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Abstract

Vision transformers have achieved leading performance
on various visual tasks yet still suffer from high computa-
tional complexity. The situation deteriorates in dense pre-
diction tasks like semantic segmentation, as high-resolution
inputs and outputs usually imply more tokens involved in
computations. Directly removing the less attentive tokens
has been discussed for the image classification task but can
not be extended to semantic segmentation since a dense pre-
diction is required for every patch. To this end, this work
introduces a Dynamic Token Pruning (DToP) method based
on the early exit of tokens for semantic segmentation. Mo-
tivated by the coarse-to-fine segmentation process by hu-
mans, we naturally split the widely adopted auxiliary-loss-
based network architecture into several stages, where each
auxiliary block grades every token’s difficulty level. We can
finalize the prediction of easy tokens in advance without
completing the entire forward pass. Moreover, we keep k
highest confidence tokens for each semantic category to up-
hold the representative context information. Thus, compu-
tational complexity will change with the difficulty of the in-
put, akin to the way humans do segmentation. Experiments
suggest that the proposed DToP architecture reduces on av-
erage 20% ∼ 35% of computational cost for current seman-
tic segmentation methods based on plain vision transform-
ers without accuracy degradation. The code is available
through the following link: https://github.com/
zbwxp/Dynamic-Token-Pruning.

1. Introduction
The Transformer [21] is a remarkable invention because

of its exceptional capability to model long-range depen-

dencies in natural language processing. It has been ex-

tended to computer vision applications and is known as

the Vision Transformer (ViT) [7], by treating every image
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Figure 1. Illustration of token difficulty levels by three stages
using ADE20K dataset. The network is naturally split into stages

using inherent auxiliary blocks. Each sextuplet presents the early-

exited/pruned tokens and their corresponding predictions succes-

sively for an image, where bright areas represent early-exited easy

tokens at the current stage, while the dark ones are the kept hard

tokens for the following computing.

patch as a token. Benefiting from the global multi-head

self-attention, competitive results have been achieved on

various vision tasks, e.g. image classification [7, 27], ob-

ject detection [3, 32] and semantic segmentation [5, 6, 28].

However, heavy computational overhead still impedes its

broad application, especially in resource-constrained envi-

ronments. In semantic segmentation, the situation deterio-

rates since high-resolution images generate numerous input

tokens. Therefore, reducing computational costs for ViT

has attracted much research attention.

Since the computational complexity of vision transform-

ers is quadratic to the token number, decreasing its magni-

tude is a direct path to lessen the burden of computation.

There has been a line of works studying persuasive tech-
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niques of token pruning regarding the image classification

task. For example, DynamicViT [19] determines kept to-

kens using predicted probability by extra subnetworks, and

EViT [13] reorganizes inattentive tokens by computing their

relevance with the [cls] token. Nevertheless, removing to-
kens, even if they are inattentive, can not be directly ex-
tended to semantic segmentation since a dense prediction
is required for every image patch. Most recently, Liang et
al. [12] proposed a token reconstruction layer that rebuilds

clustered tokens to address the issue.

In this work, a fresh angle is taken and breaks out of the

cycle of token clustering or reconstruction. Motivated by

humans’ coarse-to-fine and easy-to-hard segmentation pro-

cess, we progressive grade tokens by their difficulty levels at

each stage. Hence for easy tokens, their predictions can be

finalized in very early layers and their forward propagation

can be halted early on. Consequently, only hard tokens are

processed in the following layers. We refer to the process

as the early exit of tokens. Figure 1 gives an illustration.

The main body of the relatively larger objects in the image

is first recognized and their process is ceased, while deeper

layers progressively handle those challenging and confusing

boundary regions and smaller objects. These predictions

from the staged, early-exiting process can be used together

with those from the completed inference. Since both out-

puts then form the final results jointly, it requires no token

reconstruction operation and results in a simple yet effective

form of efficient ViT for segmentation.

