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Abstract

Training with sparse annotations is known to reduce the
performance of object detectors. Previous methods have
focused on proxies for missing ground truth annotations
in the form of pseudo-labels for unlabeled boxes. We ob-
serve that existing methods suffer at higher levels of spar-
sity in the data due to noisy pseudo-labels. To prevent
this, we propose an end-to-end system that learns to sep-
arate the proposals into labeled and unlabeled regions us-
ing Pseudo-positive mining. While the labeled regions are
processed as usual, self-supervised learning is used to pro-
cess the unlabeled regions thereby preventing the negative
effects of noisy pseudo-labels. This novel approach has
multiple advantages such as improved robustness to higher
sparsity when compared to existing methods. We con-
duct exhaustive experiments on five splits on the PASCAL-
VOC and COCO datasets achieving state-of-the-art perfor-
mance. We also unify various splits used across literature
for this task and present a standardized benchmark. On
average, we improve by 2.6, 3.9 and 9.6 mAP over pre-
vious state-of-the-art methods on three splits of increas-
ing sparsity on COCO. Our project is publicly available at
cs.umd.edu/~sakshams/SparseDet.

1. Introduction

The performance of object detectors is sensitive to the
quality of labeled data [1–3]. Existing object detection
methods assume that the training data is pristine and a drop
in performance is observed if this assumption fails. Noise
in the data used for training object detectors can arise due to
incorrect class labels or incorrect/missing bounding boxes.
In this work, we deal with the problem of training object
detectors with sparse annotations, i.e., missing region or
bounding boxes. This problem is of utmost importance, as
obtaining crowd-sourced datasets [4, 5] can be expensive
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Figure 1: (Top) Most Object Detection datasets have ex-
haustive annotations for foreground/positives. During train-
ing, the unlabeled regions can be safely considered as back-
ground/negatives. Sparsely Annotated Object Detection
datasets (bottom) have missing annotations. This results in
foreground regions (shown in red) being considered as neg-
atives during training, adversely affecting the performance
of the classifier.

and laborious. The alternative is to use computer-assisted
protocols to collect annotations which have been shown to
be noisy and incomplete [6]. This problem of training ob-
ject detectors with incomplete bounding box annotations is
called Sparsely Annotated Object Detection (SAOD).

To understand why training with sparse annotations
is detrimental to the performance, consider the example
shown in Figure 1 (top). If the annotation were exhaustive,
then the negative samples to the classifier contain true back-
ground regions. But with sparse annotations, as shown in
Figure 1 (bottom), a few positive regions will inevitably be
considered as negatives (shown in red), thereby wrongfully
penalizing the classifier leading to lower performance. Ex-
isting methods[2, 7–10] prevent this by predicting pseudo-
labels and removing the foreground regions from the nega-
tives to the classifier. However, at higher levels of sparsity,
the quality of pseudo-labels is greatly affected, resulting in
the same problem noted above.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.
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Crowd sourced object detection datasets [5, 11, 12] are
ensured to be almost exhaustively labeled. Hence, for
SAOD, researchers artificially create sparsely annotated
datasets from the original ones. There is no general con-
sensus on the correct way to create the sparsely annotated
datasets, a.k.a. splits, and hence each method reports re-
sults on one or two different splits. Split can be created by
considering the dataset as a whole or per image (i.e. annota-
tions can be removed by considering all the images or only
a single image at once). They can also be created by remov-
ing annotations in a class-agnostic or class-aware fashion
(i.e. remove p%, of annotations per category or across all
the categories). These variations result in splits with differ-
ent data distributions making some harder than the others
(refer to Table 1). A proper benchmark that analyzes the
performance of SAOD methods across these different types
of splits is missing. This makes it difficult to compare meth-
ods and assess their effectiveness for a specific use case.

To tackle the issues discussed above, as our first major
contribution, we present SparseDet, a novel SAOD frame-
work that achieves state-of-the-art performance across mul-
tiple SAOD benchmarks in practice. SparseDet operates on
an image and its augmented counterpart. The combination
of features extracted from the two views is used to gener-
ate region proposals. Standard detection training methods,
consider a region proposal as positive if its intersection over
union (IoU) with any ground truth is greater than 0.5 and
the rest are treated as negatives. This strategy works when
the annotations are exhaustive, which implies that the re-
maining regions are from background. But due to missing
annotations, some of these regions could belong to fore-
ground instances. To prevent considering all region propos-
als without annotations as negatives, SparseDet partitions
all the region proposals into labeled, unlabeled and back-
ground. The labeled and background regions are processed
as usual. Features extracted from unlabeled regions are then
trained with a self-supervised loss. Previous approaches
like Co-Mining [10], consider two partitions, labeled and
background, and generate pseudo-labels. This is a disad-
vantage at high sparsity as the generated pseudo-labels can
be very noisy. The self-supervised loss in our approach en-
forces consistency between the features of the two views for
the unlabeled regions and prevents penalizing the classifier
due to false negatives.

