next, we will prove that when
GSNR is larger, it can ensure with a higher probability that
the Hessian maximum eigenvalue of training loss is upper
bounded by that of validation loss.

Assumption 1 gsnr(θj) and ED∼Zn▽θfD(θ) are continu-
ous functions and robust, which means that there is a neigh-
borhood around fixed initialization parameters θ0 such that
for any two parameters α and β, |gsnr(αj)−gsnr(βj)|, j =
1, 2...P and ||ED∼Zn▽θfD(α) − ED∼Zn▽θfD(β)|| are
small.

This assumption implies that after gradient descent,
gsnr(θ0j) and gsnr(θtj) are close. Therefore, we can ana-
lyze the generalization and convergence using gsnr(θtj) to
approximate that of gsnr(θ0j).

Theorem 2 Under Assumption 1, for fixed initialization
parameters θ0, if ▽2

θLD(θ
t) is semi-positive definite matrix,

E(x,y)∼Z |(f(x, θt)−y)| is small enough, ∀t = 1, 2..., there
exist 0 < αt < 1 and 1√

nαtgsnr(θ0
j)

< r < 1, j = 1, 2...P ,

such that ,

λmax(▽
2
θLD′(θt)) ≤ n(1 + r)2

(1− r)2
λmax(▽

2
θLD(θ

t)) (5)

with probability at least

1−
P∑

j=1

2n

r2αtgsnr(θ0j)
(6)

over randomly chosen possible distributions for all training
datasets D and validation datasets D′ which have the same
number of data. λmax(·) means the maximum eigenvalue.

The proof details are provided in Appendix A.2. The-
orem 2 states that when gsnr(θ0j) is larger, the probabil-
ity that the Hessian maximum eigenvalue of validation loss
bounded by that of training loss will close to 1. This im-
plies that both the training loss and validation loss are flat,
just like Fig.2(a), indicating a better generalization. Com-
bining Theorem 1, we can conclude that larger values of
GSNR(θ0j) will result in better generalization performance.

3.4. Convergence Analysis

We prove the convergence guarantee from the perspec-
tive of training loss reduction, i.e., the greater the loss re-
duction between each two steps, the faster the convergence.
We give the following theorem:

Theorem 3 Under Assumption 1, for fixed initialization
parameters θ0, if the learning rate η is small enough, ∀t =

1, 2..., there exist 0 < αt < 1 and 1√
nαtgsnr(θ0

j)
< r <

1, j = 1, 2...P , such that,

LD(θ
t+1)− LD(θ

t) (7)

< −ηαt(1− r)2(
∂LD

∂fD
(θt))2ED∼Zn(

P∑
j=1

(g′D(θ
0
j))

2)

with probability at least

1−
P∑

j=1

1

nr2αtgsnr(θ0j)
(8)

over randomly chosen possible distributions for all training
datasets D.

The proof details are provided in Appendix A.3.
Theorem 3 shows that larger gsnr(θ0j) significantly in-
creases the likelihood of Eq.(7) approaching 1. Be-
sides, ED∼Zn(

∑P
j=1(g

′
D(θ

0
j))

2 is positively correlated with
gsnr(θ0j), which indicates that larger gsnr(θ0j) leads to faster
convergence rate. Combining Theorem 1, we can conclude
that larger GSNR(θ0j) is advantageous in accelerating the
convergence speed of neural networks.

3.5. Zero-Shot NAS Proxy

In the vanilla definition of GSNR in Eq.(2), the extremely
small gradient variance of a parameter θj may dominate the
summation of all parameters gradient signal-to-noise ratio,
resulting in an improper proxy score. Therefore, we en-
hance it as ξ-GSNR′ by introducing a small ξ term to smooth
the gradient variance:

ξ-GSNR′ :=
∑P

j=1

(E(x,y)∼Z(g(x, y, θj)))
2

V ar(x,y)∼Z(g(x, y, θj)) + ξ
(9)

In Eq.(9), we introduce ξ which is set to be quite small
for stabilizing the computation and producing a smooth
proxy score. The ablation study further demonstrates the
effectiveness of ξ in improving the ranking consistency as
shown in Tab.9.

In our practical experiment, we average a large number
of samples (set to M) gradients to obtain an approximation
of gradient expectations. To facilitate the calculation, we
divide M data samples into N batches {Bi}Ni=1. Thus, our
practical Zero-Shot NAS proxy is denoted as:

ξ-GSNR := (10)∑P
j=1

(1
N

∑N
i=1 gBi

(θj))
2

(1
N

∑N
i=1 g

2
Bi
(θj))− (1

N

∑N
i=1 gBi

(θj))2 + ξ

where gB(θj) := 1
k

∑k
i=1

∂L(yi,f(xi,θ))
∂θj

denotes the gradi-
ent of batch data with k sample data in the batch B.

