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Figure 1: Viewset Diffusion. Our category-specific models perform both ‘generative’ 3D reconstruction and unconditional 3D generation.
In single-view 3D reconstruction (left) our models generate plausible explanations of occluded regions (car’s back, hydrant’s occluded side).
The same models are able to generate varied 3D objects (right) in a feed-forward manner while being trained only on 2D data.

Abstract

We present Viewset Diffusion, a diffusion-based genera-
tor that outputs 3D objects while only using multi-view 2D
data for supervision. We note that there exists a one-to-
one mapping between viewsets, i.e., collections of several
2D views of an object, and 3D models. Hence, we train a
diffusion model to generate viewsets, but design the neural
network generator to reconstruct internally corresponding
3D models, thus generating those too. We fit a diffusion
model to a large number of viewsets for a given category
of objects. The resulting generator can be conditioned on
zero, one or more input views. Conditioned on a single view,
it performs 3D reconstruction accounting for the ambigu-
ity of the task and allowing to sample multiple solutions
compatible with the input. The model performs reconstruc-
tion efficiently, in a feed-forward manner, and is trained us-
ing only rendering losses using as few as three views per
viewset. Project page: szymanowiczs.github.io/
viewset-diffusion.

1. Introduction

Image-based 3D reconstruction, i.e., recovering the 3D
shape of the world from 2D observations, is a fundamental

problem in computer vision. In this work, we study the
problem of reconstructing the 3D shape and appearance of
individual objects from as few as one image. In fact, we cast
this as image-conditioned 3D generation, and also consider
the case of unconditional generation (fig. 1).

Single-view 3D reconstruction is inherently ambiguous
because projecting a 3D scene to an image loses the depth
dimension. The goal is thus not to recover the exact 3D
shape and appearance of the object, particularly of its oc-
cluded parts, but to generate plausible reconstructions. This
can only be achieved by learning a prior over the likely 3D
shapes and appearances of the objects. Here, we do so for
one category of objects at a time.

Leveraging 3D object priors for reconstruction has been
explored by several works [11, 48]. Most of these tackle
3D reconstruction in a deterministic manner, outputting one
reconstruction per object. This is limiting in the presence of
ambiguity, as a deterministic reconstructor can only predict
either (1) a single most likely solution, which is plausible
but usually incorrect, or (2) an average of all possible re-
constructions, which is implausible (fig. 2).

Thus, in this work, we tackle the problem of modelling
ambiguity in few-view 3D reconstruction. Our goal is to
learn a conditional generator that can sample all plausible
3D reconstructions consistent with a given image of an ob-
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ject from a given viewpoint.
We approach this problem using Denoising Diffusion

Probabilistic Models (DDPM) [14] due to their excellent
performance for image generation [6]. However, while
DDPMs are trained on billions of images, 3D training data
is substantially more scarce. We thus seek to learn a 3D
DDPM using only multi-view 2D data for supervision. The
challenge is that DDPMs assume that the training data is
in the same modality as the generated data. In our setting,
the 3D model of the object can be thought of as an unob-
served latent variable, learning which is beyond the scope
of standard DDPMs. We solve this problem starting from
the following important observation.

Given a 3D model of an object, we can render all possi-
ble 2D views of it. Likewise, given a sufficiently large set
of views of the object, called a viewset, we can recover, up
to an equivalence class, the corresponding 3D model. Be-
cause of this bijective mapping, generating 3D models is
equivalent to generating viewsets. The advantage of the lat-
ter is that we often have access to a source of suitable 2D
multi-view data for supervision. Similarly to 2D image gen-
eration, our corresponding DDPM takes as input a partially
noised viewset and produces as output a denoised version of
it. For generation, this denoising process is iterated starting
from a Gaussian noise sample.

Our second key intuition is that the bijective mapping
between viewsets and 3D models can be integrated in the
denoising network itself. Namely, our DDPM is designed
to denoise the input viewset by reconstructing a full radi-
ance field of the corresponding 3D object (see fig. 3). This
has the advantage of producing the 3D model we are after
and ensuring that the denoised viewset is 3D consistent (the
lack of 3D consistency is an issue for some multi-view gen-
erators [22, 47]). Furthermore, by allowing different views
in the viewset to be affected by different amounts of noise,
the same model supports conditional generation from any
number of input views (including zero). This conditional
generation is achieved by setting the noise level of the avail-
able conditioning images to zero.