This work introduces a novel Dynamic Token Pruning

(DToP) paradigm in plain vision transformers for seman-

tic segmentation. Given that auxiliary losses [29, 30] are

widely adopted, DToP divides a transformer into stages us-

ing the inherent auxiliary blocks without introducing extra

modules and calculations. While previous works discard
auxiliary predictions irrespectively, we make good use of
them to grade all tokens’ difficulty levels. The intuition of

such a design lies in the dissimilar recognition difficulties

of image patches represented by individual tokens. Easy

tokens are halted and pruned early on in the ViT, while

hard ones are kept to be computed in the following lay-

ers. We note that having this observation and shifting from

auxiliary-loss-based architecture to DToP for token reduc-

tion is a non-trivial contribution. A possible situation ex-

ists where objects consisting of only extremely easy tokens,

e.g. sky. As a result, DToP completely discards tokens from

easy-to-recognize categories in early layers, and this causes

a severe loss of contextual information for the few remain-

ing tokens in their computations. To fully utilize the inter-

class feature dependencies and uphold representative con-

text information, we keep k highest confidence tokens for

each semantic category during each pruning process. Con-

tributions are summarized as follows:

• We introduce a dynamic token pruning paradigm based

on the early exit of easy-to-recognize tokens for se-

mantic segmentation transformers. The finalized easy

tokens at intermediate layers are pruned from the rest

of the computation, and others are kept for continued

processing.

• We uphold the context information by retaining k high-

est confidence tokens for each semantic category for

the following computation, which improves segmenta-

tion accuracy by guaranteeing that enough contextual

information is available even in extremely easy cases.

• We apply DToP to mainstream semantic segmenta-

tion transformers and conduct extensive experiments

on three challenging benchmarks. Results suggest that

DToP can reduce up to 35% computation costs without

a notable accuracy drop.

2. Related Work
2.1. Semantic Segmentation Transformers

Semantic segmentation assigns each pixel a semantic

category for the purpose of pixel-level image parsing. In

the last decade, deep learning techniques have considerably

facilitated the development of semantic segmentation ap-

proaches. Vision transformers [7, 28] now take up the ba-

ton to continue advancing the field after the great success of

convolutional neural networks [8, 15]. ViT [7] adapts the

standard Transformer [21] architecture to computer vision

with the fewest possible modifications, which obtains com-

petitive results and inspires recent approaches. SETR [30]

first employs ViT as an encoder and incorporates a con-

volutional decoder, achieving impressive performance on

semantic segmentation benchmarks. SegFormer [23] goes

beyond the plain architecture and introduces pyramid fea-

tures to acquire multi-scale contexts. Segmenter [20] uses

learnable class tokens as well as the output of the encoder

to predict segmentation masks, which is data-dependent.

SegViT [28] further explores the capacity of the critical

self-attention mechanism and proposes a novel attention-

to-mask module to dynamically generate precise segmenta-

tion masks. In semantic segmentation, high-resolution im-

ages usually imply a large number of tokens. The attendant

high computational complexity in vision transformers may

be blamed for their limited applications.

2.2. Token Reduction

Since the computational complexity of vision transform-

ers is quadratic to the length of input sequences, decreasing

the number of tokens seems straightforward to reduce com-

putation costs. DynamicViT [19] observes that an accurate

image classification can be obtained by a subset of most

informative tokens and proposes a dynamic token specifi-

cation framework. EViT [13] demonstrates that not all to-
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kens are attentive in multi-head self-attention and reorga-

nizes them based on the attentiveness score with the [cls]
token. A-ViT [24] computes a halting score for each token

using the original network parameter and reserves comput-

ing for only discriminative tokens.

These token reduction approaches are carefully designed

for image classification based on the intuition that remov-

ing uninformative tokens (e.g. backgrounds) yields a minor

negative impact on the final recognition. However, things

changed in semantic segmentation as we are supposed to

make predictions on all image patches. Liang et al. [12] de-

velop token clustering/reconstruction layers to decrease the

number of tokens at middle layers and increase the num-

ber before the final prediction. Lu et al. [17] introduced

an auxiliary PolicyNet before transformer layers to guide

the token merging operation in regions with similar con-

tent. SparseViT [4] introduced a pruning routine on Swin

Transformer [14] for dense prediction tasks. Differently,

we perform token reduction by finalizing the prediction of

easy tokens at intermediate layers and reserving computing

only for hard tokens in a dynamic manner.

2.3. Comparisons to Prior Works

In image classification, DVT [22] determines the patch

embedding granularity and generates different token num-

bers based on varying recognition difficulties at the image

level. Easy images can be accurately predicted with a mere

number of tokens, and hard ones need a finer representa-

tion. Going one step further, we base DToP on the assump-

tion that image patches with varying contents represented

by tokens are of dissimilar recognition difficulties in se-

mantic segmentation. We can halt easy tokens and reserve

only hard tokens for subsequent computing by making early

predictions via auxiliary blocks at intermediate layers. As

we directly combine the early predictions for easy tokens to

form the final recognition results, DToP yields no informa-

tion loss during token reduction and thus requires no token

reconstruction operation, compared with Liang et al. [12].