5766

Method CIFAR-10 CIFAR-100 ImageNet-16-120

Spearman’s ρ Kendall’s τ Spearman’s ρ Kendall’s τ Spearman’s ρ Kendall’s τ
SNIP [23] 0.638 0.472 0.637 0.474 0.578 0.433
GraSP [54] 0.551 0.385 0.549 0.388 0.553 0.395
GradNorm [1] 0.637 0.469 0.637 0.472 0.578 0.430
SynFlow [51] 0.777 0.581 0.763 0.568 0.751 0.561
TE-NAS [7] 0.376 0.257 0.350 0.239 0.335 0.228
Zen-Score [30] 0.251 0.236 0.260 0.236 0.319 0.277
NASWOT [35] 0.691 0.522 0.704 0.535 0.700 0.527
GradSign [66] 0.808 0.619 0.792 0.600 0.783 0.593
ZiCo [28] 0.800 0.610 0.810 0.610 0.790 0.600
FLOPs 0.733 0.541 0.708 0.517 0.673 0.487
Parameters 0.751 0.576 0.727 0.552 0.690 0.519
ξ-GSNR 0.845 0.661 0.840 0.658 0.793 0.608

Table 1. Comparison Ranking Consistency of Zero-Shot proxies in NAS-Bench-201 search space.

4. Experiments

We first conduct the ranking consistency experiments
(Sec.4.1) in various NAS-Benches to verify the effective-
ness of ξ-GSNR proxy. Then, we introduce the ξ-GSNR
proxy into Zero-Shot NAS (Sec.4.2) to directly search
for the optimal architecture in different search spaces and
datasets. Finally, the ablation studies (Sec.4.3) are analyzed
in detail of ξ-GSNR proxy.

4.1. Ranking Consistency

Baselines. We compare our ξ-GSNR with existing pop-
ular Zero-Shot NAS proxies, including both empirically in-
spired and theoretically designed ones. Specifically, the for-
mer ones are SNIP [23], GraSP [54], SynFlow [51] and
GradNorm [1]; while the latter ones consist of NASWOT
[35], Zen-Score [30], TE-NAS [7], GradSign [66], and
ZiCo [28]. We also evaluate the number of parameters and
FLOPs, as they are strong baselines highlighted in recent
work [36]. To ensure fairness, we keep the parameters ini-
tialization and batch size consistent across all proxies.

Metrics. Spearman’s ρ [18] and Kendall’s τ are two
widely used metrics for characterizing the correlation be-
tween two sequences. We leverage them to quantify the re-
lationship between Zero-Shot NAS proxies and architecture
performance. The range of both ρ and τ is [-1, 1]. When
the metric value approaches 1, it implies that the proxy is
more reliable in predicting network performance.

4.1.1 Results in NAS-Bench-201

NAS-Bench-201 [15] is a comprehensive cell-based search
space that includes almost up-to-date NAS algorithms. The
Benchmark comprises 15,625 candidate architectures and
provides access to the diagnostic information on accu-

Method Spearman’s ρ Kendall’s τ
SNIP [23] 0.191 0.131
GraSP [54] 0.329 0.223
GradNorm [1] 0.265 0.182
SynFlow [51] 0.360 0.246
TE-NAS [7] 0.084 0.056
Zen-Score [30] 0.261 0.187
NASWOT [35] 0.327 0.220
GradSign [66] 0.422 0.296
FLOPs 0.422 0.297
Parameters 0.423 0.298
ξ-GSNR 0.615 0.434

Table 2. Comparison Ranking Consistency of Zero-Shot proxies
in NAS-Bench-101 search space on CIFAR-10.

racy, loss, and parameters across three datasets: CIFAR-10,
CIFAR-100, and ImageNet-16-120.

We evaluate the ranking consistency of all Zero-Shot
proxies directly on three datasets, with a batch size of 64
to ensure a fair comparison. In addition, the number of
batches is set to 8 with ξ=1e-8 to compute ξ-GSNR score
on all three datasets. Tab.1 shows that our Zero-Shot proxy
ξ-GSNR consistently outperforms other proxies across dif-
ferent datasets, demonstrating the robustness of ξ-GSNR to
different data samples. Obviously, our method significantly
improves the ranking consistency by a large margin com-
pared to most other approaches, indicating the effectiveness
of the generalization and convergence theory guarantee.

4.1.2 Results in NAS-Bench-101

NAS-Bench-101 [60] is the first large-scale Benchmark
for evaluating various NAS algorithms. It contains 423K

5767

Method DARTS ENAS PNAS NASNet Amoeba

Spe’s ρ Ken’s τ Spe’s ρ Ken’s τ Spe’s ρ Ken’s τ Spe’s ρ Ken’s τ Spe’s ρ Ken’s τ
GradNorm [1] 0.325 0.227 0.073 0.055 0.157 0.109 -0.126 0.080 -0.181 -0.116
SynFlow [51] -0.002 -0.001 -0.137 -0.092 -0.134 -0.090 -0.277 -0.191 -0.001 -0.001
NASWOT [35] 0.652 0.480 0.534 0.387 0.501 0.363 0.424 0.299 0.291 0.208
GradSign [66] 0.715 0.537 0.579 0.424 0.552 0.396 0.413 0.290 0.355 0.250
FLOPs 0.676 0.500 0.563 0.413 0.550 0.395 0.410 0.288 0.338 0.238
Parameters 0.668 0.493 0.561 0.411 0.541 0.387 0.411 0.289 0.344 0.241
ξ-GSNR 0.728 0.547 0.597 0.440 0.562 0.403 0.445 0.313 0.379 0.226

Table 3. Comparison Ranking Consistency of Zero-Shot proxies in NDS search space. Spe’s ρ: Spearman’s ρ, Ken’s τ : Kendall’s τ .