Our second major contribution is unifying evaluation.
The standard practice is to simulate sparsely annotated
training data on COCO [5] and PASCAL-VOC [11] train
sets and evaluate them on their corresponding standard val-
idation set. As discussed above, a survey of recent SAOD
approaches [2, 7–10, 13–16] reveals that there are at least
five different ways to create splits, each differing in the strat-
egy (refer to Section 4.2) used to achieve the desired level of
sparsity. However, these splits have not been made public,

making it difficult to replicate results for comparison. Ad-
ditionally, each of these strategies has a different property
for simulating sparse data, e.g., different distribution of an-
notations per class, resulting in a different training set. As
a result, methods trained on different splits cannot be com-
pared with one another. To mitigate these issues we stan-
dardize the generation of these splits that enables the eval-
uation of any SAOD methods on all of them for fair com-
parison. Additionally, we propose a new benchmark that
assesses the semi-supervised learning capabilities of SAOD
methods, i.e., leveraging unlabeled data to improve perfor-
mance. We present our approach as a baseline. We will
make the data for the new benchmark along with all the
SAOD splits public to facilitate future research. We briefly
summarize our contributions below.

• We propose a novel formulation, SparseDet, for SAOD
which is an end-to-end approach that identifies labeled,
unlabeled and background regions and deals with them
in appropriate manner.

• We show state-of-the-art performance on sparsely an-
notated object detection across various splits. On aver-
age, we improve by 2.6, 3.9 and 9.6 mAP over previ-
ous state-of-the-art methods on three splits of increas-
ing sparsity on COCO.

• We standardize the experimental setup for SAOD by
evaluating methods on all the splits to facilitate future
research. Additionally, we propose a new benchmark
that evaluates the semi-supervised learning capabilities
of SAOD methods.

In Section 2, we discuss the related works on SAOD and
related fields. We describe our approach in detail in Sec-
tion 3. We describe our experimental setup and present re-
sults in Section 4, and conclude in Section 5.

2. Related Work
Semi-supervised object detection: Semi-supervised ob-
ject detection (SSOD) is an active field that also deals with
training object detectors with missing annotations. Existing
works on semi-supervised object detection, have focused
mainly on consistency regularization [17, 18] or pseudo-
labeling-based approaches [19–22]. The main idea be-
hind these approaches is to perturb the images, or features,
and apply a consistency regularization loss to enforce con-
sistency between the predictions using a student teacher
framework. However, typical SSOD methods assume a
small exhaustively labeled set and a large unlabeled set for
training. This is different from Sparsely annotated object
detection (SAOD), which assumes a large training set which
is sparsely labeled.
Sparsely annotated object detection: One of the initial
works addressing this problem, by Niitani et al. [7], pro-
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poses utilizing logical relations between the co-occurrences
of objects and pseudo-labeling. Yoon et al. [23] use object
tracking to densely label objects across sparsely annotated
frames along with single stage detectors to mitigate the neg-
ative effects of missing annotations. Wu et al. [2] propose
a re-weighting approach where the gradients corresponding
to region of interest are weighed as a function of overlap
with ground truth instances. Improving upon the previous
work, Zhang et al. [8] propose an automatic re-calibration
strategy for single stage detectors where the negative branch
is changed to take into account low confidence background
predictions which might correspond to missing annotations.

Finally, one of the most recent works, Co-mining [10]
uses a co-training strategy by using two views of an im-
age and predictions from one view along with the ground
truth as supervision for the other view and vice versa. Our
method doesn’t solely rely on pseudo-labels and leverages
a self-supervised loss to prevent propagating negative gra-
dients to the model due to false negatives.