DToP is also inspired by deep layer cascade (LC) [11]

but possesses the following unique characteristics. Firstly,

DToP applies to plain vision transformers and LC pyramid

convolutional neural networks. The appealing architectural

properties of vision transformers enable DToP to reduce

computation costs without modifying the network architec-

ture or operators, while LC requires specific region convo-

lution. Secondly, DToP keeps k highest confidence tokens

for each semantic category for the subsequent computing,

which prevents easy category from halting early, contribut-

ing to the effective exploitation of contextual information.

3. Method
This work introduces a Dynamic Token Pruning method

based on the early exit of tokens, which expedites plain vi-

sion transformers for semantic segmentation. We detail the

paradigm in this section.

3.1. Preliminary

A conventional vision transformer [7] splits an image

X ∈ R
3×H×W into different patches. We then obtain a

sequence of HW
P 2 ×C via patch embedding. H and W rep-

resent the image resolution, P is the patch size and C is the

feature dimension. Let N = HW
P 2 be the length of the input

sequence, i.e. the number of tokens. Vision transformers

are position-agnostic, and we generally add positional en-

coding to represent the spatial information of each token.

The resulting sequence is denoted as Z0 ∈ R
N×C , which

serves as the input.

Vision transformers are usually developed from repeated

units that contain a multi-head self-attention (MHSA) mod-

ule and a feed-forward network (FFN). Layer normalization

(LN) [1] and residual connection [8] are employed within

such units. We refer to a unit as one layer indexed by

l ∈ {1, 2, ..., L}, and the output of each layer is marked

as Zl.

Z ′
l = MHSA(LN(Zl−1)) + Zl−1,

Zl = FFN(LN(Z ′
l)) + Z ′

l .
(1)

Note that FFN includes a non-linear activation function, e.g.

GeLU [9].

3.2. Dynamic Token Pruning

Since a token is a natural representation of an image

patch, we can finalize the prediction for easy tokens in ad-

vance without the need for complete forward computing by

mimicking the segmentation process of humans. We refer

to it as the early exit of tokens, where easy tokens are halted

and pruned in the early stages while hard ones are preserved

for calculation at the latter stages. By doing so, fewer tokens

are processed in the following layers, significantly reducing

the computation costs.

As shown in Figure 2, we divide a plain vision trans-

former backbone into M stages using its inherent auxiliary

blocks Hm (m ∈ {1, 2, ...,M}) at the end of each stage.

Let Pm ∈ R
N×K represent the predicted results at the m-th

stage, where K is the number of semantic category. Sup-

pose that tokens have finished lm layers of forward propa-

gation at this point, then:

Pm = Hm(Zlm). (2)

pm,n coming from Pm is the maximum predicted probabil-

ity of the n-th token. Previous works adopt Pm to calcu-

late auxiliary losses during training and discard them irre-

spectively during inference. This work highlights that easy

tokens can be correctly classified with high predictive con-

fidence in these auxiliary outputs (i.e. Pm). The proposed
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Figure 2. Illustration of the proposed DToP framework. Given an existing plain vision transformer, we divide it into stages using the

inherent auxiliary heads. At the final layer (indexed by lm) of the m-th stage, we use the auxiliary block Hm to grade all token difficulty

levels. We finalize the predictions of high-confidence easy tokens at the current stage and handle other low-confidence hard tokens in the

following stages. The retained k highest confidence tokens for each semantic category to uphold representative context information are not

presented for simplicity. Predictions from each stage jointly form the final results.

DToP expects to fully explore their potential ability to tell

apart easy and hard tokens during both training and infer-

ence.

Inspired by [10], we grade all token difficulty levels us-

ing Pm based on a simple criterion. Assume a large confi-

dence threshold p0, e.g. 0.9. Easy tokens are classified with

higher than 90% scores, while hard ones are classified with

lower scores. Since confident predictions for easy tokens

are obtained, we prune them and halt their continued for-

ward propagation. Hard tokens are reserved in computing

in the following layers to achieve a reliable prediction. In

other words, we prune the n-th token in Zlm if pm,n � p0,

otherwise we keep it. After propagating an image through

the whole network, we combine the predicted token labels

from each stage to form the final results.