Method CIFAR-10 CIFAR-100 ImageNet-16-120 Search

Validation Test Validation Test Validation Test Algorithm
Optimal 91.61 94.37 73.49 73.51 46.77 47.31 N/A
ENAS [38] 37.51±3.19 53.89±0.58 13.37±2.35 13.96±2.33 15.06±1.95 14.84±2.10 RL
RSPS [29] 80.42±3.58 84.07±3.61 52.12±5.55 52.31±5.77 27.22±3.24 26.28±3.09 Random
DARTS [32] 39.77±0.00 54.30±0.00 15.03±0.00 15.61±0.00 16.43±0.00 16.32±0.00 Gradient
GDAS [14] 89.89±0.08 93.61±0.09 71.34±0.04 70.70±0.30 41.59±1.33 41.71±0.98 Gradient
SETN [13] 84.04±0.28 87.64±0.00 58.86±0.06 59.05±0.24 33.06±0.02 32.52±0.21 Gradient
SynFlow‡ [51] 89.83±0.75 93.12±0.52 69.89±1.87 69.94±1.88 41.94±4.13 42.26±4.26 Training-Free
NASWOT‡ [35] 89.55±0.89 92.91±0.99 69.35±1.70 69.48±1.70 42.81±3.05 43.10±3.16 Training-Free
GradSign‡ [66] 89.84±0.61 93.31±0.47 70.22±1.32 70.33±1.28 42.07±2.78 42.42±2.81 Training-Free
ZiCo [28] N/A 94.00±0.40 N/A 71.10±0.30 N/A 41.80±0.30 Training-Free
TE-NAS [7] N/A 93.90±0.47 N/A 71.24±0.56 N/A 42.38±0.46 Training-Free
ξ-GSNR 91.20±0.43 94.05±0.18 71.82±0.49 72.18±0.74 45.91±0.31 46.24±0.06 Training-Free

Table 4. Search results in NAS-bench-201. We report the average performance with four independent runs. “Optimal” represents the
highest accuracy for each dataset. ‡: We report the results with N=100 that denotes the number of networks sampled in each run.

unique architectures trained on the CIFAR-10 dataset. This
benchmark provides the test accuracy of each architecture,
making it possible to determine the ranking consistency be-
tween the proxy score and the corresponding accuracy by
using Spearman’s ρ and Kendall’s τ , respectively.

Following the experimental settings of GradSign [66],
we randomly sample 4500 architectures from the Bench-
mark to compare ranking consistency. As shown in Tab.2,
our ξ-GSNR proxy performs better than either existing em-
pirical or theoretical proxies, as well as two strong baselines
(i.e., Parameters and FLOPs), demonstrating the superiority
of our ξ-GSNR proxy in predicting network accuracy.

4.1.3 Results in NAS Design Space (NDS)

NAS Design Space (NDS) [39] summarized and analyzed
various network design spaces: DARTS [32], ENAS [38],
PNAS [31], NASNet [68], AmoebaNet [41]. Each net-
work design space consists of numerous individual architec-
tures trained on CIFAR-10 dataset. We keep the same batch
size as 64 when computing the proxy score for each space.

The results are presented in Tab.3. Though some proxies
fail to rank specific architectures positively, our method still
achieves consistently optimal ranking consistency across
different design spaces, showing the advantages of ξ-GSNR
proxy in evaluating different candidate architectures.

4.2. Zero-Shot Search

To search for the optimal architecture without training,
we incorporate ξ-GSNR into Zero-Shot search algorithm
to verify the effectiveness of our proxy. Specifically, we
adopt the pruning-based search algorithm [7] in the cell-
based search space, including NAS-Bench-201 [15] and
DARTS [32] search space, and adopt the evolution algo-
rithm in chain-style ProxylessNAS [5] and ViT-Like Burg-
erFormer [59] search space. The details of the search algo-
rithm are provided in Appendix B.

4.2.1 Search results in NAS-Bench-201 space

In NAS-Bench-201, the super-network is stacked by cells,
with only normal cells being searched and reduction cells

5768

Method CIFAR-10 ImageNet Search

Test Acc.(%) Params(M)GPU-days Top-1(%) Params(M)GPU-days Algorithm
ENAS [38] 97.11 4.6 0.5 N/A N/A N/A RL
NASNet-A [68] 97.35 3.3 1800 74.0 5.3 1800 RL
AmoebaNet-A [41] 96.66±0.06 3.2 3150 75.7 6.4 3150 EA
PNAS [31] 96.59±0.09 3.2 225 74.2 5.1 225 SMBO
DARTS [32] 97.00±0.14 3.3 0.4 73.3 4.7 0.4 Gradient
SNAS [57] 97.15±0.02 2.8 1.5 72.7 4.3 1.5 Gradient
GDAS [14] 97.07 3.4 0.21 74.0 5.3 0.21 Gradient
BayesNAS [67] 97.19±0.04 3.4 0.2 N/A N/A N/A Gradient
Robust-DARTS [64] 97.05±0.21 N/A 1.6 N/A N/A N/A Gradient
PC-DARTS [58] 97.43±0.07 3.6 0.1 74.9 5.3 0.1 Gradient
DATA [6] 97.41 3.4 1 75.1 5.0 1 Gradient
SGAS [27] 97.34±0.24 3.7 0.24 N/A N/A N/A Gradient
SDARTS-ADV [8] 97.39±0.02 3.3 1.3 N/A N/A N/A Gradient
DARTS+PT [55] 97.39±0.08 3.0 0.8 N/A N/A N/A Gradient
TE-NAS [7] 97.37±0.06 3.8 0.05 75.5 5.4 0.17‡ Training-Free
NASI-ADA [46] 97.10±0.13 3.7 0.01 75.2 5.2 0.01‡ Training-Free
ξ-GSNR (avg.) 97.48±0.04 3.45±0.28 0.01 N/A N/A N/A Training-Free
ξ-GSNR (best) 97.53 3.66 0.01 75.5 5.5 0.017‡ Training-Free