We call our method Viewset Diffusion and, with it, make
several contributions: (i) The idea of generating viewsets
as a way to apply DDPMs to the generation of 3D objects
even when only multi-view 2D supervision is available. (ii)
An ambiguity-aware 3D reconstruction model that is able
to sample different plausible reconstructions given a sin-
gle input image, and which doubles as an unconditional
3D generator. (iii) A network architecture that enables our
reconstructions to match the conditioning images, aggre-
gate information from an arbitrary number of views in an
occlusion-aware manner and estimate plausible 3D geome-
tries. (iv) A new synthetic benchmark dataset, designed for
evaluating the performance of single-image reconstruction
techniques in ambiguous settings.
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Figure 2: Ambiguities. Under occlusion, deterministic meth-
ods blur possible shapes (orange car’s back, Minecraft characters’
poses) and colours (black car’s back, occluded sides of Minecraft
characters). Our method samples plausible 3D reconstructions.

2. Related Work

Works most related to ours consider the problem of few-
view 3D reconstruction and the ensuing ambiguities.

Reconstructing Neural Fields. Few-view reconstruction
methods that use Neural Radiance Fields [25] include
Sin-NeRF [51] and DietNeRF [15]. They use seman-
tic pseudo-labels in unseen views to provide multi-view
pseudo-constraints from pre-trained 2D networks, effec-
tively leveraging a 2D prior. Other works learn a 3D prior
instead and represent individual shapes using global latent
codes [16, 27, 31, 36]. Codes be optimised at test-time
via auto-decoding, akin to latent space inversion in priors
learned with 3D GANs [2]. The latent codes can also be
local [13, 21, 53] or simultaneously global and local [21],
which tends to improve high-frequency details. While our
method borrows the idea of local conditioning and learning
a 3D prior from such prior works, a key difference is that
we sample different plausible reconstructions, while most
prior works only output a single reconstruction, which tends
to regress to the mean, usually falling outside the data dis-
tribution, being blurry, and mixing several modes in one.
In contrast, our method samples multiple sharp reconstruc-
tions, each of which is different yet plausible.

Reconstruction Beyond Neural Fields. Many other pos-
sible 3D representations have been explored, including
geometry-free representations [30, 39, 40, 45], occupancy
voxel grids grids [4, 42, 52], textured meshes [18, 49] or
hybrid implicit-explicit representations [33, 50]. While our
work is currently based on a neural radiance field, it is com-
patible with any differentiable formulation.

Ambiguity in 3D Reconstruction. Single-view 3D re-
construction is an ill-posed problem because a 2D input
only partially constrains the 3D output. A 3D prior can re-
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duce but not eliminate the ambiguity. In fact, even when the
3D reconstruction is constrained to be plausible according
to the given prior, it does not mean that it is unique [48].
For instance, when we reconstruct a person seen from the
front, even knowing that it is a person is insufficient to ex-
actly predict their back. The goal is to obtain one or several
plausible solutions that are compatible with the given ob-
servations, for example via constrained optimization [11]
or using an adversarial loss during training [48]. Ignoring
ambiguity may result in distortions, including blurry recon-
structions without fine details [5].

We embrace ambiguity in 3D reconstruction and train a
network to (1) output a 3D object that matches an observa-
tion such that (2) the 3D object is a plausible member of a
given category. This setting is similar to Wu et al. [48], but
we allow sampling different plausible reconstructions via
a conditional diffusion model, rather than finding a single
plausible solution via a constrained optimisation approach.

3D Modelling with Diffusion Models Recently, Denois-
ing Diffusion Probabilistic Models [14] (DDPM) have been
applied to modelling 3D shape distributions by diffus-
ing directly in the space of 3D representations, including
point clouds [23], triplanes [10, 34, 46] and other radiance
fields [17, 26] Shortcomings of these approaches include
(1) assuming an available 3D dataset (see also section 3.2)
and (2) requiring heuristics for dealing with ‘floater’ arte-
facts [26, 34] common in volumes reconstructed from
multi-view data in an optimisation setting.

Others leverage pre-trained 2D diffusion models via
Score Distillation Loss for text-to-3D generation [29, 44]
with test-time optimisation, and extensions allow image-
based reconstruction [20, 24]. Concurrently to our work,
several others [3, 22, 47] learn image-conditioned diffu-
sion models. The outputs are 2D, and their 3D consis-
tency is only approximate, with frequent flickers [3, 22, 47].
3D consistency can be enforced via costly (sometimes
1 hour [55]) test-time optimization of a 3D representa-
tion [8, 55]. In contrast to prior and concurrent works,
our method (1) can be trained on 2D data, requiring only
3 views of an object, (2) is guaranteed to be 3D consis-
tent, and (3) is feed-forward, and therefore much faster
than test-time distillation methods [8, 24, 55]. HoloDiffu-
sion [19] also learns 3D generative models from 2D data,
but it only considers unconditional generation, while we
propose a principled, unified framework for conditional and
unconditional generation.

