
Adversarial Finetuning with Latent Representation Constraint
to Mitigate Accuracy-Robustness Tradeoff

Satoshi Suzuki 1 Shin’ya Yamaguchi 1,2 Shoichiro Takeda 3 Sekitoshi Kanai 1

Naoki Makishima 1 Atsushi Ando 1,3 Ryo Masumura 1

1NTT Computer and Data Science Laboratories 2Kyoto University
3NTT Human Informatics Laboratories

{satoshixv.suzuki, shinya.yamaguchi, shoichiro.takeda, sekitoshi.kanai,

naoki.makishima, atsushi.ando, ryo.masumura}@ntt.com

Abstract

This paper addresses the tradeoff between standard ac-
curacy on clean examples and robustness against adversar-
ial examples in deep neural networks (DNNs). Although
adversarial training (AT) improves robustness, it degrades
the standard accuracy, thus yielding the tradeoff. To mit-
igate this tradeoff, we propose a novel AT method called
ARREST, which comprises three components: (i) adversar-
ial finetuning (AFT), (ii) representation-guided knowledge
distillation (RGKD), and (iii) noisy replay (NR). AFT trains
a DNN on adversarial examples by initializing its parame-
ters with a DNN that is standardly pretrained on clean ex-
amples. RGKD and NR respectively entail a regularization
term and an algorithm to preserve latent representations of
clean examples during AFT. RGKD penalizes the distance
between the representations of the standardly pretrained
and AFT DNNs. NR switches input adversarial examples
to nonadversarial ones when the representation changes
significantly during AFT. By combining these components,
ARREST achieves both high standard accuracy and robust-
ness. Experimental results demonstrate that ARREST mit-
igates the tradeoff more effectively than previous AT-based
methods do.

1. Introduction

Deep neural networks (DNNs) have demonstrated im-

pressive performance for various computer vision tasks [18,

28, 32, 45, 51, 55]. However, standardly trained DNNs can

easily be deceived by adversarial examples [15,56], causing

incorrect predictions. Such adversarial examples are images

with maliciously designed, human-imperceptible perturba-

tions to deceive a DNN. As DNNs penetrate almost every

corner of our daily life (e.g., autonomous driving), defense

84 86 88 90

36
38

40
42

44
46

48
50

52
54

Standard accuracy (%)

A
ut

oA
tta

ck
 a

cc
ur

ac
y

(%
)

●

Adversarial
training

●

FS*

●

AGKD−BML*

●

TRADES

● TLA

●

FAT

●LBGAT

● AIT*

●

SAT

●LAT

●AWP
●

LAS−AT

● DAT

●

BS

● S2
 O

●ST

●IAD

● φ =30o

ARREST
(Ours)

● φ =45o

●
φ =37.5o

● φ =30o●
φ =37.5o

● φ =45o
Ours w/ AWP

Figure 1. Relationship between the standard and AutoAttack ac-

curacies of various existing methods (see Appendix A) and our

proposed method (ARREST) on CIFAR-10. * indicates a result

obtained with WideResNet-28-10 [66]; the other results were ob-

tained with WideResNet-34-10. We also evaluated our method by

integrating it with the state-of-the-art AWP method [63], as de-

noted by orange points. The red dashed line is an approximated

curve of the accuracy-robustness tradeoff.

techniques against adversarial examples are becoming in-

creasingly important.

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

4390

The many defense techniques include feature squeez-

ing [65], input denoising [17,49], adversarial detection [30,

33], gradient regularization [41], and adversarial train-

ing [15, 37]. Among these, adversarial training (AT) has

attracted much attention as a promising defense method. AT

attempts to build a robust DNN through training on adver-

sarial examples that are generated online to maximally de-

ceive the on-training DNN [37]. Since AT’s effectiveness

was demonstrated by Mądry et al., a remarkable number of

improvements have been proposed [5, 8, 12, 23, 24, 26, 29,

31, 34, 40, 52, 58, 59, 61–63, 68–72].

Although AT is the de facto standard method to build

DNNs that are robust against adversarial examples, it

has the disadvantage of degrading the classification ac-

curacy on clean examples (i.e., the standard accuracy).

This implies a tradeoff between the adversarial robustness

and standard accuracy [20, 57], which we refer to as the

accuracy-robustness tradeoff. Figure 1 shows the accuracy-

robustness tradeoff on CIFAR-10 [27] for various exist-

ing methods evaluated by AutoAttack [11]. One partic-

ular state-of-the-art method, AWP [63], achieves high ro-

bustness, but its standard accuracy is 85.57 %, which is de-

graded from 95.37 % with a standardly trained DNN. This

tradeoff limits the practical applications of AT, as many

real-world DNN applications require high standard accu-

racy and cannot afford much degradation.

Several studies [12, 52, 70, 71] have attempted to miti-

gate the tradeoff; however, the standard accuracy is still de-

graded from the original accuracy of a standardly trained

DNN. One possible reason for this degradation is the dis-

tribution mismatch [54, 64], which indicates that clean and

adversarial examples have different underlying distribu-

tions [54, 64]. This mismatch suggests that if we train a

robust DNN from scratch, like in the above studies, the la-

tent representation will significantly diverge from that of a

standardly trained DNN on clean examples (see Table 3).

Hence, there is room for improvement in terms of obtaining

suitable latent representations of both clean and adversarial

examples.

In this paper, we propose a novel method to mitigate

the accuracy-robustness tradeoff in AT, called AdversaR-

ial finetuning with REpresentation conSTraint (ARREST).

The idea behind our method is to obtain suitable represen-

tations of adversarial examples while preserving suitable

representations of clean examples from standardly trained

DNNs. To this end, ARREST comprises three key compo-

nents: (i) adversarial finetuning (AFT), (ii) representation-
guided knowledge distillation (RGKD), and (iii) noisy re-
play (NR). ARREST uses a two-step training process for

robust DNNs, with standard pretraining of DNNs on clean

examples followed by finetuning on adversarial examples

to increase robustness. We especially refer to the sec-

ond step as AFT. AFT encourages a DNN to obtain suit-

able representations of both clean and adversarial exam-

ples through finetuning with a standardly pretrained DNN,

in contrast to previous studies that trained the DNN from

scratch [12, 52, 70, 71]. We also propose RGKD and NR

to preserve representations of clean examples from the pre-

trained DNN by alleviating the distribution mismatch is-

sue [54, 64] during AFT. Inspired by knowledge distilla-

tion [19, 48], RGKD penalizes the distance between the

on-training DNN’s representation and that of the pretrained

DNN. While RGKD modifies the objective function of

training, NR modifies the perturbation of inputs in AFT.

When the on-training DNN’s representation of a certain

clean example significantly diverges from that of the pre-

trained DNN, NR switches the input from an adversarial

example to a noisy one, which is a clean example with

added uniform random noise. NR thus serves to “remind”

the DNN of the standard pretraining and encourage repre-

sentations of clean examples to be close to the pretrained

DNN’s original representations.