Table 5. Search results in DARTS space and comparison with other state-of-the-art methods. We report the average results on CIFAR-10
with three independent runs of searching. ‡: directly search on ImageNet.

being maintained as residual blocks. Each normal cell con-
sists of six edges and five candidate operations associated
with each edge. Similar to TE-NAS [7], we set the prun-
ing number of operations associated with each edge to 1
for each step, and directly search for the optimal architec-
ture on three different datasets. We conduct four indepen-
dent search runs with different random seeds and report the
mean and standard deviation in Tab.4. We achieve the best
performance when compared with either training-based or
other training-free methods. In particular, ξ-GSNR obtains
higher test accuracy than TE-NAS [7], demonstrating that
our proxy is superior to Neural Tangent Kernel (NTK) or
linear region theory in predicting architecture performance.

4.2.2 Search results in DARTS space

We leverage ξ-GSNR proxy to search for optimal archi-
tectures in DARTS search space directly on CIFAR-10
and ImageNet, respectively. To conduct the search, we
adopt the algorithm proposed in TE-NAS [7]. We grad-
ually prune low-importance operations predicted by the
Zero-Shot proxy until the single-path cell is reached. The
searched architecture is then evaluated following the stan-
dard experimental settings [32] to ensure a fair comparison.

Tab.5 summarizes the performance of searched archi-
tectures on CIFAR-10 and ImageNet datasets. In general,
Zero-Shot NAS has a faster search speed than One-Shot
NAS, indicating the efficiency of training-free search. More

Method Test Acc. (%) Params FLOPs

Top-1 Top-5 (M) (M)
NASNet-A [68] 74.0 91.3 5.3 564
AmoebaNet-A [41] 74.5 92.0 5.1 555
MnasNet-A3 [49] 76.7 93.3 5.2 403
PNAS [31] 74.2 91.9 5.1 588
FBNet-C [56] 74.9 N/A 5.5 375
ProxylessNAS [5] 75.1 92.5 7.1 465
SPOS [17] 74.8 N/A 5.4 472
FairNAS-A [10] 77.5 N/A 5.9 392
RLNAS [65] 75.6 92.6 5.3 473
MobileNetV3 [20] 75.2 N/A 5.4 219
EfficientNet-B0 [50] 77.1 93.3 5.3 390
DNA-b [25] 77.5 93.3 4.9 406
BossNet-M2 [26] 77.4 93.6 N/A 403
ξ-GSNR 78.2 94.0 5.4 409

Table 6. Search results on ImageNet in ProxylessNAS space and
comparison with other state-of-the-art methods.

specifically, ξ-GSNR achieves the highest average test ac-
curacy among all methods, demonstrating the effectiveness
of our proxy in evaluating architecture performance. When
searching directly on the ImageNet dataset, the performance
and search speed have also been improved, benefiting from
the novel Zero-Shot NAS proxy.

5769

Model Params(M) FLOPs(G) Top-1(%) Type
DeiT-S [52] 22 4.7 79.9 Manual
Swin-T [34] 29 4.5 81.3 Manual
Swin-S [34] 50 8.7 83.0 Manual
ViTAS-DeiT [48] 23 4.9 80.2 NAS
DeepMAD [45] 29 4.5 82.5 NAS
BurgerFormer [59] 26 3.9 82.7 NAS
ξ-GSNR 29 4.5 83.1 NAS

Table 7. Search results on ImageNet in BurgerFormer space and
comparison with other state-of-the-art methods.

Backbone Params(M)AP b AP b
50 AP b

75

Object
Detection

ResNet-50 [19] 44.2 38.0 58.6 41.4
PoolFormer [63] 41.0 40.1 62.2 43.4
Swin-T [34] 48.0 43.7 66.6 47.7
ξ-GSNR 48.9 45.0 67.1 49.1
Backbone Params(M)APMAPM

50 APM
75

Instance
Segmentation

ResNet-50 [19] 44.2 34.4 55.1 36.7
PoolFormer [63] 41.0 37.0 59.1 36.9
Swin-T [34] 48.0 39.8 63.3 42.7
ξ-GSNR 48.9 40.7 63.8 43.7

Table 8. Comparison with state-of-the-art models on COCO.

4.2.3 Search results in ProxylessNAS space

The ProxylessNAS [5] space is the popular chain-style
search space with a total of 19 searchable layers. We search
for the kernel size {3, 5, 7} and expansion ratio {3, 6} for
the bottleneck blocks on each layer. We use the evolution-
ary algorithm to search for architectures with around 400M
FLOPs constraints. The search iteration elapses 2000 steps
with a population of 128. Finally, the optimal architecture
is retrained following DNA [25] settings.