Fully supervised object detection: After the success
of AlexNet [24] on the image classification challenge
(ILSVRC 2012) [25], research on designing deep neural
networks for object detection gathered more interest. First
among the successful methods are the two-stage Region-
based convolutional networks (R-CNN) family of detec-
tors. Two-stage object detectors consists of 1) a region pro-
posal stage which produces a set of candidate object bound-
ing boxes followed by 2) a classification stage which clas-
sifies each candidate region as either belonging to a fore-
ground object or “background”. R-CNN processes a large
amount of region proposals by cropping the input image
and using a CNN backbone to extract features making it
extremely slow. Fast R-CNN [26] was proposed to over-
come this limitation. Fast R-CNN computes one convolu-
tion feature map for the whole image. RoI Pooling was in-
troduced to pool the feature for each region of interest into
a fixed spatial dimension. RoI pooling shares the computa-
tion among all the region proposals speeding up training and
inference. Fully connected layers are applied on the fixed
RoI pooled feature maps which are then passed to two sister
heads, for classification and bounding box regression. The
whole network is trained end-to-end with a multi-task loss
avoiding the multi-stage training in R-CNN [27]. While
Fast R-CNN improved the efficiency of its predecessor, test
time computation bottleneck is still an issue because of the
region proposal method employed. Faster R-CNN [28]
proposed a region proposal network (RPN), an elegant so-
lution that trains deep networks to predict region proposals
for practically no additional computational overhead. RPN
shares convolutional layers with Fast R-CNN [26] and at
test time the cost of generating proposals is minimal. Faster
R-CNN paved the way for more sophisticated and efficient
two stage detection architectures [29–33]. Faster R-CNN

has also been extended to achieve state-of-the-art instance
segmentation [34], panoptic segmentation [35, 36], and 3D
mesh generation [37] etc. A few limitations of two stage
object detectors and anchor boxes has also inspired the fam-
ily of single-stage [38–40] and anchor-free object detection
systems [41, 42].

3. Approach
We present SparseDet for Sparsely Annotated Object

Detection. Given N images, we denote the set of labeled
regions in the dataset as Bl = {bi, ci}Nl

i=1 where (b∗, c∗) are
the bounding box and class labels respectively. The unla-
beled regions are denoted as Bul = {bk}Nul

k=1 and the back-
ground regions as Bbg = {bq}

Nbg
q=1. Note that unlike existing

SAOD approaches, we do not assume images to contain at
least one labeled region in this work. The unlabeled Bul and
background Bbg sets are not known a-priori.

3.1. Overview

The proposed approach is shown in Figure 2 and con-
sists of a backbone network that extracts features from the
original and augmented views of an image. The common
RPN (C-RPN), concatenates the features, to generate a set
of region proposals. A region proposal b can belong to one
of three groups, namely 1) labeled regions b ∈ Bl, 2) unla-
beled foreground regions b ∈ Bul, or 3) background regions
b ∈ Bbg. For a given set of ground-truth annotations, the
first group, i.e. labeled regions can be automatically iden-
tified. The problem then reduces to identifying and sep-
arating the second group i.e. the unlabeled regions, from
the background regions. Given all the region proposals, a
pseudo-positive mining (PPM) step identifies the unlabeled
regions and segregates them from the background regions.
The labeled and unlabeled regions are trained using super-
vised and self-supervised losses respectively. We describe
each stage in detail below.

3.2. Feature Extraction

Given an image I , an augmented version of I denoted as
A(I) is computed. In this work, we use random contrast,
brightness, saturation, lighting and bounding box erase in
a cascaded fashion to generate A(I). A backbone network
is employed to extract two features, fo and fa, from I and
A(I) respectively.

3.3. Common RPN (C-RPN)

Two stage object detectors [28, 30, 43] use a region pro-
posal network (RPN) [28] to generate regions of interest
(RoIs). We propose C-RPN which concatenates fo and fa to
obtain the RoIs. This is different from existing approaches
that use fo and fa to generate two separate sets of RoIs.
Operating on two sets increases the difficulty of identify-
ing the labeled, unlabeled and background regions which
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Figure 2: Illustration of SparseDet for sparsely annotated object detection. Following feature extraction from the original and
augmented image, a common set of proposals is generated by the common RPN (C-RPN). Using an end to end approach, we
identify and mine proposals corresponding to missing annotations using pseudo positive mining (PPM). We train the network
end-to-end using a combination of supervised and self-supervised losses. The unlabeled instances (black) are supervised with
a self-supervised loss and the labeled instances (green) are supervised with ground truth annotations.

are required for subsequent stages. The sparse ground truth
is used as supervision to train the C-RPN with a binary
cross entropy loss for foreground classification and smooth
L1 [44] loss for bounding box regression as shown below:

Ls
rpn (c,b, c

∗,b∗) = Lbce (c, c
∗) + λLreg (b,b

∗) (1)

where c, b are the objectness scores and bounding boxes,
and c∗, b∗ are the corresponding ground truth.