We experimentally demonstrate that ARREST achieves

an impressive performance. For example, Fig. 1 shows

its qualitative effectiveness in mitigating the accuracy-

robustness tradeoff, as the results for ARREST are clus-

tered on the upper-right side. Furthermore, we quantita-

tively evaluate the degree of tradeoff mitigation with a new

metric inspired by the BD-Rate [3, 53] utilized in the field

of video compression research. Specifically, our metric cal-

culates the distance from the tradeoff by approximating a

curve to represent it (red dashed line in Fig. 1). In terms

of this metric, ARREST achieves a state-of-the-art perfor-

mance, thus confirming both its qualitative and quantitative

effectiveness.

Our main contributions are threefold:

1. We propose a novel adversarial training method, AR-

REST, to mitigate the accuracy-robustness tradeoff.

ARREST comprises three components that work com-

plementarily to obtain suitable representations of both

clean and adversarial examples.

2. We conduct a wide range of experiments to demon-

strate ARREST’s effectiveness. Overall, the exper-

imental results provide insights into the strengths of

ARREST and the properties of its components.

3. We propose a novel quantitative evaluation metric in-

spired by the BD-Rate, and we show that ARREST

achieves state-of-the-art performance in terms of this

metric.

2. Related Work

Adversarial Attacks. Because of the documented vulner-

ability of DNNs [56], many works have proposed novel

4391

adversarial attack techniques [6, 15, 37, 38]. For exam-

ple, Mądry et al. [37] proposed a projected gradient de-

scent (PGD) method, which is a multistep version of the

fast gradient sign method (FGSM) [15]. Recently, Croce

and Hein [11] proposed two improved versions of the PGD

attack, namely APGD-CE and APGD-DLR, which do not

require selecting a step size or alternating a loss func-

tion, unlike the original PGD. Then, they combined those

two methods with two other complementary adversarial at-

tacks (FAB [10] and Square [1]) to evaluate robustness

through an approach called AutoAttack. Recent studies

have widely used AutoAttack to evaluate robustness, be-

cause it provides more reliable evaluation than the tradi-

tional PGD-based evaluation. Croce and Hein also applied

AutoAttack on tens of previous AT-based methods and pro-

vided a comprehensive leaderboard [9]. In this paper, we

mainly apply AutoAttack to evaluate the adversarial robust-

ness, given that it is common and reliable.

Adversarial Training. Many defense methods have been

proposed to improve model robustness against adversarial

attacks. Among them, adversarial training (AT) [15,37] has

attracted much attention. AT attempts to build robust DNNs

through training with online-generated adversarial exam-

ples that try to maximally deceive the on-training DNN.

Goodfellow et al. [14] used FGSM to generate the adver-

sarial examples; more recently, Mądry et al. [37] used the

PGD method. Because of its high robustness, AT with the

PGD method is currently the de facto standard method to

build robust DNNs against adversarial examples.

Mitigation of Accuracy-Robustness Tradeoff. Several

studies have attempted to mitigate the accuracy-robustness

tradeoff. Zhang et al. [70] proposed a defense method

called TRADES, which adjusts the tradeoff with a hyper-

parameter. TRADES is based on adversarial logit pair-

ing (ALP) [25], which increases robustness by encourag-

ing the outputs from clean examples and adversarial exam-

ples to be similar to each other. Cui et al. [12] proposed a

method that guides a DNN’s output to be the same as that

of a standardly trained DNN, and they demonstrated that

this method mitigates the tradeoff more than TRADES or

ALP. Zhang et al. [71] and Sitawarin et al. [52] attempted

to mitigate the tradeoff by using a curriculum learning strat-

egy [2]. Although these are important methods that address

the accuracy-robustness tradeoff in AT, they still degrade

the standard accuracy from the original accuracy of a stan-

dardly trained DNN. We argue that this degradation is due to

the distribution mismatch. In ARREST, we use three com-

plementary components to address this issue. As another

methodology to address the distribution mismatch, Xie et
al. [64] proposed using different batch normalization lay-

ers [21] for clean and adversarial examples. However, their

approach requires knowing at test time whether an input ex-

ample is clean or adversarial, which may not be practical.

In another line of research, a methodology has been pro-

posed to mitigate the accuracy-robustness tradeoff by using

additional real or synthetic examples for training [16, 42,

43]. In general, AT requires more training data to generalize

a DNN than standard training does [50], and DNNs often

suffer from overfitting during AT [46]. This methodology

can alleviate the overfitting and thus mitigate the accuracy-

robustness tradeoff. However, the use of additional exam-

ples often leads to prohibitive increases in the training time

cost. Thus, we focus primarily on methods that do not re-

quire additional examples. Note that we will also demon-

strate that using the additional examples in [43] can provide

benefits for ARREST (see Table 5).

Adversarial Finetuning. AFT has been used in several re-

cent studies [22, 39]. Unlike ARREST, however, the aim of

those studies was not mitigation of the accuracy-robustness

tradeoff. Jeddi et al. [22] used AFT to make AT faster by re-

ducing the number of training epochs. Moosavi-Dezfooli et
al. [39] analyzed the effect of AT by comparing a DNN’s de-

cision boundary before and after AFT was applied. In con-

trast, ARREST aims to apply AFT to mitigate the accuracy-

robustness tradeoff by incorporating RGKD and NR.

3. Preliminaries
We first describe the conventional AT method [37]. In

general, AT directly incorporates adversarial examples into

the training process to solve the following min-max prob-

lem:

min
θr

E
(x,y)∼D

[
max

||δ||p≤ε
LCE(f(x+ δ; θr), y)

]
. (1)

Here, θr represents the parameters of the DNN f(·), and

LCE(·) is the cross-entropy loss, which is commonly used

for classification tasks. x and y are a clean training example

and its ground-truth label, respectively, which are sampled

from an underlying data distribution D. In AT, the cross-

entropy loss is calculated with an adversarial example, x+
δ. The Lp-norm of δ, ||δ||p, is bounded by a perturbation

budget ε. As the inner maximization problem in Eq. (1)

cannot be solved in closed form, the PGD method [37] is

commonly used to solve it heuristically.

In the conventional AT method [37], a robust DNN is

trained from scratch, i.e., the parameters θr of f(·) are ran-

domly initialized. This training style has been followed by

almost all AT improvements [5,8,12,23,24,26,31,34,40,52,

58, 59, 61–63, 68–72]. We found that a robust DNN trained

from scratch on adversarial examples obtains significantly

different representations from a standardly trained DNN be-

cause of the distribution mismatch issue [54, 64] (see Ta-

ble 3). Therefore, such robust DNNs have difficulty obtain-

ing suitable representations of clean examples.