As shown in Tab.6, our searched architecture yielded the
highest top-1 accuracy 78.2% with only 409M FLOPs. Im-
pressively, our search cost only requires 0.3 GPU-days, sur-
passing all the other training-based methods. This high-
lights the effectiveness and efficiency of our Zero-Shot NAS
proxy ξ-GSNR in discovering excellent architectures.

4.2.4 Search results in BurgerFormer space

We conduct the the experiments on ImageNet using Burger-
Former [59] search space, which is a ViT-like structure. We
use the evolutionary algorithm to search for architectures
within 30M Params and 5.0G FLOPs. The results in Tab.7
demonstrate that our method not only significantly outper-
forms other NAS methods, but also outperforms the manu-
ally designed networks under similar resource constraints.
Even when compared to Swin-S with 50M Params, we still
obtain a higher accuracy.

Moreover, we evaluate the performance of our searched
architecture in BurgerFormer space for object detection and
instance segmentation on COCO datasets. The pre-trained

Spe’s ρ Ken’s τ

(1)
∑P

j=1(E(g(x, y, θj)))2 0.556 0.407

(2)
∑P

j=1
1

V ar(g(x,y,θj))
0.200 0.188

(3)
∑P

j=1
1

V ar(g(x,y,θj))+ξ 0.205 0.198

(4)
∑P

j=1
(E(g(x,y,θj)))2
V ar(g(x,y,θj))

0.764 0.589

(5)
∑P

j=1
(E(g(x,y,θj)))2

V ar(g(x,y,θj))+ξ 0.828 0.656

Table 9. Comparison Ranking Consistency of different GSNR
proxy variants on ImageNet-16-120 in NAS-Bench-201 space.

structure is employed as the backbone for the Mask R-
CNN detector. The results in Tab.8 show that we achieve
45.0 AP b and 40.7 APM on object detection and instance
segmentation, clearly surpassing that of ResNet-50 and the
other handcrafted ViT-like structures.

4.3. Ablation Study

4.3.1 The hyper-parameters of GSNR

There are three hyper-parameters that may fluctuate the
ranking consistency when calculating ξ-GSNR proxy in
Eq.(10). We randomly sample 200 architectures from NAS-
Bench-201 and compute their ξ-GSNR proxy scores by
varying batch sizes |B|, batch numbers N , and random ξ.

Batch Sizes |B|. The batch sizes |B| varies from {8, 16,
32, 64, 128, 256, 512} while keeping other parameters con-
stant. As shown in Fig. 3(a), a batch size of 64 produces the
highest ranking consistency on most datasets. Though the
value on CIFAR-10 may not reach the highest, we still keep
the batch size to 64 on all experiments for a fair comparison.

Batch Numbers N . The Batch numbers N varies from
{2, 4, 6, 8, 10, 12, 14} to compute ξ-GSNR proxy. Fig.3(b)
indicates that N=8 is sufficient to obtain the best correla-
tion. Hence, we adopt 8 batches in other search spaces
and datasets as well, considering the trade-off between effi-
ciency and accuracy.

Random ξ. The random ξ is set to an extremely small
value for stabilizing the computation. Fig.3(c) demonstrates
that ξ=1e-8 is stable enough to improve the ranking. So we
keep ξ=1e-8 for all experiments.

4.3.2 The variants of GSNR

Here we investigate the effect of GSNR variants, including:
(1) gradient’s squared mean; (2) inverse of gradient’s vari-
ance; (3) inverse of gradient’s variance with ξ; (4) vanilla
GSNR; and (5) our practical ξ-GSNR. We randomly sample
200 architectures from NAS-Bench-201 and evaluate their
ranking consistency on ImageNet-16-120. In Tab.9, we ob-

5770

8 16 32 64 128 256 512
Batch Size B

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ke
nd

al
l's

CIFAR-10
CIFAR-100
ImageNet-16-120

(a) Kendall’s τ vs. Batch Size |B|

2 4 6 8 10 12 14
Batch Numbers N

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ke
nd

al
l's

CIFAR-10
CIFAR-100
ImageNet-16-120

(b) Kendall’s τ vs. Batch Numbers N

5e-7 1e-7 5e-8 1e-8 5e-9 1e-9 5e-10
Random

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ke
nd

al
l's

CIFAR-10
CIFAR-100
ImageNet-16-120

(c) Kendall’s τ vs. Random ξ

Figure 3. The ranking consistency between test accuracy in NAS-Bench-201 and ξ-GSNR computed under varying hyper-parameters,
including (a) Batch Size |B|, (b) Batch Numbers N , and (c) Random ξ.

Method CIFAR-10 CIFAR-100 ImageNet-16

P@5% P@10% P@5% P@10% P@5% P@10%
SNIP 0.064 0.114 0.060 0.101 0.073 0.118
GradNorm 0.086 0.192 0.092 0.229 0.124 0.247
Zen-Score 0.158 0.379 0.167 0.343 0.155 0.302
NASWOT 0.163 0.383 0.170 0.344 0.156 0.304
ξ-GSNR 0.366 0.475 0.394 0.479 0.283 0.330

Table 10. Comparison the Top-K correlation in NAS-Bench-201.

serve that the squared mean or inverse of variance alone is
not as effective as the ratio of the two, demonstrating the
effectiveness of GSNR. Furthermore, adding a small ξ in
(3) can enhance the stability of computation and improve
the ranking consistency. Considering this, we develop our
novel Zero-Shot proxy depicted in (5), which outperforms
all the other variants.