The closest work to ours is RenderDiffusion [1], dis-
cussed in detail in section 3.3.

3. Method

We consider the problem of learning a distribution over
3D objects, supporting both unconditional sampling and

sampling conditioned on one or more views of the object.
We approach this problem using a 3D DDPM and rethink
the training setup to allow training it from multi-view 2D
data, without access to 3D ground-truth.

3.1. DDPMs: background and notation

Consider the problem of learning a distribution p(x)
over 2D images x ∈ R3×H×W (or, with little changes, a
distribution p(x|y) conditioned on additional information
y such as a text description). The DDPM approach gen-
erates a sequence of increasingly noisier versions of the
data. This sequence starts from x0 = x and adds pro-
gressively more Gaussian noise. such that the conditional
distribution p(xt|x0) at step t can be characterised by writ-
ing xt =

√
1− σ2

t x0 + σtϵt, t = 1, . . . , T , where σt is
a sequence of noise standard deviations increasing from 0
to 1, ϵt is normally distributed. The marginal distribution
p(xt) does not, in general, have a closed-form solution but
for large t ≈ T it approaches a normal distribution.

In order to draw a sample x0, one starts backwards,
drawing first a sample xT from the marginal p(xT ), and
then taking samples xt from p(xt−1|xt), until x0 is ob-
tained. The key observation is that these are comparatively
simple distributions to learn. Various slightly different for-
mulations are possible; here, we learn a denoising network
x̂0(xt, t) that tries to estimate the “clean” sample x0 from
its noisy version xt. Given a training set X of images, such
a network is trained by minimizing the loss

L(x̂0, t) =
1

|X |
∑
x0∈X

w(σt)Ep(xt|x0)∥x̂0(xt, t)− x0∥2

where the weight w(σt) depends on the noise/timestep [12].

3.2. The challenge of a 3D extension

We now consider using a DDPM to learn a distribution
p(v) of 3D models v of objects (in practice radiance fields,
see section 3.4). In oder to train a DDPM to generate 3D
models v, we would require a dataset V of such models.
Differently from 2D images, however, 3D models are not
readily available. We assume instead to have access to 2D
multi-view training data. Each training sample is a viewset
(x,Π), i.e., a collection x ∈ RN×3×H×W of N views of a
3D object with known camera poses Π = {π(i)}Ni=1. The
3D model v is not observed but a latent variable.

The fact that v is a latent variable suggests adopting the
latent diffusion approach, which has been very successful
for 2D images [32], and thus simply replace the input data
x with corresponding codes v. Unfortunately, doing so re-
quires to know the encoder x 7→ v, mapping the input data
x to the latents v. In our case, this mapping amounts to
image-based 3D reconstruction, which is non-trivial.

One way of implementing the mapping x 7→ v is to use
an optimization method like NeRF, which can recover the
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Figure 3: Viewset Diffusion takes in any number of clean con-
ditioning images and generated images with Gaussian noise (sec-
tion 3.3). The denoising function is defined as reconstructing (sec-
tion 3.4) and rendering a 3D volume. When there is at least one
clean conditioning view, Viewset Diffusion samples plausible 3D
reconstructions. When all input views are noisy, it samples a 3D
object form the prior.

radiance field v given a sufficiently large viewset x. This
is the approach taken by several prior works [10, 46], but it
has several shortcomings. First, with no prior information,
reconstructing a model v from a viewset x is ambiguous
due to visibility (the interior of an object does not matter
to its appearance) and over-parameterization. While we can
dismiss these ambiguities as classes of equivalent models1,
nevertheless they increase the irregularity of the distribu-
tion p(v) that we wish to learn [46]. Second, good inde-
pendent reconstructions require a fairly large (≥ 50) num-
ber of views per object, which are not always available, and
even then they may still contain defects such as floaters [34].
Lastly, optimization-based reconstruction is slow (hours per
sample) and must happen for every sample x ∈ X before
training the distribution p(v) can even start.