3.4. Pseudo Positive Mining (PPM)

Given the RoIs from C-RPN, the next step is to seggre-
gate the unlabeled regions from the labeled and background
regions. A standard practice in training detectors is to con-
sider all proposals with an objectness score greater than τobj
and IoU greater τfg with any ground truth as foreground and
proposals with IoU less than τbg as background. In the pres-
ence of missing annotations, detectors are wrongly penal-
ized because the IoU of RoIs corresponding to missing an-
notations with any ground truth is less than τbg. To avoid
this, we mine “potential” foregrounds and consider them
as unlabeled regions (Bu). The proposed PPM module is
based on our observation that when trained with sparse an-
notations, the RPN can reliably distinguish foreground from
background regions. We pick all RoIs that have an object-
ness score greater than τppm and IoU less than τbg with any
ground truth as the unlabeled regions. The remaining RoIs
are assigned as background.

3.5. Losses

The pseudo positive mining step segregates the RoIs into
labeled, unlabeled and background regions. An RoI pool-
ing layer [28] extracts RoI pooled features for the labeled
and background regions using the feature fo. The detection
head processes the RoI pooled features to predict class-wise

probabilities and bounding box adjustments for each region.
The ground truth is used to supervise the predictions by ap-
plying the cross entropy loss for classification and smooth
L1 [44] for bounding box regression as shown below:

Ls
det,o (c,b, c

∗,b∗) = Lce (c, c
∗) + λLreg (b,b

∗) (2)

where c, b are the class and bounding box predictions, and
c∗, b∗ are the corresponding ground truth class labels and
bounding boxes.

All detections with a score greater than τm are combined
with the ground truth followed by a class specific NMS to
obtain the merged ground truth. It is ensured that no ground
truth annotation is discarded during this step. The labeled
and background regions along with fa are used to extract
RoI pooled features which are then fed to the detector head.
The predictions of the detector head are supervised with the
merged ground truth with the following losses:

Ls
det,a (c,b, c

∗,b∗) = Lbce (c, c
∗
m) + λLreg (b,b

∗
m) (3)

where c, b are the class and bounding box predictions
from the detector head, and, c∗m, b∗

m are the correspond-
ing merged ground truths.

Finally, a class agnostic NMS is performed on the unla-
beled regions Bu (obtained after PPM described in Sec. 3.4).
The unlabeled regions along with fo and fa are passed
through the ROI pooling layer and the detection head to
obtain f d

o and f d
a respectively. A self-supervised loss is ap-

plied that enforces the detection head features of the original
and augmented regions to be consistent with each other as
shown below:

Lu
SSL

(
f d

a , f
d
o

)
= ∥f d

a − f d
o ∥22 (4)

The network is trained end-to-end with both supervised
and unsupervised losses as shown below:

L = 0.5 ∗
(
Ls

det,o + Ls
det,a

)
+ Ls

rpn + Lu
SSL (5)
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Table 1: Sparsely annotated object detection results on three splits of COCO dataset. “Oracle” corresponds to training
models using all annotations. Results are reported on the COCO validation set using AP[0.50:0.95].

Method Split-1 Split-2 Split-3 100%
30% 50% 70% 30% 50% 70% 30% 50% 70%

Oracle 40.91

Pseudo Label [7] - 27.50 - - - - - - - -
BRL [8] - 32.70 - - - - - - - -
Co-mining [10] 36.35 32.84 24.93 36.72 33.04 24.83 36.76 32.54 24.96 -
Ours 38.22 35.92 32.68 39.76 36.94 35.33 39.56 37.15 35.48 -

Discussion: In the absence of ground truth annotations,
i.e. for completely unlabeled images, the supervised losses
( Ls

det,o, Ls
det,a, Ls

rpn) cannot be computed. Our proposed ap-
proach leverages self-supervised consistency loss that does
not need ground truth. This helps our approach leverage
these unlabeled regions unlike contemporary SAOD meth-
ods. We claim that this is the first method to use self-
supervised losses for SAOD. Even though Co-Mining [10]
claims to use self-supervised learning it is technically co-
learning. Ours is the first approach to use pseudo-labeling
and a self-supervised loss to handle the sparse annotations.