4.3.3 The Top-K Correlation

We compute the Top-K correlation on NAS-Bench-201
across three different datasets. Specifically, P@TopK =
#{(r<KM)∧(n<KM)}

KM , which is defined in [33], represent-
ing the proportion of predicted top-K% in true top-K% ar-
chitectures. The results in Tab.10 show that our method
achieves the highest P@Top5% and P@Top10%, indicating
our ability to identify superb networks.

4.3.4 Different initializations

To demonstrate the robustness of ξ-GSNR proxy with dif-
ferent initializations, we conduct the experiments in NAS-
Bench-201 on three datasets. Specifically, we use two types
of initializations, including random seeds (seed=0, 1, 2)
and different initialization ways (orthogonal, xavier, kaim-
ing). The results in Tab.11 show that we achieve the stable
Kendall’s τ with quite a low standard deviation when us-

Seed=0 Seed=1 Seed=2 Avg. (Std.)
CIFAR-10 0.660 0.661 0.665 0.662 (0.002)
CIFAR-100 0.657 0.658 0.644 0.653 (0.006)
ImageNet-16 0.616 0.608 0.599 0.608 (0.007)

Orthogonal Xavier Kaiming Avg. (Std.)
CIFAR-10 0.666 0.668 0.659 0.664 (0.004)
CIFAR-100 0.649 0.639 0.639 0.642 (0.005)
ImageNet-16 0.590 0.599 0.593 0.594 (0.004)

Table 11. Comparison Ranking Consistency with different initial-
izations in NAS-Bench-201 using Kendall’s τ rank.

ing different initializations, demonstrating the robustness of
ξ-GSNR proxy.

5. Conclusion
Recently, Zero-Shot NAS has been attracting more and

more attention due to its search efficiency. However, de-
signing an effective proxy can be cumbersome and chal-
lenging. In this study, we theoretically analyzed that GSNR
is strongly correlated with network generalization and con-
vergence. Further, to enhance the performance and stabi-
lize the computation, we develop ξ-based gradient signal-
to-noise (ξ-GSNR) to predict architecture accuracy at ini-
tialization. Extensive experiments demonstrate the effec-
tiveness and efficiency of the ξ-GSNR proxy. In the future,
we will further explore more advanced Zero-Shot proxies to
more accurately predict architecture performance.

Acknowledgements
The research of Yu Hu, Zihao Sun, Longxing Yang, Shun

Lu, and Jilin Mei is supported by the National Natural Sci-
ence Foundation of China under Grant No. 62176250 and
No. 62203424. The research of Wenxiao Zhao and Yu Sun
is supported by National Key Research and Development
Program of China (2018YFA0703800).

5771

References
[1] Mohamed S Abdelfattah, Abhinav Mehrotra, Łukasz

Dudziak, and Nicholas Donald Lane. Zero-cost proxies for
lightweight nas. In ICLR, 2020. 1, 2, 5, 6

[2] Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A conver-
gence theory for deep learning via over-parameterization. In
ICML, pages 242–252. PMLR, 2019. 2

[3] Bowen Baker, Otkrist Gupta, Nikhil Naik, and Ramesh
Raskar. Designing neural network architectures using rein-
forcement learning. arXiv preprint arXiv:1611.02167, 2016.
1, 2

[4] Andrew Brock, Theodore Lim, James M Ritchie, and Nick
Weston. Smash: one-shot model architecture search through
hypernetworks. In ICLR, 2018. 1, 2

[5] Han Cai, Ligeng Zhu, and Song Han. Proxylessnas: Direct
neural architecture search on target task and hardware. In
ICLR, 2018. 6, 7, 8

[6] Jianlong Chang, Xinbang Zhang, Yiwen Guo, Gaofeng
Meng, Shiming Xiang, and Chunhong Pan. Data: Differ-
entiable architecture approximation. In NeurIPS, 2019. 7

[7] Wuyang Chen, Xinyu Gong, and Zhangyang Wang. Neural
architecture search on imagenet in four gpu hours: A the-
oretically inspired perspective. In ICLR, 2021. 2, 3, 5, 6,
7

[8] Xiangning Chen and Cho-Jui Hsieh. Stabilizing differen-
tiable architecture search via perturbation-based regulariza-
tion. In ICML, 2020. 1, 2, 7

[9] Xin Chen, Lingxi Xie, Jun Wu, and Qi Tian. Progressive dif-
ferentiable architecture search: Bridging the depth gap be-
tween search and evaluation. In ICCV, 2019. 1, 2

[10] Xiangxiang Chu, Bo Zhang, and Ruijun Xu. Fairnas: Re-
thinking evaluation fairness of weight sharing neural archi-
tecture search. In ICCV, 2021. 1, 2, 7

[11] Xiangxiang Chu, Tianbao Zhou, Bo Zhang, and Jixiang Li.
Fair darts: Eliminating unfair advantages in differentiable ar-
chitecture search. In ECCV, 2020. 1, 2

[12] Laurent Dinh, Razvan Pascanu, Samy Bengio, and Yoshua
Bengio. Sharp minima can generalize for deep nets. In
ICML, 2017. 3

[13] Xuanyi Dong and Yi Yang. One-shot neural architecture
search via self-evaluated template network. In ICCV, 2019.
6