3.3. Viewset diffusion

In this section, we seek to directly train a DDPM to gen-
erate 3D models using only 2D supervision. Our approach
is centred around a few simple but powerful observations.
First, we note that it is easy to apply DDPMs to viewsets x
because, differently from the 3D radiance fields v, they are
assumed to be observable. Second, while DDPMs do not di-
rectly support generating latent variables, we can interpret
the latent 3D model v as an intermediate viewset represen-
tation learned by the neural network which implements the
DDPM — we simply do not apply diffusion to it.

Concretely, we write the DDPM denoising function as
the composition of two functions. The first is an encoder
network

v = Φ(xt,Π, σt) (1)

which, given a noised viewset (xt,Π), produces as output a

1In the sense that these models all produce the same images.

3D model v. This 3D model is then decoded into an esti-
mate

x̂0(xt) = Ψ(v,Π) = Ψ(Φ(xt,Π, σt),Π) (2)

of the clean viewset by the decoder Ψ that implements dif-
ferentiable rendering. This is the same formulation as stan-
dard image-based diffusion, except that (1) one generates a
set of views in parallel instead of a single image and (2) the
denoiser network has a particular structure and geometric
interpretation. The training loss is the same as for standard
diffusion:

L(Φ,x0,xt,Π, t) = w(σt) ∥Ψ(Φ(xt,Π, σt),Π)− x0∥2

where xt =
√

1− σ2
t x0 + σtεt is a noised version of the

(clean) input viewset x0.
Single and few-view reconstruction. With the model
above, we can learn simultaneously unconditional 3D gen-
eration as well as single and few-view reconstruction with
almost no changes. Given a conditioning viewset (y,Π′),
in fact, we can sample p(x|Π,y,Π′) by feeding into the
network Φ a mixture of noised and clean views:

v = Φ(xt ⊕ y,Π⊕Π′, σt ⊕ 0)

where ⊕ denotes concatenation along the view dimension.
Here σt⊕0 means that we treat σt as a vector of noise vari-
ances, one for each view in the viewset, and append zeros
to denote the fact that the conditioning views y are “clean”.
Discussion. The approach above learns a distribution
p(x) over viewsets rather than a distribution p(v) over 3D
models. As noted in section 1, however, viewsets and
3D models can be thought to be in one-to-one correspon-
dence, so sampling one is equivalent to sampling the other.
While this statement is correct in the limit of infinitely-large
viewsets,2 crucially reconstruction in our case is performed
by a network Φ. The benefit is that this reconstruction net-
work can learn a 3D data prior and use it to perform 3D
reconstruction with much greater data efficiency. In fact,
we use as few as 3 images per viewset, which are far from
sufficient to optimise a radiance field from scratch.

Our approach is also related to RenderDiffusion
(RD) [1], but with substantial theoretical and practical dif-
ferences. First, using our notation, their approach amounts
to reducing the size of the viewset to a single view, which
is insufficient to adequately represent a 3D object v. In
our case, by using a non-trivial viewset, the generation of
successive denoised samples ensures coherent and plausi-
ble appearance and shape from all viewpoints, which is not
guaranteed in RD, which only denoises a single viewpoint.
We also introduce architectural advancements in the form
of local conditioning and multi-view attention-based aggre-
gation, further improving quality.

2And ignoring inconsequential reconstruction ambiguities
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Figure 4: Architecture. 2D input views are unprojected along
camera rays to a canonical feature volume. Multi-scale features
are extracted and aggregated with an attention mechanism to out-
put a single radiance field. The number of input views can be
variable.

3.4. Radiance fields and network architecture

Having discussed the learning formulation, we now de-
scribe key implementation details. A 3D model v = (ρ, c)
is a radiance field, i.e., a pair of functions ρ and c map-
ping a 3D point q ∈ R3 to an opacity value ρ(q) ≥ 0
and an RGB color c(q) ∈ [0, 1]3. For simplicity, we dis-
cretize the radiance field over a 3D grid, expressing it as
a tensor v ∈ R4×H×W×D, and evaluate (ρ(q), c(q)) us-
ing trilinear interpolation and padding as needed. Similar
to DVGO [41], the voxel grid stores colors and opacities
pre-activation, and activations are applied only after trilin-
ear interpolation. Given the camera π (specified by rota-
tion, translation and intrinsic parameters such as the focal
length), then eq. (2) renders the image x = Ψ(v, π) in a
differentiable manner via ray casting.