In contrast with the above studies, in this paper, we

propose ARREST, which finetunes a standardly pretrained

4392

Noisy or adversarial
example: x +

Standard pretraining

Clean example:
x

DNN: f ()
Adversarial finetuning (AFT)

.

Clean example:
x

Latent representation

Representation-guided
knowledge distillation

(RGKD)

: Update parameters

: Freeze parameters

Cross entropy

h(,). g(,). h(, s). *

Noisy replay (NR)

Cross entropy

h(, r). g(, r).

s*

AdversaRial finetuning with REpresentation conSTraint (ARREST)

Figure 2. Overview of the proposed method, ARREST.

DNN with adversarial examples to increase its robustness,

while introducing a constraint on the latent representation.

As a result, ARREST generates a DNN that is robust against

adversarial examples but achieves high standard accuracy.

To formulate the constraint, we divide the DNN f(·) into

g ◦ h(·), where h(·) maps an input example to its corre-

sponding latent representation, and g(·) is a classifier in

f(·). The dividing point between h(·) and g(·) depends on

the DNN architecture, though the penultimate layer is usu-

ally used [34, 58].

4. Proposed Method

In this paper, we propose ARREST to mitigate the

accuracy-robustness tradeoff. Our main idea is to obtain

suitable representations of adversarial examples while pre-

serving suitable representations of clean examples from

standardly trained DNNs. To this end, ARREST comprises

three key components: (i) adversarial finetuning (AFT),

(ii) representation-guided knowledge distillation (RGKD),

and (iii) noisy replay (NR). Figure 2 and Algorithm 1 pro-

vide an overview and the detailed procedure of ARREST,

respectively. In this section, we explain each component in

detail.

4.1. Adversarial Finetuning (AFT)

We first explain AFT. In ARREST, we use a two-step

training process to obtain robust DNNs, where the steps are

standard pretraining of DNNs on clean examples and fine-

tuning of the pretrained DNNs on adversarial examples via

RGKD and NR. We especially refer to the second step as

AFT.

Before AFT, we standardly train on clean examples to

obtain the following DNN:

θ∗s = argmin
θ

E
(x,y)∼D

[LCE(f(x; θ), y)] . (2)

In AFT, we finetune the pretrained DNN via the min-max

problem in Eq. (1). Specifically, as given in Algorithm 1, we

initialize the parameters of a DNN θr with those of θ∗s (line

1) and optimize θr iteratively (line 9).

Through the use of θ∗s for the initial parameters, AFT

helps the DNN obtain suitable representations of clean ex-

amples. However, AFT does not explicitly impose con-

straints on the DNN’s representations. As a result, the dis-

tribution mismatch issue [54, 64] causes the DNN’s repre-

sentations of clean examples to gradually diverge from the

original representations by the standardly pretrained DNN

during AFT. To address this issue, we propose the applica-

tion of RGKD and NR to constrain the DNN’s representa-

tions.

4.2. Representation-Guided Knowledge Distilla-
tion (RGKD)

In RGKD, we penalize the distance between the rep-

resentations of the DNN θr and the standardly pretrained

DNN θ∗s during AFT. RGKD was inspired by the knowl-

edge distillation methodology [19, 48] in model compres-

sion. Knowledge distillation was originally proposed to

guide a small DNN using knowledge (i.e., an output or rep-

resentation) from a large DNN to reduce the computation

cost. Here, we apply this concept to mitigate the accuracy-

robustness tradeoff by guiding the DNN with a representa-

tion from the standardly pretrained DNN.

We define the loss of RGKD as follows:

LRGKD(x, δ, θr) = d (h(x+ δ; θr), h(x; θ
∗
s)) , (3)

4393

Algorithm 1 AdversaRial finetuning with REpresentation

conSTraint (ARREST).

Input: parameters of standardly trained DNN θ∗s , perturba-

tion budget ε, distance threshold τ , training dataset D,

learning rate η, batch size m
Output: parameters of DNN θr

1: Initialize parameters θr ← θ∗s // AFT
2: while until convergence do
3: Sample mini-batch {(xi, yi)}mi=1 from D

4: for i = 1, · · · ,m do
5: Calculate a = d (h(xi; θr), h(xi; θ

∗
s))

6: Obtain Δi // NR

where

{
Δi = δi obtained by PGD (a ≤ τ)

Δi ∼ U(−ε, ε) (a > τ)

7: Calculate L(xi,Δi, yi, θr) in Eq. (4) // RGKD
8: end for
9: θr ← θr − η 1

m

∑m
i=1 ∇θrL(xi,Δi, yi, θr)

10: end while

where d(·) is a distance function, such as the angular dis-

tance [60], to measure the similarity between two represen-

tations. From the definition of h(·) in Section 3, the argu-

ments of d(·) are the representation by the DNN θr of an ad-

versarial example x+δ and that by the standardly pretrained

DNN θ∗s of a clean example x. Note that the parameters of

θ∗s are not updated (frozen), as shown in Fig. 2. By mini-

mizing this loss, we can penalize the DNN’s representation

if it diverges from the original representation h(x; θ∗s).
In ARREST, the loss for optimizing DNNs is the sum-

mation of LCE and LRGKD:

L(x, δ, y, θr) = LCE(f(x+ δ; θr), y)

+ λ LRGKD(x, δ, θr), (4)

where λ is a hyperparameter for determining the effect of

RGKD on optimization. As seen in lines 7 and 9 of Al-

gorithm 1, this loss is calculated across all examples in a

mini-batch and used for optimization of θr.

Several AT methods [12, 58] have also used the knowl-

edge distillation methodology and guided a DNN by using

a logit (output) [12] or a representation transferred to an at-

tention map [58]. We found experimentally that RGKD is

the best of those methods for mitigating the tradeoff (see

Table 4).

4.3. Noisy Replay (NR)

While RGKD modifies the objective function for train-

ing, NR addresses the distribution mismatch issue by mod-

ifying the perturbation of inputs in AFT. Specifically, it

monitors the distance between h(x; θr) and h(x; θ∗s), i.e.,

d (h(x; θr), h(x; θ
∗
s)). When this distance exceeds a pre-

defined threshold, NR attempts to avoid increasing the dis-

tance further by utilizing the replay technique [4, 13, 47].

This technique was originally developed to address catas-

trophic forgetting during continual learning [35]. It retrains

a DNN with data from a previous task during current task

training. Recent research [44] found that, during a current

task, the replay technique preserves a suitable latent repre-

sentation obtained by the previous task. In our case, the

previous and current tasks correspond to standard pretrain-

ing on clean examples and AFT on adversarial examples,

respectively. Via this analogy, NR switches input examples

by using d (h(x; θr), h(x; θ
∗
s)):

x+Δ, where

{
Δ ∼ U(−ε, ε) if d (h(x; θr), h(x; θ

∗
s)) > τ

Δ = δ otherwise,

(5)

where U(−ε, ε) denotes a uniform distribution bounded by

the absolute value of ε. Empirically, we found that adjusting

the threshold value τ plays a role in balancing the tradeoff.