[14] Xuanyi Dong and Yi Yang. Searching for a robust neural
architecture in four gpu hours. In CVPR, 2019. 1, 2, 6, 7

[15] Xuanyi Dong and Yi Yang. Nas-bench-201: Extending the
scope of reproducible neural architecture search. In ICLR,
2020. 5, 6

[16] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter.
Neural architecture search: A survey. In The Journal of Ma-
chine Learning Research, pages 1997–2017, 2019. 1

[17] Zichao Guo, Xiangyu Zhang, Haoyuan Mu, Wen Heng,
Zechun Liu, Yichen Wei, and Jian Sun. Single path one-shot
neural architecture search with uniform sampling. In ECCV,
2020. 1, 2, 7

[18] Wolfgang Härdle and Oliver Linton. Applied nonparametric
methods. Handbook of econometrics, 4:2295–2339, 1994. 5

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016. 1, 8

[20] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh
Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, et al. Searching for mo-
bilenetv3. In ICCV, 2019. 7

[21] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neu-
ral tangent kernel: Convergence and generalization in neural
networks. In NeurIPS, 2018. 2

[22] Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal,
Mikhail Smelyanskiy, and Ping Tak Peter Tang. On large-
batch training for deep learning: Generalization gap and
sharp minima. In ICLR, 2017. 3

[23] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip HS
Torr. Snip: Single-shot network pruning based on connec-
tion sensitivity. In ICLR, 2019. 1, 2, 5

[24] Aitor Lewkowycz, Yasaman Bahri, Ethan Dyer, Jascha Sohl-
Dickstein, and Guy Gur-Ari. The large learning rate phase
of deep learning: the catapult mechanism. arXiv preprint
arXiv:2003.02218, 2020. 3

[25] Changlin Li, Jiefeng Peng, Liuchun Yuan, Guangrun Wang,
Xiaodan Liang, Liang Lin, and Xiaojun Chang. Block-
wisely supervised neural architecture search with knowledge
distillation. In CVPR, 2020. 7, 8

[26] Changlin Li, Tao Tang, Guangrun Wang, Jiefeng Peng,
Bing Wang, Xiaodan Liang, and Xiaojun Chang. Bossnas:
Exploring hybrid cnn-transformers with block-wisely self-
supervised neural architecture search. In ICCV, 2021. 7

[27] Guohao Li, Guocheng Qian, Itzel C Delgadillo, Matthias
Muller, Ali Thabet, and Bernard Ghanem. Sgas: Sequential
greedy architecture search. In CVPR, 2020. 7

[28] Guihong Li, Yuedong Yang, Kartikeya Bhardwaj, and Radu
Marculescu. Zico: Zero-shot nas via inverse coefficient of
variation on gradients. In ICLR, 2023. 2, 3, 5, 6

[29] Liam Li and Ameet Talwalkar. Random search and repro-
ducibility for neural architecture search. In Uncertainty in
artificial intelligence, 2020. 6

[30] Ming Lin, Pichao Wang, Zhenhong Sun, Hesen Chen, Xiuyu
Sun, Qi Qian, Hao Li, and Rong Jin. Zen-nas: A zero-shot
nas for high-performance image recognition. In ICCV, 2021.
2, 5

[31] Chenxi Liu, Barret Zoph, Maxim Neumann, Jonathon
Shlens, Wei Hua, Li-Jia Li, Li Fei-Fei, Alan Yuille, Jonathan
Huang, and Kevin Murphy. Progressive neural architecture
search. In ECCV, 2018. 6, 7

[32] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts:
Differentiable architecture search. In ICLR, 2018. 1, 2, 6, 7

[33] Jinlong Liu, Guoqing Jiang, Yunzhi Bai, Ting Chen, and
Huayan Wang. Understanding why neural networks gener-
alize well through gsnr of parameters. In ICLR, 2020. 2, 3,
9

[34] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
ICCV, 2021. 8

5772

[35] Joe Mellor, Jack Turner, Amos Storkey, and Elliot J Crowley.
Neural architecture search without training. In ICML, 2021.
1, 2, 5, 6

[36] Xuefei Ning, Changcheng Tang, Wenshuo Li, Zixuan Zhou,
Shuang Liang, Huazhong Yang, and Yu Wang. Evaluating
efficient performance estimators of neural architectures. In
NeurIPS, 2021. 1, 2, 5

[37] Daniel S Park, Jaehoon Lee, Daiyi Peng, Yuan Cao, and
Jascha Sohl-Dickstein. Towards nngp-guided neural archi-
tecture search. arXiv preprint arXiv:2011.06006, 2020. 3

[38] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff
Dean. Efficient neural architecture search via parameters
sharing. In ICML, 2018. 1, 2, 6, 7

[39] Ilija Radosavovic, Justin Johnson, Saining Xie, Wan-Yen Lo,
and Piotr Dollár. On network design spaces for visual recog-
nition. In ICCV, 2019. 6

[40] Maithra Raghu, Ben Poole, Jon Kleinberg, Surya Ganguli,
and Jascha Sohl-Dickstein. On the expressive power of deep
neural networks. In ICML, 2017. 2

[41] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V
Le. Regularized evolution for image classifier architecture
search. In AAAI, 2019. 1, 2, 6, 7