The goal of the network Φ of eq. (1) is to output the
3D model v given as input the viewset xt (including the
cameras Π) and the noise variance σt for each view. Our
network consists of the following stages (see fig. 4):

1. 2D feature extraction. A small 5-layer 2D convolu-
tional subnetwork f outputs a feature map F (i) = f(x

(i)
t )

for each image x
(i)
t in out of N images in viewset xt.

2. Geometric unprojection. For each feature map F (i),
associated camera pose π(i) = (R(i), T (i)) and the camera
intrinsic matrix K, we form a volume V (i) ∈ RC×H×W×D.
Voxel with centre at location q = (i, j, k) holds feature
F (i)

[
K

(
R(i)|T (i)

)
q̃
]
, where [·] denotes bilinear interpo-

lation, ·̃ denotes homogeneous coordinates and (·|·) denotes
column-wise matrix concatenation. After this step, volumes
V (i) for different images x

(i)
t share the same global refer-

ence frame, so they “line up”. Unprojection allows the vol-

ume to easily match the conditioning image.

3. Per-frame 3D U-Net encoder. We use the same U-
Net encoder as in DDPM [14], but replace the 2D con-
volutional and self-attention blocks with their 3D equiva-
lents, similarly to [26]. The encoder outputs multi-scale
feature maps {W (i)

j }Mj=1, with j = 1 being the finest and
j = M the coarsest feature map, for each input volume
V (i). We also pass the timestep t (and thus, implicitly, the
noise level σt) to the encoder after via the Transformer sinu-
soidal positional embedding [43]. Similarly to DDPM [14],
the timestep modulates the U-Net Convolutional blocks via
FiLM [7]. Each input volume V (i) is processed indepen-
dently by the encoder, hence it accepts the individual noise
level σ(i) for corresponding image I(i).

4. Multi-view 3D U-Net decoder. The decoder acts as
a multi-scale multi-view feature aggregator. At each level
j of the U-Net, the decoder aggregates features the feature
maps {W (i)

j }Ni=1 at level j with an attention mechanism:

W ′
j−1 = Attn(Q = Qj ,K = V = {W (i)

j }Ni=1). The query
QM at the coarsest level is fixed and learnt per-class. Atten-
tion operates at each voxel location independently to min-
imise computational complexity. Learnt attention-based ag-
gregation (instead of mean-averaging) means that the com-
bination of features across views can depend on, for exam-
ple, occlusion. At each feature map level j, the aggregated
features W ′

j−1 are then upscaled, passed through convolu-
tional and self-attention blocks, identically to usual U-Nets
used in diffusion models [14] to output Qj−1 = h(W ′

j−1),
before aggregation at the finer level j − 1.

5. Upscaling. Finally, a small 5-layer 3D convolutional
subnetwork g performs upscaling v = g(Q0) to output the
reconstructed volume v. The output of the network is a
single volume v for the N input views in viewset xt.

We validate our design choices, including the use of un-
projection and attention-based aggregation in table 4.

3.5. Training and inference details

Training. To train our model, we consider a dataset X of
viewsets (for example, from CO3D). We further subsample
each viewset extracting at random Ntrain views (x,Π) that
will be passed at input to the network, where Ntrain ∈ 1, 2,
so that x ∈ {{x(1)}, {x(1), x(2)}}, and an additional un-
seen view (xu, πu), which is unavailable to the network.
We sample the noise level t, and with it the scalar noise
variance σ̄t according to the cosine schedule of [28]. We
then randomly apply Gaussian noise to some of the input
views, such that noise standard deviations can be in one of
three states σt ∈ {{σ̄t}, {σ̄t, σ̄t}, {σ̄t, 0}}, corresponding
to one noised view, two noised views, or one clean and one
noised view, respectively. These three options are sampled
with probability [0.45, 0.45, 0.1], respectively. The noised
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viewset xt = αtx+ σtεt is input to the network3.
Loss. We optimise the network Φ by minimising the pho-
tometric L2 loss (section 3.3), of the renders from recon-
structed volume:

L =

N∑
i=1

w(σ(i)) ∥Ψ(Φ(xt,Π, σt), π
(i))− x(i)∥2

+ λt∥Ψ(Φ(xt,Π, σt), πu)− xu∥2. (3)

The weights w(σ(i)) are set according to the Min-SNR-5
strategy [12]. The loss L also includes a penalty on the
unseen view (xu, πu), as a regularisation strategy to en-
courage 3D consistency. The weight of the unseen view
λt = λ ·mini w(σ

(i)) is also noise-dependent, where λ is a
hyperparameter.
Inference. Inference is performed by progressive denois-
ing of the viewset x. The size of the viewset Ninf used
at inference depends on the dataset and its complexity —
we use Ninf = 5, 3, 4 for CO3D, ShapeNet and Minens,
respectively. When performing single-view reconstruction,
the viewset x includes the clean conditioning view, which is
unchanged during denoising the viewset. In unconditional
3D generation, images in the viewset x are initialised to
samples from Gaussian distribution. We use DDIM [38]
sampling with 250 steps.