4. Experimental Evaluation
In this section, we describe the experiments to evaluate

our proposed approach. In Sections 4.1 and 4.2, we de-
scribe data, splits, and metrics. In Section 4.3, we men-
tion the implementation details followed by the baselines
in Section 4.4. We compare with contemporary methods in
Section 4.5, followed by an ablation study in Section 4.6.

4.1. Data and Metrics

We conduct all our experiments on the COCO [5]
and PASCAL-VOC [11, 12] (2007+2012) datasets. The
COCO [5] dataset consists of 118000 and 5000 images for
training and validation respectively. Experiments on the
PASCAL-VOC07 [11] are conducted on 5011 trainval im-
ages and performance is computed on 4952 images of the
test set. The PASCAL-VOC12 version consists of 11530
(trainval) images for training and evaluation is done on the
PASCAL-VOC07 test set. Following past literature [2, 7–
10], we create five different splits (Section 4.2) and report
results on them. For splits on the COCO [5] dataset, we
use the standard COCO style Average Precision (AP). For
splits on the PASCAL-VOC [11] dataset, we use the stan-
dard PASCAL-VOC style AP50, which is Average Precision
computed at an IoU threshold of 0.5.

4.2. SAOD Splits

An extensive review of sparsely annotated object detec-
tion methods reveals that there are atleast five popular types
of splits in use for creating training data. Most methods re-

port results on a subset of these making it harder to compare
across methods.

We standardize the evaluation of SAOD methods by
evaluating exhaustively on all the splits facilitating future
research. We briefly describe the splits below.
Split-1 [9, 10]: In this split, for each object category, p% of
annotations are randomly removed from the COCO [5] train
set and results are reported on the validation set. This split
simulates sparsity at dataset level in a class aware fashion.
Note, this split can contains images with no annotations.
We experiment with p = {30, 50, 70}.
Split-2: For each image in the COCO [5] train set, all
annotations of p% of all categories in that image removed
and results are reported on the COCO validation set. This
split can be considered as image level and class aware. We
experiment with p = {30, 50, 70}. Note, this split might
contain images with no annotations.
Split-3: This split, which uses the COCO 2017 [5] train set
for training and the validation set for evaluation, deletes p%
annotations in a class agnostic fashion for each image ensur-
ing at least one annotation. This split is image level but class
agnostic. For the experiments, we use p = {30, 50, 70}.
Split-4 [8, 10]: This split requires evaluating models on
three different settings namely easy, hard and extreme en-
suring at least one annotation per image constructed using
PASCAL-VOC 2007+12 [11, 12] trainval set. Results are
reported on the PASCAL-VOC 2007 [11] test set. For each
image in the training set, the easy setting randomly removes
one annotation while the hard setting randomly removes
half of the annotations. The extreme setting retains only
one annotation per image. All the sets ensure each image
consists of atleast one annotation. This split is a small scale
version for an image level class agnostic split.
Split-5 [2]: This split uses the PASCAL-VOC 2007 [11]
train set for training and the PASCAL-VOC 2007 test set
for evaluation and drops p% annotations per class. For each
image in this construction, instances of randomly selected
categories are exhaustively annotated while the remaining
categories do not have any annotations. This is a small
scale version of Split-1 as annotations are dropped in a class
aware manner across the full dataset maintaining atleast 1
annotation per image. In this case we use p = {30, 40, 50}.
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Table 2: Sparsely annotated object detection results on two splits of
PASCAL-VOC dataset. “Oracle” corresponds to training models using all
annotations. Results are reported on VOC 07 test set usiing AP50.

Method Split-4 Split-5

Easy Hard Extreme 30% 40% 50%

Oracle 83.09 77.47

BRL [8] 73.50 71.70 66.20 - - -
Co-mining [10] 79.59 78.38 69.60 74.42 73.30 69.89
Ours 82.15 81.50 75.59 76.84 75.88 74.35

Table 3: Results on the proposed SSL+SAOD
setup. VOC12 [12] is used as the unlabeled data
and p is the removal percentage

Method AP

30% 40% 50%

Co-mining [10] 46.53 45.98 43.21

Ours 48.34 47.82 46.76

Brightness ContrastOriginal Lighting Saturation B-box erase All

Figure 3: Illustration of the effects of various augmentations used in this work.