[42] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena,
Yutaka Leon Suematsu, Jie Tan, Quoc V Le, and Alexey Ku-
rakin. Large-scale evolution of image classifiers. In ICML,
2017. 1, 2

[43] Levent Sagun, Léon Bottou, and Yann LeCun. Singularity of
the hessian in deep learning. CoRR, abs/1611.07476, 2016.
3

[44] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted
residuals and linear bottlenecks. In CVPR, 2018. 1

[45] Xuan Shen, Yaohua Wang, Ming Lin, Yilun Huang, Hao
Tang, Xiuyu Sun, and Yanzhi Wang. Deepmad: Mathemat-
ical architecture design for deep convolutional neural net-
work. In CVPR, 2023. 8

[46] Yao Shu, Shaofeng Cai, Zhongxiang Dai, Beng Chin Ooi,
and Bryan Kian Hsiang Low. Nasi: Label-and data-agnostic
neural architecture search at initialization. In ICLR, 2022. 2,
7

[47] Yao Shu, Wei Wang, and Shaofeng Cai. Understanding ar-
chitectures learnt by cell-based neural architecture search. In
ICLR, 2020. 2, 3

[48] Xiu Su, Shan You, Jiyang Xie, Mingkai Zheng, Fei Wang,
Chen Qian, Changshui Zhang, Xiaogang Wang, and Chang
Xu. Vitas: Vision transformer architecture search. In ECCV,
2022. 8

[49] Mingxing Tan, Bo Chen, Ruoming Pang, Vijay Vasudevan,
Mark Sandler, Andrew Howard, and Quoc V Le. Mnas-
net: Platform-aware neural architecture search for mobile.
In CVPR, 2019. 7

[50] Mingxing Tan and Quoc Le. Efficientnet: Rethinking model
scaling for convolutional neural networks. In ICML, 2019. 7

[51] Hidenori Tanaka, Daniel Kunin, Daniel L Yamins, and Surya
Ganguli. Pruning neural networks without any data by iter-
atively conserving synaptic flow. In NeurIPS, 2020. 1, 2, 5,
6

[52] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through at-
tention. In ICML, 2021. 8

[53] Xingchen Wan, Binxin Ru, Pedro M Esperança, and Zhen-
guo Li. On redundancy and diversity in cell-based neural
architecture search. In ICLR, 2022. 2, 3

[54] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking
winning tickets before training by preserving gradient flow.
In ICLR, 2020. 1, 2, 5

[55] Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi-
aocheng Tang, and Cho-Jui Hsieh. Rethinking architecture
selection in differentiable nas. In ICLR, 2021. 7

[56] Bichen Wu, Xiaoliang Dai, Peizhao Zhang, Yanghan Wang,
Fei Sun, Yiming Wu, Yuandong Tian, Peter Vajda, Yangqing
Jia, and Kurt Keutzer. Fbnet: Hardware-aware efficient con-
vnet design via differentiable neural architecture search. In
CVPR, 2019. 7

[57] Sirui Xie, Hehui Zheng, Chunxiao Liu, and Liang Lin. Snas:
stochastic neural architecture search. In ICLR, 2018. 1, 2, 7

[58] Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun
Qi, Qi Tian, and Hongkai Xiong. Pc-darts: Partial chan-
nel connections for memory-efficient architecture search. In
ICLR, 2019. 1, 2, 7

[59] Longxing Yang, Yu Hu, Shun Lu, Zihao Sun, Jilin Mei,
Yinhe Han, and Xiaowei Li. Searching for burgerformer with
micro-meso-macro space design. In ICML, 2022. 6, 8

[60] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real,
Kevin Murphy, and Frank Hutter. Nas-bench-101: Towards
reproducible neural architecture search. In ICML, 2019. 5

[61] Shan You, Tao Huang, Mingmin Yang, Fei Wang, Chen
Qian, and Changshui Zhang. Greedynas: Towards fast one-
shot nas with greedy supernet. In CVPR, 2020. 1, 2

[62] Jiahui Yu, Pengchong Jin, Hanxiao Liu, Gabriel Bender,
Pieter-Jan Kindermans, Mingxing Tan, Thomas Huang, Xi-
aodan Song, Ruoming Pang, and Quoc Le. Bignas: Scaling
up neural architecture search with big single-stage models.
In ECCV, 2020. 1, 2

[63] Weihao Yu, Mi Luo, Pan Zhou, Chenyang Si, Yichen Zhou,
Xinchao Wang, Jiashi Feng, and Shuicheng Yan. Metaformer
is actually what you need for vision. In CVPR, 2022. 8

[64] Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Mar-
rakchi, Thomas Brox, and Frank Hutter. Understanding
and robustifying differentiable architecture search. In ICLR,
2020. 1, 2, 7

[65] Xuanyang Zhang, Pengfei Hou, Xiangyu Zhang, and Jian
Sun. Neural architecture search with random labels. In
CVPR, 2021. 1, 2, 7

[66] Zhihao Zhang and Zhihao Jia. Gradsign: Model performance
inference with theoretical insights. In ICLR, 2022. 2, 3, 5, 6

[67] Hongpeng Zhou, Minghao Yang, Jun Wang, and Wei Pan.
Bayesnas: A bayesian approach for neural architecture
search. In ICML, 2019. 7

[68] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V
Le. Learning transferable architectures for scalable image
recognition. In CVPR, 2018. 1, 2, 6, 7

5773