4. Experiments
Datasets. We evaluate our method at 128×128 resolution
on ShapeNet-SRN Cars [37] using the standard train/val/test
split [37] and protocol: view 64 is used for conditioning and
the remaining 250 views as novel, unseen prediction targets.
We also evaluate our method on four object classes from
CO3D [30]: Hydrant, Teddybear, Plant and Vase. For each
object class, we form a small testing set with 100 exam-
ples of randomly sampled image pairs and associated cam-
era poses, one for conditioning and the other as the target,
from randomly sampled test instances. Pre-processing de-
tails for CO3D are in the sup. mat.

We also introduce Minens (see fig. 5), a new dataset
that makes it easier to evaluate ambiguity and diversity in
3D reconstruction. We design it to be large in the num-
ber of instances, while sufficiently small for rigorous ex-
perimentation using academic resources. Each object in
Minens consists of a torso with randomly articulated arms,
legs and head and is textured with one of 3,000 skins. We
render 40,000 training and 5,000 validation examples with
OpenGL at 256×256 resolution and downsample to 48×48
with Lanczos interpolation. Each example consists of 3 im-
ages and associated camera poses Π. We form two test sets

3With a slight abuse of notation, this applies a given noise level to the
corresponding image. Also note that some elements of σt can be 0, there-
fore xt can also contain clean (non-noised) images.

Figure 5: Minens dataset. Textured meshes are articulated and
rendered from random camera viewpoints, allowing for procedural
generation of a large number of instances.

with the Minens dataset: ‘Random’, with randomly sam-
pled skins, poses and camera viewpoints, and ‘Ambiguous’,
with manually-selected 3D poses that are ambiguous when
seen from a single viewpoint, e.g., due to one arm being oc-
cluded by the torso. We use different skins for training and
testing. Similar to our subset of CO3D above, we select 100
test samples, consisting of one conditioning image and one
target image, from different viewpoints. Code and the Mi-
nens dataset are available at szymanowiczs.github.
io/viewset-diffusion.
Evaluation protocol. We render the reconstructed ob-
ject from the target viewpoint(s) and measure the Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
(SSIM) and Learned Perceptual Image Patch Similarity [54]
(LPIPS), measured with a pre-trained VGG Net [35], when
compared to the ground truth image. However, determin-
istic baselines like PixelNeRF produce a single average re-
construction which is optimal for squared-error metrics like
PSNR: the ‘average’ sample is blurry (fig. 2), but closer
in PSNR to the ground truth than most samples taken from
the correct posterior distribution.4 Hence, by only looking
at metrics like PSNR, it is simply not possible to measure
the benefits of modelling ambiguity. To measure the latter,
we take multiple samples of reconstructions of every object
and report the best PSNR and SSIM from these samples.
For Minens and CO3D we use 100 samples per testing in-
stance. For ShapeNet-SRN, we take 20 samples due to the
computational burden (the benchmark tests 175,000 gener-
ated views). As LPIPS is not as strongly affected by this
property since it measures perceived visual similarity, here
we report the average across all 100/20 samples. For com-
pleteness, we also report the best LPIPS across all samples
and the average PSNR and SSIM, but we report them in
brackets ‘(·)’ as they do not measure well what we want.
Baselines. Our primary aim is to show the importance of
modelling reconstruction ambiguity by showing that this re-
sults in sharper and possibly more accurate reconstructions

4By definition, the mean of a distribution has the minimum average
square distance to all samples, and this distance is significantly less than
the average squared distance between pairs of samples, particularly in
high-dimensional spaces like images.
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Method Random Ambiguous
PSNR ↑ LPIPS ↓ PSNR ↑ LPIPS ↓

RenderDiffusion 19.85 0.213 16.33 0.236
PixelNeRF 21.55 0.220 17.86 0.250
RenderDiffusion++ 24.18 0.157 19.92 0.210
Ours w/o D 24.63 0.115 20.26 0.156

Ours w D - best 24.82 (0.072) 21.50 (0.081)
Ours w D - mean (22.81) 0.107 (18.62) 0.130