4.3. Implementation details

For all our experiments, we use a Faster RCNN [28] ar-
chitecture with a ResNet-101 [45] FPN backbone [30] im-
plemented using Detectron2 [46] framework. For the im-
age augmentations, we apply a For augmentation, a cas-
cade of random contrast, brightness, saturation, lighting and
bounding box erase augmentations. The effect of this aug-
mentation is shown in Figure 3. We train all our models
with a batch size of 8 for 270000 and 18000 iterations on
the COCO and PASCAL-VOC splits respectively with a
learning rate of 0.01. The learning rate is decreased ten
fold twice at {210000, 250000} and {12000, 15000} for
COCO and PASCAL-VOC respectively. We adopt a warm-
up strategy for 1000 and 100 iterations for the COCO and
PASCAL-VOC respectively. Following existing detector
implementations we set τbg, τfg, τobj and τppm to 0.2, 0.4, 0.5
and 0.8 respectively. We set τm to 0.9. During inference,
we compute the backbone features (fo and fa) for both the
original and augmented versions of the input to obtain the
RoIs and only fo is used for the final detections.

4.4. Baselines

We compare our method against Co-Mining [10],
BRL [8], and Pseudo Label [7].

We choose these methods as they outperform previous
approaches for the SAOD task. We use the public imple-
mentation of these methods and usa a ResNet 101 FPN [30]
backbone for all the experiments in order to perform a fair
comparison.

4.5. Comparison with state-of-the-art

In this section, we compare our method with contempo-
rary methods. We evaluate all the models in two different
setups. We name the first setup Sparsely annotated setup
which evaluates models on SAOD. The second setup,
contains labeled and unlabeled images and regions.

Sparsely annotated setup: We show results of this setup
in Table 1 and Table 2. Splits-2 and 3 ensure at least one
annotation per image is retained. On the other hand, Split-
1 doesn’t ensure this and has significantly more unlabeled
data than the other splits. Splits-4 and 5 have no unlabeled
images at all. In both the tables, the rows named “oracle”
refers to the models trained using all annotations.

From Table 1, we observe that our approach outperforms
the other baselines and is closer to the oracle performance
on the 30% splits. Co-mining [10], performs competitively
on all the splits at 30%.

On Split-1, our method obtains a performance improve-
ment of 1.87, 3.08 and 7.75 on 30%, 40% and 50% sparsity
respectively over Co-mining [10].

On Split-2, our method obtains an improvement of 3.04,
3.9 and 10.5 at 30%, 40% and 50% sparsity respectively
over the previous state of the art Co-mining. On Split-3, an
again we see consistent improvement of 2.8, 4.61 and 10.52
at 30%, 40% and 50% sparsity respectively over Co-mining.

In particular, on the hardest setting (70%) in Split 1-
3, we demonstrate that current SAOD methods struggle at
higher sparsity in the labeled data. This is because the per-
formance of current SAOD approaches rely on the quality
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Table 4: Ablation of various components of proposed approach.

C-RPN PPM Lu
SSL Ls

det,a AP ∆

✗ ✗ ✗ ✗ 41.77 −

✗ ✗ ✗ ✓ 42.67 0.90

✓ ✗ ✗ ✓ 45.30 3.53

✓ ✓ ✗ ✓ 45.44 3.67

✓ ✓ ✓ ✗ 45.51 3.74

✗ ✓ ✓ ✓ 44.86 3.09

✓ ✓ ✓ ✓ 46.00 4.23

Sparsity in labeled imagesSparsity in labeled regions

SSL
+

SAOD

Labeled region Unlabeled region Unlabeled image

Figure 4: Types of sparsity in labeled data; sparsity in
labeled regions (left) and images (right). Our proposed
SSL+SAOD is a realistic setup that presents challenges from
both kinds of sparsity.

of pseudo labels which degrades at higher sparsity. Our pro-
posed PPM prevents penalizing the classifier irrespective of
the quality of pseudo labels and utilizes self-supervised loss
to benefit from mined regions. On average, all the meth-
ods achieve lower performance on Split-1 compared to the
other splits due to the nature of its creation, i.e., class aware
dataset level fashion of sparsity.

From Table 2, we see a similar trend as above. All
the methods perform competitively on the easier settings of
both splits. However, the performance gap between the our
approach and Co-mining [10] increases at higher sparsity.

On Split-4, we get an improvement of 2.56, 3.12 and
5.99 (AP50) percentage points on the easy, hard and ex-
treme settings respectively over Co-mining. On Split-5, an
improvement of 2.42, 2.58 and 4.46 points was observed.
For details on more experiments refer to supplementary
material.