Specifically, the robustness increases as τ increases, while

the accuracy increases as τ decreases. Therefore, in the ex-

perimental section, we use several τ values for achieving

various tradeoffs (see Figs. 1 and 3).

With Eq. (5), NR inputs random noisy examples to

the DNN when the distance exceeds τ . We could also

naively consider inputting a clean example (Δ = 0) when

d (h(x; θr), h(x; θ
∗
s)) > τ . However, we observed that this

approach does not work well, and we discuss the reason in

Section 6. The NR processes are in lines 5 and 6 of Al-

gorithm 1. Finally, the loss in Eq. (4) is calculated with Δ,

rather than δ; that is, L(x,Δ, y, θr) is used for optimization

in line 7.

5. Experiments

5.1. Quantitative Evaluation Metrics

Before describing our experiments, we introduce a new

metric, accuracy robustness distance (ARDist), to quantita-

tively evaluate mitigation of the accuracy-robustness trade-

off. ARDist was inspired by the BD-Rate metric that is

commonly used in the field of video compression [3,53] and

has a similar purpose. Specifically, the BD-Rate quantita-

tively evaluates the tradeoff between a codec’s bitrate and
distortion by approximating a curve representing the trade-

off. Similarly, ARDist uses existing methods to approx-

imate a curve representing the accuracy-robustness trade-

off. This approximation is easily implemented by poly-

nomial regression with a cubic function on all data points

of the existing methods (listed in Appendix A), including

ARREST1. In this paper, we made this approximation for

1We used the result with φ = 30◦ for approximation.

4394

Table 1. Quantitative evaluation of ARREST and four existing state-of-the-art methods via the Sum and ARDist metrics for CIFAR-10

and CIFAR-100 datasets. The adversarial robustness was calculated utilizing AutoAttack. Bold type indicates the highest value for each

metric.
CIFAR-10 CIFAR-100

Standard AutoAttack Sum ARDist Standard AutoAttack Sum ARDist

AT [37] 87.14% 44.04% 131.18 -1.500 59.59% 22.86% 82.45 -3.268

LAS-AT [23] 86.23% 53.58% 139.81 2.236 61.80% 29.03% 90.83 3.189

AWP [63] 85.57% 54.04% 139.61 2.314 60.38% 28.86% 89.24 2.424

S2O [24] 85.67% 54.10% 139.77 2.410 63.40% 27.60% 91.00 2.786

LBGAT [12] 88.22% 52.18% 140.40 2.706 70.25% 26.73% 96.98 6.639

ARREST (ours) 90.24% 50.20% 140.44 3.521 73.05% 24.32% 97.37 7.165

CIFAR-10 and CIFAR-100 datasets. The obtained equa-

tions of the approximated curves are

c10(x) = (9.877 · 10−5) x3 − 0.3922x2 + 63.82x− 2600,

c100(x) = (5.615 · 10−4) x3 − 0.1582x2 + 12.44x− 271.8,

where x indicates the standard accuracy, and c10(·) and

c100(·) denote the approximated curves for CIFAR-10 and

CIFAR-100, respectively. The red dashed line in Fig. 1 is a

concrete example of an approximated curve for CIFAR-10,

and it fits the accuracy-robustness tradeoffs of the existing

methods. ARDist evaluates the mitigation by calculating

the distance between the approximated curve and a point

given by the method being evaluated. This calculation can

be done numerically, and we provide Python source code in

Appendix B. ARDist yields positive or negative values de-

pending on whether a method’s point is above or below the

approximated curve.

The simple sum of the accuracy and robustness is some-

times used as another quantitative metric [52]. This is an

important metric for evaluating a method’s absolute perfor-

mance in terms of its accuracy and robustness. In contrast,

ARDist can evaluate the relative performance when com-

paring the tradeoffs of a new method and existing methods.

In this paper, we use both metrics to quantitatively evaluate

the tradeoff mitigation from multiple perspectives.

5.2. Experimental Settings

Datasets. We evaluated ARREST on two popular datasets:

CIFAR-10 and CIFAR-100 [27]. CIFAR-10 dataset con-

tains 60,000 color images having a size of 32×32 in

10 classes, with 50,000 training and 10,000 test images.

CIFAR-100 dataset contains 50,000 training and 10,000 test

images in 100 classes.

Optimization Details. We adopted the SGD optimizer with

a momentum of 0.9 and weight decay of 5 × 10−4. The

batch size was set to 128. In the standard pretraining, we

set the number of training epochs to 100. The learning

rate started at 0.1 and then decayed by ×0.1 with transi-

tion epochs {75, 90}, following Zhang et al. [70]. In AFT,

we set the number of training epochs to 20. The learning

rate started at 0.025, decayed to 0.02 at 11 epochs, and then

decayed by half every two epochs thereafter. We used NR

only in the first 10 of 20 AFT epochs, which minimized the

sacrificed robustness.

Implementation Details. We used WideResNet-34-10 [66]

as the main DNN architecture, following many previous

studies [12, 26, 29, 37, 62, 63, 70, 71]. On CIFAR-10, we

also used ResNet-18 [18] to evaluate ARREST’s flexi-

bility with respect to the architecture. Following previ-

ous works [12, 37, 70], δ was bounded by the L∞-norm.

We used a perturbation budget of ε = 8/255 for both

training and evaluation. In AFT, δ was obtained by the

PGD method with a step size of 2/255 and 10 iterative

steps. The PGD objective function was LCE alone, with-

out the loss of RGKD. For ARREST, we used the out-

put of the penultimate layer (just before global pooling) as

the latent representation for both architectures, as a higher-

dimensional penultimate layer tends to preserve more in-

formation [34]. The distance function was the angular dis-

tance [60]: d(u,v) = 1 − |u·v|
||u||2·||v||2 . Note that RGKD

also performs well with other distance functions, e.g., the

mean squared error, and we provide those results in Ap-

pendix C. We set the hyperparameter λ to 50. We adjusted

τ using the form 1 − cosφ. Since τ determines the bal-

ance of the tradeoff (as mentioned in Subsection 4.3), we

set various values for φ: {30◦, 37.5◦, 45◦} for CIFAR-10

and {30◦, 32.5◦, 35◦} for CIFAR-100.

5.3. Comparison with Existing Methods

To benchmark ARREST’s effectiveness, we conducted

comparison experiments with existing AT methods on

CIFAR-10 and CIFAR-100. Figures 1 and 3 show the stan-

dard accuracy and robustness calculated by AutoAttack [11]

for the existing methods and ARREST on CIFAR-10 and

CIFAR-100, respectively. The details of the existing meth-

ods are given in Appendix A. In both figures, ARREST

appears in the upper-right relative to the existing methods.