Table 1: Single view reconstruction - Minens. Ours achieves
larger gains in the Ambiguous subset, showcasing the strength of
probabilistic modelling.

than deterministic predictors. We compare against other re-
constructors trained using 2D data: the fully-deterministic
PixelNeRF [53], our reimplementation of RenderDiffusion
(RD) [1], and our improvement over it, RD++. We train
PixelNeRF using the publicly available code with a tuned
learning rate and softplus activation for improved train-
ing stability and reimplement RD based on publicly avail-
able information. Since RD uses only single images for
training (using our notation from section 3.5: Ntrain = 1,
Ninf = 1, σt = {σ̄t} and λ = 0) and a weaker architec-
ture, for fairness we also consider the variant RD++. RD++
uses the architecture from section 3.4 (like Viewset Diffu-
sion), takes as input a single noised image (like RD) and
is trained with multi-view supervision (like Viewset Diffu-
sion): Ntrain = 1, σt = {σ̄t} and λ ̸= 0. At inference time
RD++, like RD, is capable of 3D generation by diffusing
over a single view Ninf = 1, starting from pure Gaussian
noise. Like RD, RD++ performs single-view reconstruc-
tion in a deterministic manner by accepting one clean input
view Ninf = 1, σt = {0}. Finally, to evaluate the impor-
tance of a probabilistic model, we include a baseline of our
method without diffusion (i.e., one that receives a clean im-
age and directly regresses a 3D volume): Ntrain ∈ {1, 2},
σt ∈ {{0}, {0, 0}}, Ninf = 1.

On ShapeNet-SRN we compare to single-view recon-
struction deterministic works which report scores on this
standard benchmark [9, 16, 21, 36, 37, 47, 53].

4.1. Single-view reconstruction on Minens

In table 1 we compare the reconstruction quality us-
ing PSNR and LPIPS. Sampling multiple plausible recon-
structions via views diffusion improves the PSNR of the
best sample in both ‘Ambiguous’ and ‘Random’ subsets.
The significant gain in PSNR in the ‘Ambiguous’ dataset
shows that diffusion can effectively single-view reconstruc-
tion ambiguities. Renders of samples of the reconstructed
volumes in fig. 2 show how diverse poses and textures are
sampled under the presence of ambiguity.

In table 1 it is also seen that using views diffusion leads

Method PSNR ↑ SSIM ↑ LPIPS ↓
3DiM 21.01 0.57 -
LFN 22.42 0.89 -

SRN 22.25 0.88 0.129
CodeNeRF 22.73 0.89 0.128
FE-NVS 22.83 (0.91*) (0.099*)
VisionNeRF 22.88 0.90 0.084
PixelNeRF 23.17 0.89 0.146
Ours w/o D 23.21 0.90 0.116

Ours w D - best 23.29 0.91 (0.094)
Ours w D - mean (22.72) (0.90) 0.099

Table 2: Single view reconstruction — ShapeNet Cars. Ours
achieves the best PSNR, with the additional benefit of probabilis-
tic treatment. *FE-NVS optimises SSIM in training, affecting per-
ceptual sharpness.

to a decrease in average LPIPS (lower is better), suggest-
ing that all samples from our method are more perceptu-
ally plausible than the results from the baselines. Finally,
the improvement in the metrics is further accompanied by
qualitative comparison in figs. 2 and 6 where our samples
are seen to be much sharper than the baseline results.

4.2. Single-view reconstruction: ShapeNet & CO3D

Quantitative results in ShapeNet and CO3D are given
in tables 2 and 3. Like in Minens, in ShapeNet-SRN the
best sample from Viewset Diffusion has higher PSNR than
the baselines, which indicates that the model can sample
from the correct distribution. This is further confirmed by
Viewset Diffusion’s lower (better) LPIPS than all baselines
in CO3D (table 3) and almost all baselines in ShapeNet (ta-
ble 2). VisionNeRF [21] outperforms our method in LPIPS,
likely due to their use of the much stronger ViT-based 2D
feature extraction (our 2D feature extractor is much smaller,
consisting of only 5 convolutional layers). On challenging
CO3D classes (Teddybear, Plant, Vase), the deterministic
baselines achieve better PSNR, possibly because more than
100 samples are required to adequately sample the space of
reconstructions for these more complex objects.