Single Instance Object Detection (SIOD) setup: [47]
proposed SIOD where only one instance per category
is annotated in every image. While this setup has its
benefits [47], note that it is a special case of SAOD. For this
setup, we obtain an AP of 32.89 (compared to 31.9 of [47])
which is an improvement of ∼1 mAP.

SSL+SAOD setup: We propose a semi-supervised learn-
ing benchmark for SAOD. This benchmark entails training
models on a sparsely annotated labeled and an unlabeled
set. As shown in Figure 4, this setup introduces two kinds
of sparsity in the data, namely, sparsity in labeled regions
(left) and images (right). We believe this is a realistic setup
and SAOD methods must be capable of tackling both these
kinds of sparsity in the data. For this setup, we use Split-5
(Section 4.2) with increasing sparsity as the labeled set and
VOC12 trainval as the unlabeled set. We use the COCO-
style AP metric to report results on this setup.

In Table 3, we compare against Co-mining [10] and ob-

serve an improvement of 1.81, 1.84 and 3.55 mAP on the
30%, 40% and 50% sparsity levels respectively. We ob-
serve that the gap in performance increases with sparsity,
consistent with our observation for Tables 1 and 2. This
can be attributed to the inability of methods like Co-mining
to handle unlabeled images and high sparsity in the labeled
data. We will make this benchmark public and propose this
method as a baseline. We encourage researchers to report
results on this benchmark in the future.

4.6. Ablation Experiments

In this section we conduct ablation experiments to under-
stand the various components. For the ablation experiments,
we use a ResNet-101 as the backbone network and train on
Split-5 with p = 50%. We evaluate on the VOC07 test set
and report the COCO style AP metric.

From Table 4, a baseline model trained on the ablation
set attains 41.77 (row 1). Pseudo-labeling

(
Ls

det,a

)
improves

the performance by 0.9 (row 2). Co-mining [10] relies ex-
tensively on pseudo-labels. This results in a drop in per-
formance at higher sparsities due to noisy pseudo-labels.
Addition of the C-RPN improves our performance by 3.53
points (row 3). C-RPN reduces the overhead of computing
two sets of proposals and learns a better notion of objects
due to the combined processing of features from the two
views.

The combination of C-RPN and PPM improves the per-
formance by 3.67 (row 4). We do not observe major im-
provements with the introduction of PPM because its task
is to identify and segregate the unlabeled regions from the
backgrounds. After the segregation, PPM does no further
processing to improve performance. The power of PPM
can be observed when trained in conjunction with consis-
tency regularization loss (Lu

SSL) which achieves the best
performance of 46 (row 7); an improvement of 4.23 points
over the baseline. We distinguish ourselves from pseudo-
labeling approaches like Co-mining in one important as-
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Table 5: Analysis of the threshold used for PPM.

Threshold 0.6 0.7 0.8 0.9 0.95

AP 45.96 45.96 46.00 45.77 45.30

Table 6: Removing test time augmentations.

Method Split-1 Split-2 Split-3

30% 50% 70% 30% 50% 70% 30% 50% 70%

TTA 38.22 35.92 32.68 39.76 36.94 35.33 39.56 37.15 35.48

w/o TTA 38.32 35.91 32.67 39.77 36.95 35.27 39.55 37.12 35.48

Figure 5: Qualitative results showing the unlabeled regions identified by the PPM. The red boxes correspond to the available
ground truth. A class agnostic NMS was performed on the regions and the result is shown in white.

Figure 6: Qualitative results comparing the output of a model trained using available ground truths (top) to a model trained
using our approach (bottom). Predictions with a class confidence score greater than 0.9 are shown. Red: Person, Cyan:
Dog, Purple: Horse, Yellow: Clock, Green: Stop sign, Blue: Parking meter, Violet: Giraffe, Orange: Potted plant, Black:
Surfboard, Dark green: Boat

pect. While, Co-mining [10] relies solely on pseudo-labels,
we leverage additional components from self-supervised
learning along with pseudo-labeling. In row 5, due to C-
RPN, PPM and Lu

SSL, we show an improvement of 3.74
over the baseline. Our proposed components are orthogo-
nal to pseudo-labeling as using them together results in an
additional improvement of ∼0.5 on mAP. At higher sparsity
in the labeled dataset, the proposed C-RPN, PPM and Lu

SSL
are less affected than pseudo-labels resulting in the large
improvements on these splits. Finally, we show the effect
of C-RPN by generating a single set of proposals from the

original image and using it for both the branches. We ob-
serve a drop in performance (row 6) highlighting the effec-
tiveness of C-RPN.