As this position indicates both high accuracy and high ro-

bustness, these results qualitatively demonstrate the effec-

tiveness of ARREST for mitigating the accuracy-robustness

tradeoff as compared to existing methods. It is worth men-

4395

60 65 70 75

0
5

10
15

20
25

Standard accuracy (%)

A
ut

oA
tta

ck
 a

cc
ur

ac
y

(%
)

●

Adversarial
training

●

FS*

● TRADES

● FAT

●LBGAT

●AIT*

● SAT

●AWP ● LAS−AT

●CAT

●

BS

● S2
 O

●IAD

● φ =30o

ARREST

● φ =32.5o●
φ =35o

Figure 3. Relationship between the standard and AutoAttack ac-

curacies of existing methods (see Appendix A) and ARREST on

CIFAR-100. * indicates a result obtained with WideResNet-28-

10; the other results were obtained with WideResNet-34-10. The

red dashed line is the tradeoff’s approximated curve.

tioning that ARREST integrates easily with other existing

techniques for increasing the robustness, such as AWP [63].

In Fig. 1, the results of ARREST with AWP [63] are de-

noted by the orange points. We can observe that this com-

bination achieves higher robustness with only a slight sac-

rifice to the standard accuracy. As a result, ARREST with

AWP better mitigates the accuracy-robustness tradeoff com-

pared with only using ARREST. In Appendix D, we fur-

ther compared ARREST with the results of varying the

hyperparameter β for TRADES and S2O (integrated with

TRADES). From these comparisons, we can see that the re-

sults of ARREST appear on the right side relative to those

of TRADES and S2O. This indicates that ARREST can

achieve higher standard accuracy while achieving the same

robustness as these methods.

In addition to this qualitative comparison, we conducted

a quantitative comparison using the two metrics explained

in Subsection 5.1, i.e., ARDist and the sum of the stan-

dard accuracy and robustness (Sum). Here, we set φ in

NR to 30◦ for both CIFAR-10 and CIFAR-100. Table 1

lists these results, which were obtained by comparing AR-

Table 2. Results obtained with four variations of our method (only

AFT, AFT with RGKD, AFT with NR, ARREST) and two base-

lines (standard training and AT).
ResNet-18 WideResNet-34-10

Standard AutoAttack Standard AutoAttack

ST 94.53% 0% 95.37% 0%

AT [37] 84.71% 44.19% 87.14% 44.04%

AFT 84.08% 45.36% 87.54% 48.74%

AFT + RGKD 85.11% 46.01% 88.52% 50.20%

AFT + NR 85.52% 45.29% 88.94% 48.63%

ARREST 86.63% 46.14% 90.24% 50.20%

REST with AT [37] and four existing state-of-the-art meth-

ods (AWP [63], LAS-AT [23], S2O [24], and LBGAT [12]).

Note that these four existing methods had the best scores in

terms of Sum and ARDist across all methods listed in Ap-

pendix A on both CIFAR-10 and CIFAR-100. As shown in

the table, ARREST also achieved a state-of-the-art perfor-

mance in terms of Sum and ARDist on both datasets. These

results indicate that ARREST can obtain more suitable la-

tent representations of both clean and adversarial examples

compared to the existing methods.

5.4. Ablation Study

We analyzed the ablation effect of each component

of ARREST on CIFAR-10 dataset, where ResNet-18 and

WideResNet-34-10 were used as the architectures. Ta-

ble 2 lists the results obtained with four variations of our

method (only AFT, AFT with RGKD, AFT with NR, and

all components, i.e., ARREST) and two baselines (stan-

dard training and AT [37]). For AFT with NR only, we

set φ = 45◦ because the constraining effect changes in the

absence of RGKD, and φ = 30◦ does not yield an opti-

mal performance. This φ value was searched from 15◦ to

75◦ in 15◦ increments. We used AutoAttack [11] for the

evaluation. The results using other attacks are listed in Ap-

pendix E.

As seen in Table 2, we found that AFT alone could only

provide standard accuracy similar to that of AT. This is be-

cause AFT does not explicitly impose constraints on the

representation, and the DNN’s representations of clean ex-

amples gradually diverge from the original representations

of the standardly pretrained DNN during AFT. However,

AFT with RGKD or NR increased the standard accuracy.

These results demonstrate that these constraint techniques

help the DNN to preserve the representation during AFT

and effectively mitigate the accuracy-robustness tradeoff,

as expected. Furthermore, AFT with both RGKD and NR

achieved the highest standard accuracy and robustness. As

described above, the three key components of ARREST,

i.e., AFT, RGKD, and NR, work complementarily to ob-

tain suitable representations of both clean and adversarial

examples. Therefore, the ablation study results indicate that

the components’ complementary roles actually serve to mit-

4396

1 2 3 4 5 6 7

80
85

90
95

Epoch

St
an

da
rd

 a
cc

ur
ac

y
(%

)

●

●

●

● ●

●

●

Noisy examples
Clean examples

1 2 3 4 5 6 7

0
10

20
30

40

Epoch

A
ut

oA
tta

ck
 a

cc
ur

ac
y

(%
)

●

●

● ●

●
●

●

Figure 4. Left: Relationship between the number of epochs and

the standard accuracy in AFT with the replay technique. Right:

Relationship between the number of epochs and the adversarial

robustness with the same DNN used on the left. The black and

red lines show results obtained by inputting clean and adversarial

examples, respectively.

igate the accuracy-robustness tradeoff. Finally, ARREST

achieved a standard accuracy of 2.0 to 3.0 points higher

than that of AT while also demonstrating higher adversar-

ial robustness. Overall, these results suggest that ARREST

successfully mitigates the accuracy-robustness tradeoff in

AT.

6. Analysis of ARREST
In this section, we analyze ARREST from four view-

points: noisy examples in NR, the effect of ARREST on

preserving the representation, comparison of other types of

knowledge distillation with RGKD, and the effect of addi-

tional examples on ARREST.

Effect of Inputting Noisy Examples on NR. First, we an-

alyzed the effect of random noisy examples on the NR per-

formance. As mentioned in Subsection 4.3, we could con-

sider inputting a clean example in Eq. (5); however, we

found that this did not improve the adversarial robustness

during AFT at all, as shown on the right in Fig. 4. This is

because partial input of clean examples during AFT makes

optimization challenging with the distribution mismatch be-

tween clean and adversarial examples. As a result, the

DNN only obtains suitable representations of clean exam-

ples. Actually, it maintains a high standard accuracy, as

shown on the left in Fig. 4. To avoid this issue, we use noisy

examples in NR. Figure 5 shows a visualization of the rep-

resentations of clean, noisy, and adversarial examples with

a standardly pretrained DNN. Because the uniform noise

is nonadversarial, the distribution underlying noisy exam-

ples is similar to that underlying clean examples but shifted

slightly toward that of adversarial examples. Hence, the use

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5

2

4

6

8

10

12

14

16

Clean
Noisy
Adversarial

Figure 5. Visualization of representations of clean, noisy, and

adversarial examples on a standardly pretrained DNN by using

UMAP [36]. From CIFAR-10, 100 randomly selected test images

labeled “dog” were used. The solid ellipse shows an enlargement

of the dashed region.