4.3. Unconditional generation

Viewset Diffusion supports unconditional generation by
setting the number of clean input views to 0. To gener-
ate 3D prior works [26, 34, 46] require 3D ground truth at
training time, while we only use 3 views per object5 (at test
time, we can generate any number of 3D consistent views).
In fig. 7 we compare samples from our method (network

5For Minens dataset this is precisely true. In CO3D and ShapeNet dif-
ferent viewsets may come from the same objects due to data limitations,
but they are treated independently by the training algorithm.
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Hydrant Teddybear Plant Vase

Method PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
RenderDiffusion 17.43 0.70 0.263 14.71 0.48 0.444 17.30 0.46 0.467 18.92 0.68 0.288
PixelNeRF 18.07 0.67 0.297 15.01 0.43 0.451 17.62 0.41 0.460 17.98 0.61 0.329
RenderDiffusion++ 21.61 0.69 0.282 19.58 0.65 0.303 19.85 0.49 0.399 21.51 0.65 0.292
Ours w/o D 22.06 0.78 0.217 19.73 0.65 0.309 20.33 0.51 0.382 21.89 0.68 0.264

Ours w D - best 22.36 0.80 (0.176) 19.68 0.70 (0.267) 20.23 0.58 (0.339) 21.36 0.75 (0.210)
Ours w D - mean (20.52) (0.77) 0.199 (17.28) (0.64) 0.309 (19.47) (0.40) 0.366 (20.05) (0.71) 0.237

Table 3: Single view reconstruction - CO3D. Our method improves over baselines in CO3D classes on SSIM and LPIPS.

Input PixelNeRF Ours Ground truthRenderDiff.

Input PixelNeRF Ours Ground truthRenderDiff.

Input PixelNeRF Ground truthOursVisionNeRF

Figure 6: Single view reconstruction. Our method outputs
sharper shapes than prior work. The solutions are ambiguous,
therefore our samples do not match the ground truth exactly but
are more plausible than deterministic baselines.

from section 3.4, Ninf > 1), RD++ (network from sec-
tion 3.4, Ninf = 1) and RD (network from [1], Ninf = 1).
Viewset Diffusion samples are sharper from all viewpoints,
which demonstrates the advantage of diffusing more than
one view jointly. Intuitively, in the last step of diffusion,
Viewset Diffusion essentially performs reconstruction from
3 ≤ Ninf ≤ 5 (nearly) clean views of the object, whereas
RD and RD++ do so from a single view, which results in
blurry images from other viewpoints.

PSNR ↑ LPIPS ↓
Full model 20.36 0.075

⊖ diffusion D 18.85 0.101
⊖ attention in aggregation 19.54 0.100
⊖ unprojection 18.26 0.164

Table 4: Ablations. Impact of removing component from our
method on reconstruction quality.

4.4. Ablations

We assess the importance of different components of our
method: input image unprojection, attention-based aggre-
gation of features from different views, and using diffusion
(D). We use the ‘Ambiguous’ Minens dataset and evaluate
best PSNR and average LPIPS in the unseen novel views.
We train smaller models (half the number of U-Net con-
volutional layers and no self-attention layers) for fewer it-
erations (60k) due to the computational cost. Results are
reported in table 4. Not using diffusion (σt = {0}, us-
ing notation from section 3.5) leads to a drop in PSNR and
worse perceptual quality due to the reconstructions being
blurry in the presence of ambiguity. Removing attention-
based feature aggregation (section 3.4, 4.) across frames
and aggregating them with a simple mean prohibits the net-
work from reasoning about viewpoints and occlusion when
pooling the features from different views. Finally, removing
unprojection (section 3.4, 2.) hinders the learning process
due to the removal of local conditioning which is known to
improve the learning process [53].

5. Conclusions

We have presented Viewset Diffusion, a method to learn
a model for probabilistic single-view 3D reconstruction and
generation. By diffusing viewsets, we can learn a DDPM
from multi-view 2D supervision and still learn to gener-
ate 3D objects, having only 3 views per object and no ac-
cess to 3D ground truth. Viewset Diffusion also unifies
3D reconstruction and generation, and enables feed-forward
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Ours RenderDiffusion++ RenderDiffusion

Figure 7: Unconditional generation - Cars, Minens, Hydrants, Teddybears, Vases, Plants. Samples from our method show higher
visual detail than RenderDiffusion [1] and our improvement over it, RenderDiffusion++.

probabilistic 3D reconstruction with diffusion models. We
have shown empirically that a probabilistic approach to the
single-view reconstruction problem leads to higher-quality
results and less blurry solutions than deterministic alterna-
tives.
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manner compatible with their terms. The images used in
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