PPM mines potential positives which can be mistaken for
negatives due to missing annotations. We rely on the object-
ness score of the RPN to identify these regions. In Table 5,
we vary the threshold of PPM. For a low threshold, a few
hard negatives might also be identified as pseudo-positive
leading to a drop in performance. With a high threshold,
a few potential positives might not be mined. We observe
that a threshold of 0.8 provides a good trade-off and is there-

6777



Table 7: Comparison with a different backbone. Results are reported on the COCO validation set on Splits 1-3 using AP and
on VOC 2007 test set on Splits-4,5 using AP50.

Method Split-1 Split-2 Split-3 Split-4 Split-5

30% 50% 70% 30% 50% 70% 30% 50% 70% Easy Hard Extreme 30% 40% 50%

Ours (C4) 37.67 35.95 33.16 39.22 36.81 34.98 38.84 36.76 35.26 80.56 80.43 74.45 77.38 76.13 75.32
Ours (FPN) 38.22 35.92 32.68 39.76 36.94 35.33 39.56 37.15 35.48 82.15 81.50 75.59 76.84 75.88 74.35

fore used for all experiments unless stated otherwise. In all
our experiments, PPM is performed after an initial warmup
of 9000 and 30000 iterations on the PASCAL-VOC and
COCO datasets respectively.

4.6.1 Inference without augmentations

Our method requires passing an input with augmentations
during inference as well. It should be noted that this is not
a test-time augmentation (TTA), a technique that typically
involves passing images at a higher resolution. We perform
inference by removing the augmentation and extracting the
region proposals using C-RPN. We show the results in Ta-
ble 6 on the three splits of COCO. We do not observe a
significant improvement in performance due to the augmen-
tation. For the analysis on the effect of augmentations refer
to supplementary material.

4.6.2 Effect of backbone

We analyze the effect of backbone on our approach and
show results for the normal convolution based (C4) and
FPN based (FPN) backbones in Table 7. The first row cor-
responds to C4 while the second row corresponds to FPN.
While the gap in performance is lower in most cases, we ob-
serve a significant improvement using the FPN on the low
sparsity settings of all the split.

4.7. RPN Recall experiments for object discovery

PPM identifies foreground regions mistakenly assigned
as background during training to avoid penalizing the net-
work. To study the effect of PPM on novel [48] classes,
we train a network using our approach on randomly cho-
sen 6000 images of the COCO dataset, containing annota-
tions for only 20 classes of PASCAL-VOC. We evaluate the
recall@0.5 of the RPN over the remaining 60 classes. A
model trained using the standard technique on this dataset
achieves a recall@0.5 of 77.46% and 29.06% on the known
classes (20 categories) and unknown classes (60 categories)
respectively. Our proposed approach, with PPM, achieves a
recall@0.5 of 78.47% and 35.20% respectively. This ability
to localize objects not seen during training can be beneficial
for object discovery methods like [49–52] which use RPN
proposals to learn/discover new categories.

4.8. Qualitative Results

In Figure 5, we show the pseudo positives mined by
PPM. In each figure, the red boxes correspond to the ground
truth annotations and the white boxes correspond to the post
NMS pseudo positive boxes mined by PPM. We observe
that the PPM correctly mines proposals which correspond
to missing object annotations. Without PPM, these regions
will be used as negatives to the classifier resulting in a re-
duced class confidence score leading to a drop in mAP. We
show the detection results of a model trained on the 50%
Split-1 of our approach in Figure 6. The images on the top
corresponds to the model trained using sparse annotations
and the bottom image shows the output of our approach.

5. Conclusion

We present SparseDet, a novel end-to-end system for
Sparsely Annotated Object Detection (SAOD). We propose
a simple yet effective technique for identifying the unla-
beled regions using pseudo-positive mining and apply self-
supervised loss on them. Through qualitative results we
highlight the ability of PPM to mine pseudo-positives. We
standardize the evaluation setup and show the effective-
ness of our approach with an exhaustive set of experiments
on multiple splits of SAOD. While we outperform exist-
ing state-of-the-art on all metrics and splits, we observe the
gap in performance increases with sparsity demonstrating
the short coming of methods that rely solely on pseudo-
labeling. We propose a new benchmark, that evaluates the
semi-supervised learning capabilities of SAOD approaches.
We will release the data for the new benchmark along with
all the SAOD splits and encourage researchers to evaluate
future SAOD methods on these.
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