3.3. Query Matching Auxiliary Block

Within the DToP framework, the auxiliary block for

grading all token difficulty levels should follow two princi-

ples: capable of accurately estimating token difficulty lev-

els and with a lightweight architecture. Therefore, we take

the most recent attention-to-mask module (ATM) [28] to

achieve this goal. Specifically, a series of learnable class

tokens exchange information with the encoder features us-

ing a transformer decoder. The output class tokens are used

to get class probability predictions. The attention score re-

garding each class token is used to form a mask group. The

dot product between the class probability and group masks

produces the final prediction.

Two modifications are made to adapt ATM into the DToP

framework. First, we decrease the number of layers in ATM

as we observe no significant performance perturbation in

the DToP framework with the original setting, which also

guarantees a low computational overhead. Second, we de-

couple multiple cascaded ATM modules and use them as

separate auxiliary segmentation heads, each with individual

learnable class tokens. We note that we take the power-

ful ATM module to grade all token difficulty levels as an

example, because a reliable estimation of tokens’ segmen-

tation difficulty will lead to a good accuracy-computation

trade-off. Any other existing segmentation heads are of the

same effect (see [23, 29, 30] for examples). In Section 4, we
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also provide experiments with the regular FCN head [16] to

validate the generality of DToP.

3.4. Upholding Context Information

Scenarios exist where all tokens of a specific semantic

category are extremely easy to recognize, e.g. sky. Such

tokens may be entirely removed in early layers, resulting

in a loss of context information in the following layers of

calculation. Practices [25, 26] indicate that fully exploit-

ing the inter-category contextual information improves the

overall semantic segmentation accuracy. To this end, we

keep k highest confidence tokens for each semantic cat-

egory during each pruning process. Only the categories
that appear in the current image are considered. Given a

specific semantic category, if the number of tokens with a

higher than p0 score is more than k, then the top-k of them

are kept. Otherwise, we keep the actual number of them.

These category-known tokens join in the calculation along

with other low-confidence ones, so semantic information

of easy category is preserved for inter-category information

exchange, leading to an accurate semantic segmentation.

4. Experiments
4.1. Datasets and Metrics

ADE20K [31] is a widely adopted benchmark dataset

for semantic segmentation. It contains about 20k images

for training and 2k images for validation. All images are la-

beled with 150 semantic categories. COCO-Stuff-10K [2]

dataset contains 9k images for training and 1k images for

testing. Following [28], we use 171 semantic categories for

experiments. Pascal Context [18] has a total of 10, 100 im-

ages, of which 4, 996 images are for training and 5, 104 for

validation. It provides pixel-wise labeling for 59 categories,

excluding the background.

Following the common convention, we use the mean in-

tersection over union (mIoU) to evaluate the segmentation

accuracy and the number of float-point operations in giga

(GFLOPs) to estimate the model complexity. The compu-

tation in DToP is unevenly allocated among easy and hard

samples by pruning different numbers of tokens. We thus

report the average GFLOPs over the entire val/test dataset.

4.2. Implementation Details

We adopt the plain vision transformer incorporating the

adapted ATM module as the baseline model, where ATM

modules work as auxiliary heads. We follow the standard

training settings in mmsegmentation1 and use the same hy-

perparameters as the original paper. All reported mIoU

scores are based on single-scale inputs. k is set to 5 in this

work. As changing p0 within a certain range (0.90 ∼ 0.98)

1https://github.com/open-mmlab/mmsegmentation

Method GFLOPs mIoU(%)

Baseline 109.9 49.7

+ DToP@Direct (♣.0) 87.5 47.9 (-1.8)

+ DToP@Finetune (♣2.5) 86.8 49.8 (+0.1)

+ DToP@Retrain (♣12.0) 87.5 49.1 (-0.6)

Table 1. Comparison of training schemes. With a short finetun-

ing scheme, the pruned model achieves even better results than the

baseline. ♣ means extra training time in hours on 8 NVIDIA A100

cards.

during training leads to similar results, we empirically fix it

to 0.95 for all training processes unless specified.

4.3. Ablation Study

We first conduct extensive ablation studies with the

ADE20K dataset [31] using ViT-Base [7] as the backbone.

4.3.1 Necessity for Model Training

Using auxiliary heads for efficient training is a common

convention in the semantic segmentation community, see [5,

29, 30] for examples. Generally, the auxiliary outputs are

discarded at test time. As the proposed DToP grades all

token difficulty levels using the auxiliary outputs, we can

apply DToP to existing methods off-the-shelf during in-

ference. Therefore, we verify the necessity for model re-

training or finetuning under the proposed DToP framework.