Table 3. Comparison of the effectiveness of each ARREST com-

ponent in preserving representation, with the cosine similarity as

the metric.
Cosine similarity

AT 0.255

AFT 0.753

AFT + RGKD 0.894

AFT + NR 0.764

ARREST 0.901

of noisy examples is expected to alleviate the distribution

mismatch while enabling the DNN to benefit from the re-

play technique. In fact, replay with noisy examples, i.e.,

our proposed NR, can improve the robustness in contrast

with the use of clean examples, as shown by the red line on

the right in Fig. 4.

Effect of ARREST on Preserving Representation. Next,

we analyzed the effectiveness of ARREST on preserving

the representation from a standardly trained DNN. AR-

REST’s three key components were designed to obtain suit-

able representations of clean and adversarial examples by

preserving the representation of clean examples from a stan-

dardly trained DNN. To evaluate ARREST’s proper opera-

tion, we compared the representations of robust and stan-

dardly pretrained DNNs. Table 3 lists the cosine similar-

ity between h(x; θr) and h(x; θ∗s) for evaluation on clean

test examples from CIFAR-10. As seen in the table, AT

obtained a significantly different representation from that

of the standardly trained DNN. As explained above, this is

due to the distribution mismatch issue [54, 64]. AFT sig-

nificantly increased the cosine similarity as compared with

AT. Moreover, AFT still had a gap between h(x; θr) and

h(x; θ∗s) because of the remaining distribution mismatch,

but each of RGKD and NR further increased the similar-

ity. Consequently, ARREST achieved the highest cosine

4397

−2.5 0.0 2.5 5.0 7.5 10.0 12.5
−2

0

2

4

6

8

10

12

14

(a) Adversarial training

0
1
2
3
4
5
6
7
8
9

0 5 10 15

−5

0

5

10

15

(b) ARREST
Figure 6. Visualization of clean example representations for (a) a

robust DNN with AT and (b) ARREST by using UMAP [36]. For

visualization, 2,000 randomly selected test images from CIFAR-

10 were used.

similarity of 0.901. Furthermore, as shown in Fig. 6, we

visualized the representations of clean examples with AT

and ARREST. We can see that ARREST (b) obtained more

discriminative representations of clean examples than AT

did (a). These results indicate that preservation of the rep-

resentation from the standardly trained DNN leads to higher

standard accuracy, as expected.

Comparison with Other Types of Knowledge Distilla-
tion. As described in Subsection 4.2, several AT meth-

ods [12,58] have applied knowledge distillation methodolo-

gies besides RGKD. Here, we compared RGKD with them

by replacing the loss in Eq. (3) during AFT with two dif-

ferent methods. First, “logit” [12] guides the DNN with the

logit (final output) of the pretrained DNN. Second, “atten-

tion map” [58] guides the DNN with a spatial attention map

computed by summing the latent representations along the

channel dimension [67]. Appendix F provides these meth-

ods’ detailed formulation and optimization. Table 4 lists

the comparison results, which show that RGKD achieved

the best performance in terms of both accuracy and robust-

ness. This may be because the comparison methods had a

weak penalty effect by transferring the latent representation

to a logit or attention map, in contrast with RGKD, which

guides the DNN by using the representation as is. For ex-

ample, guiding with a logit does not directly affect the DNN

representation, thus limiting the penalty effect. This com-

parison indicates that RGKD is more suitable than the other

methods for our aim of mitigating the accuracy-robustness

tradeoff.

Effect of Additional Examples on ARREST. Finally,

we investigated the effect of additional examples on AR-

REST, an approach that has often been used in previous

works [16, 42, 43] to mitigate the tradeoff. Specifically, we

used the additional examples from RST [43], which were

originally from [7]. Appendix G explains the training setup

Table 4. Comparison of RGKD with other types of knowledge dis-

tillation.
Standard AutoAttack

Logit [12] 87.45% 49.62%

Attention map [58] 87.70% 49.05%

RGKD 88.52% 50.20%

Table 5. Results for ARREST with additional examples from

RST [43].

Standard AutoAttack

RST [43] 91.62% 54.81%

ARREST w/ RST 93.17% 55.73%

for this experiment. The results are listed in Table 5. AR-

REST with additional examples achieved higher standard

accuracy and adversarial robustness than RST, which adver-

sarially trains the DNN in the usual manner. These results

indicate that ARREST can benefit from additional exam-

ples, and the combination is promising for mitigating the

accuracy-robustness tradeoff.

7. Conclusion

We have proposed AdversaRial finetuning with REpre-

sentation conSTraint (ARREST) to mitigate the accuracy-

robustness tradeoff in adversarial training (AT). ARREST

aims to obtain suitable representations of adversarial exam-

ples while preserving suitable representations of clean ex-

amples from standardly trained DNNs. To this end, AR-

REST comprises three key components: (i) adversarial
finetuning (AFT), (ii) representation-guided knowledge dis-
tillation (RGKD), and (iii) noisy replay (NR). It uses a

two-step training process to obtain robust DNNs, entail-

ing standard pretraining of DNNs on clean examples and

finetuning of the pretrained DNNs on adversarial exam-

ples with RGKD and NR. Further, we have proposed a

new quantitative evaluation metric, accuracy robustness dis-

tance (ARDist), which was inspired by the BD-Rate [3, 53]

metric used in video compression research. Using ARDist,

we demonstrated the quantitative effectiveness of ARREST

in mitigating the tradeoff on CIFAR-10 and CIFAR-100

datasets.

While ARREST efficiently mitigates the accuracy-

robustness tradeoff in AT, it could not perfectly eliminate

the tradeoff; that is, it could not achieve the same standard

accuracy as a standardly trained DNN. A promising direc-

tion would be to combine ARREST with additional train-

ing examples, as was done to obtain the results in Table 5.

This might enable us to maximize the tradeoff mitigation or

completely eliminate the tradeoff. We plan to explore this

direction in the future.

4398

References
[1] M. Andriushchenko, F. Croce, N. Flammarion, and M. Hein.

Square attack: a query-efficient black-box adversarial attack

via random search. In European Conference on Computer
Vision (ECCV), 2020. 3

[2] Y. Bengio, J. Louradour, R. Collobert, and J. Weston. Cur-

riculum learning. In International Conference on Machine
Learning (ICML), 2009. 3

[3] G. Bjøntegaard. Calculation of average PSNR differences

between RD-Curves. ITU-T Video Coding Experts Group
(VCEG)-M33, 2001. 2, 5, 9

[4] M. Boschini, L. Bonicelli, A. Porrello, G. Bellitto, M. Pen-

nisi, S. Palazzo, C. Spampinato, and S. Calderara. Transfer

without forgetting. In European Conference on Computer
Vision (ECCV), 2022. 5

[5] Q. Cai, C. Liu, and D. Song. Curriculum adversarial train-

ing. In International Joint Conference on Artificial Intelli-
gence (IJCAI), 2018. 2, 3, 13

[6] N. Carlini and D. A. Wagner. Towards evaluating the robust-

ness of neural networks. In IEEE Symposium on Security
and Privacy (SP), 2017. 3, 15, 16

[7] Y. Carmon, A. Raghunathan, L. Schmidt, J. C. Duchi, and

P. S. Liang. Unlabeled data improves adversarial robust-

ness. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2019. 9, 16

[8] J. Chen, Y. Cheng, Z. Gan, Q. Gu, and J. Liu. Efficient robust

training via backward smoothing. In AAAI Conference on
Artificial Intelligence (AAAI), 2022. 2, 3, 13

[9] F. Croce, M. Andriushchenko, V. Sehwag, E. Debenedetti,

N. Flammarion, M. Chiang, P. Mittal, and M. Hein. Ro-

bustbench: a standardized adversarial robustness bench-

mark. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. 3

[10] F. Croce and M. Hein. Minimally distorted adversarial ex-

amples with a fast adaptive boundary attack. In International
Conference on Machine Learning (ICML), 2020. 3

[11] F. Croce and M. Hein. Reliable evaluation of adversarial ro-

bustness with an ensemble of diverse parameter-free attacks.

In International Conference on Machine Learning (ICML),
2020. 2, 3, 6, 7, 15

[12] J. Cui, S. Liu, L. Wang, and J. Jia. Learnable boundary

guided adversarial training. In International Conference on
Computer Vision (ICCV), 2021. 2, 3, 5, 6, 7, 9, 13, 16

[13] S. Farquhar and Y. Gal. Towards robust evaluations of con-

tinual learning. arXiv preprint arXiv:1805.09733, 2018. 5

[14] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D.

Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Advances in Neural Information
Processing Systems (NIPS), 2014. 3

[15] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and

harnessing adversarial examples. In International Confer-
ence on Learning Representations (ICLR), 2015. 1, 2, 3, 15,

16

[16] S. Gowal, S.-A. Rebuffi, O. Wiles, F. Stimberg, D. A.

Calian, and T. Mann. Improving robustness using generated

data. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. 3, 9

[17] C. Guo, M. Rana, M. Cisse, and L. van der Maaten. Coun-

tering adversarial images using input transformations. In In-
ternational Conference on Learning Representations (ICLR),
2018. 2

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), 2016. 1, 6, 16

[19] G. E. Hinton, O. Vinyals, and J. Dean. Distilling the knowl-

edge in a neural network. In NIPS Deep Learning and Rep-
resentation Learning Workshop, 2015. 2, 4

[20] A. Ilyas, S. Santurkar, D. Tsipras, L. Engstrom, B. Tran, and

A. Mądry. Adversarial examples are not bugs, they are fea-

tures. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2019. 2

[21] S. Ioffe and C. Szegedy. Batch normalization: Accelerating

deep network training by reducing internal covariate shift.

In International Conference on Machine Learning (ICML),
2015. 3

[22] A. Jeddi, M. J. Shafiee, and A. Wong. A simple fine-tuning

is all you need: Towards robust deep learning via adversarial

fine-tuning. arXiv preprint, arXiv:2012.13628, 2020. 3

[23] X. Jia, Y. Zhang, B. Wu, J. Wang K. Ma, and X. Cao. LAS-

AT: Adversarial training with learnable attack strategy. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2022. 2, 3, 6, 7, 13

[24] G. Jin, X. Yi, W. Huang, S. Schewe, and X. Huang. En-

hancing adversarial training with second-order statistics of

weights. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2022. 2, 3, 6, 7, 13, 15

[25] H. Kannan, A. Kurakin, and I. Goodfellow. Adversarial logit

pairing. arXiv preprint, arXiv:1803.06373, 2018. 3

[26] J. Kim and X. Wang. Sensible adversarial learning. In Open-
Review, 2019. 2, 3, 6, 13

[27] A. Krizhevsky. Learning multiple layers of features from

tiny images. Technical report, University of Toronto, 2009.

2, 6

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

Advances in Neural Information Processing Systems (NIPS),
2012. 1, 16

[29] N. Kumari, M. Singh, A. Sinha, H. Machiraju, B. Krishna-

murthy, and V. N Balasubramanian. Harnessing the vulner-

ability of latent layers in adversarially trained models. In

International Joint Conference on Artificial Intelligence (IJ-
CAI), 2019. 2, 6, 13

[30] K. Lee, K. Lee, H. Lee, and J. Shin. A simple unified frame-

work for detecting out-of-distribution samples and adversar-

ial attacks. In Advances in Neural Information Processing
Systems (NeurIPS), 2018. 2

[31] Q. Li, Y. Guo, W. Zuo, and H. Chen. Squeeze training for ad-

versarial robustness. In International Conference on Learn-
ing Representations (ICLR), 2023. 2, 3, 13

[32] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2015. 1

[33] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. Wijewickrema, G.

Schoenebeck, M. E. Houle, D. Song, and J. Bailey. Char-

4399

acterizing adversarial subspaces using local intrinsic dimen-

sionality. In International Conference on Learning Repre-
sentations (ICLR), 2018. 2

[34] C. Mao, Z. Zhong, J. Yang, C. Vondrick, and B. Ray. Metric

learning for adversarial robustness. In Advances in Neural
Information Processing Systems (NeurIPS), 2019. 2, 3, 4, 6,

13

[35] M. Mccloskey and N. J. Cohen. Catastrophic interference

in connectionist networks: The sequential learning problem.

The Psychology of Learning and Motivation, 24:104–169,

1989. 5

[36] L. McInnes, J. Healy, N. Saul, and L. Grossberger. UMAP:

Uniform manifold approximation and projection. The Jour-
nal of Open Source Software, 3(29):861, 2018. 8, 9

[37] A. Mądry, A. Makelov, L. Schmidt, D. Tsipras, and A.

Vladu. Towards deep learning models resistant to adversarial

attacks. In International Conference on Learning Represen-
tations (ICLR), 2018. 2, 3, 6, 7, 13, 15, 16

[38] S. Moosavi-Dezfooli, A. Fawzi, and P. Frossard. Deepfool:

A simple and accurate method to fool deep neural networks.

In IEEE Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2016. 3

[39] S. Moosavi-Dezfooli, A. Fawzi, J. Uesato, and P. Frossard.

Robustness via curvature regularization, and vice versa. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2019. 3

[40] T. Pang, X. Yang, Y. Dong, H. Su, and J. Zhu. Bag of

tricks for adversarial training. In International Conference
on Learning Representations (ICLR), 2021. 2, 3, 13

[41] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik,

and A. Swami. Practical black-box attacks against machine

learning. In Asia Conference on Computer and Communica-
tions Security (CCS), 2017. 2

[42] R. Rade and S. Moosavi-Dezfooli. Helper-based adversarial

training: Reducing excessive margin to achieve a better ac-

curacy vs. robustness trade-off. In International Conference
on Machine Learning (ICML) Workshop on Adversarial Ma-
chine Learning, 2021. 3, 9

[43] A. Raghunathan, S. M. Xie, F. Yang, J. C. Duchi, and P.

Liang. Understanding and mitigating the tradeoff between

robustness and accuracy. In International Conference on Ma-
chine Learning (ICML), 2020. 3, 9, 16

[44] V. V. Ramasesh, E. Dyer, and M. Raghu. Anatomy of catas-

trophic forgetting: Hidden representations and task seman-

tics. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2021. 5

[45] J. Redmon and A. Farhadi. YOLO9000: better, faster,

stronger. In IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), 2017. 1

[46] L. Rice, E. Wong, and Z. Kolter. Overfitting in adversar-

ially robust deep learning. In International Conference on
Machine Learning (ICML), 2020. 3

[47] D. Rolnick, A. Ahuja, J. Schwarz, T. Lillicrap, and G.

Wayne. Experience replay for continual learning. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2019. 5

[48] A. Romero, N. Ballas, S. E. Kahou, A. Chassang, C. Gatta,

and Y. Bengio. Fitnets: Hints for thin deep nets. In Inter-
national Conference on Learning Representations (ICLR),
2015. 2, 4

[49] P. Samangouei, M. Kabkab, and R. Chellappa. Defense-

GAN: Protecting classifiers against adversarial attacks using

generative models. In International Conference on Learning
Representations (ICLR), 2018. 2

[50] L. Schmidt, S. Santurkar, D. Tsipras, K. Talwar, and A.

Mądry. Adversarially robust generalization requires more

data. In Advances in Neural Information Processing Sys-
tems (NeurIPS), 2018. 3

[51] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. In International
Conference on Learning Representations (ICLR), 2015. 1,

16

[52] C. Sitawarin, S. Chakraborty, and D. Wagner. Sat: Improv-

ing adversarial training via curriculum-based loss smooth-

ing. In ACM Workshop on Artificial Intelligence and Secu-
rity (AISec), 2021. 2, 3, 6, 13

[53] J. Ström, K. Andersson, R. Sjöberg, F. Bossen, G. Sullivan,

and J.-R. Ohm. Summary information on bd-rate experi-

ment evaluation practices. Joint Video Experts Team (JVET)-
Q2016, 2020. 2, 5, 9

[54] D. Stutz, M. Hein, and B. Schiele. Disentangling adversarial

robustness and generalization. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2019. 2, 3, 4,

8

[55] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D.

Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich. Go-

ing deeper with convolutions. In IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), 2015. 1, 16

[56] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D Erhan,

I. J. Goodfellow, and R. Fergus. Intriguing properties of

neural networks. In International Conference on Learning
Representations (ICLR), 2014. 1, 2

[57] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A.

Mądry. Robustness may be at odds with accuracy. In In-
ternational Conference on Learning Representations (ICLR),
2019. 2

[58] H. Wang, Y. Deng, S. Yoo, H. Ling, and Y. Lin. AGKD-

BML: defense against adversarial attack by attention guided

knowledge distillation and bi-directional metric learning. In

International Conference on Computer Vision (ICCV), 2021.

2, 3, 4, 5, 9, 13, 16

[59] J. Wang and H. Zhang. Bilateral adversarial training: To-

wards fast training of more robust models against adversar-

ial attacks. In International Conference on Computer Vi-
sion (ICCV), 2019. 2, 3, 13

[60] J. Wang, F. Zhou, S. Wen, X. Liu, and Y. Lin. Deep metric

learning with angular loss. In International Conference on
Computer Vision (ICCV), 2017. 5, 6

[61] Y. Wang, X. Ma, J. Bailey, J. Yi, B. Zhou, and Q. Gu. On the

convergence and robustness of adversarial training. In Inter-
national Conference on Machine Learning (ICML), 2019. 2,

3, 13

4400

[62] Y. Wang, D. Zou, J. Yi, J. Bailey, X. Ma, and Q. Gu. Im-

proving adversarial robustness requires revisiting misclassi-

fied examples. In International Conference on Learning Rep-
resentations (ICLR), 2020. 2, 3, 6, 13

[63] D. Wu, S. Xia, and Y. Wang. Adversarial weight perturbation

helps robust generalization. In Advances in Neural Informa-
tion Processing Systems (NeurIPS), 2020. 1, 2, 3, 6, 7, 13

[64] C. Xie, M. Tan, B. Gong, J. Wang, A. L. Yuille, and Q. V.

Le. Adversarial examples improve image recognition. In

IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), 2020. 2, 3, 4, 8

[65] W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting

adversarial examples in deep neural networks. arXiv preprint
arXiv:1704.01155, 2017. 2

[66] S. Zagoruyko and N. Komodakis. Wide residual networks.

In British Machine Vision Conference (BMVC), 2016. 1, 6,

16

[67] S. Zagoruyko and N. Komodakis. Paying more attention to

attention: Improving the performance of convolutional neu-

ral networks via attention transfer. In International Confer-
ence on Learning Representations (ICLR), 2017. 9, 16

[68] H. Zhang and J. Wang. Defense against adversarial attacks

using feature scattering-based adversarial training. In Ad-
vances in Neural Information Processing Systems (NeurIPS),
2019. 2, 3, 13

[69] H. Zhang and W. Xu. Adversarial interpolation training: A

simple approach for improving model robustness. In Open-
Review, 2020. 2, 3, 13

[70] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I.

Jordan. Theoretically principled trade-off between robust-

ness and accuracy. In International Conference on Machine
Learning (ICML), 2019. 2, 3, 6, 13, 15

[71] J. Zhang, X. Xu, B. Han, G. Niu, L. Cui, M. Sugiyama, and

M. Kankanhalli. Attacks which do not kill training make

adversarial learning stronger. In International Conference
on Machine Learning (ICML), 2020. 2, 3, 6, 13

[72] J. Zhu, J. Yao, B. Han, J. Zhang, T. Liu, G. Niu, J. Zhou,

J. Xu, and H. Yang. Reliable adversarial distillation with

unreliable teachers. In International Conference on Learning
Representations (ICLR), 2022. 2, 3, 13

4401

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