We denote DToP@Direct as directly applying DToP to the

baseline model during inference. DToP@Finetune means

finetuning the segmentation heads for 40k iterations on the

baseline model using DToP, and DToP@Retrain retraining

the entire model for 160k iterations.

Results are shown in Table 1. We observe that all three

settings reduce the computation costs by about 20%, where

DToP@Direct and DToP@Retrain lead to a significant ac-

curacy drop while DToP@Finetune performs slightly bet-

ter. Results suggest that the proposed DToP@Finetune re-

quires only a little extra training time but significantly re-

duces the computational complexity while maintaining ac-

curacy. We adopt the @Finetune setting in the following

experiments. Note that the slight fluctuation in GFLOPs of

the three training schemes comes from varied predictions of

auxiliary heads in each individual training processes.

4.3.2 Ablation for Confidence Threshold

The confidence threshold p0 is a crucial hyperparameter that

decides the pruned token number in each pruning process

and directly affects the trade-off between computation cost

and accuracy. Quantitative results are shown in Table 2.

When p0 = 1, the model degenerates to the baseline archi-

tecture. As p0 decreases, more easy tokens are pruned as
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p0 0.60 0.70 0.80 0.85 0.90 0.95 1.00

GFLOPs 70.2 73.4 77.8 80.7 83.6 86.8 109.9

mIoU(%) 46.8 48.0 49.0 49.3 49.5 49.8 49.7

Table 2. Ablation for confidence threshold p0. The results are

evaluated on ADE20K with ATM head.

Method p0 GFLOPs mIoU(%)

SETR - 107.7 47.0

+ DToP@Direct 0.90 74.0 45.6 (-1.4)

+ DToP@Finetune 0.90 72.5 46.3 (-0.7)

+ DToP@Direct 0.95 78.3 46.2 (-0.8)

+ DToP@Finetune 0.95 76.5 46.8 (-0.2)

+ DToP@Direct 0.98 82.5 46.6 (-0.4)

+ DToP@Finetune 0.98 80.6 47.0 (+0.0)

Table 3. Ablation results based on SETR. About 25% of the to-

kens can be pruned with no performance dropped.

well as more unreliable early predictions. We observe that

the performance saturates at p0 = 0.95 when using ATM as

the segmentation head.

We also verify the value using SETR [30] (w/ the naive

segmentation head described in FCN [16]) and show the re-

sults in Table 3. We observe that for FCN head p0 = 0.98
may be a better choice. In practice, the value can be chosen

empirically with a small validation set. We also note that

for SETR, DToP@Direct has already obtained a promising

mIoU score of 46.6% that is only 0.4% lower than the base-

line but with significantly reduced computation (∼ 23.4%).

Some qualitative examples of how the threshold p0 affects

the pruned token number and segmentation accuracy are

shown in Figure 32.

4.3.3 Exploration on Pruning Position

The critical insight of DToP is to finalize the prediction of

easy tokens in intermediate layers and prune them in the fol-

lowing calculation by grading all tokens’ difficulty levels.

Thus the position of auxiliary heads matters. It affects the

recognition accuracy of pruned easy tokens and the trade-

off between computation cost and segmentation accuracy.

We conduct explorations on the pruning position lm and

show the results in Table 4. Results demonstrate that divid-

ing the backbone into three stages with token pruning at the

6th and 8th layers achieves an expected trade-off between

computation cost and segmentation accuracy. We adopt this

2Note that some pruned tokens change their final segmentation due to

the attention-to-mask mechanism in ATM but will remain the same in reg-

ular FCN heads.

Stages Position GFLOPs mIoU (%)

1 Baseline 109.9 49.7

2 {6} 85.7 49.4

2 {8} 92.1 49.4

3 {6, 8} 86.8 49.8
4 {3, 6, 8} 74.5 48.3

Table 4. Exploration of the pruning position. The first column

indicates the number of divided stages.

Method Context GFLOPs mIoU(%)

Baseline - 109.9 49.7

Remove × 82.6 48.7

Top-35% × 84.6 48.7

Average � 83.5 48.9

Top-k � 83.6 49.5

Avg & top-k � 83.6 49.7

Table 5. Comparison of different pruning methods. All models

are trained with DToP@Finetune using p0 = 0.9.

Method Decode Aux GFLOPs mIoU (%)

Baseline ATM ATM 109.9 49.7

+ DToP@Finetune ATM ATM 83.6 49.5

Baseline FCN FCN 107.7 47.0

+ DToP@Finetune FCN FCN 80.6 47.0

Baseline FCN ATM 107.7 49.6

+ DToP@Finetune FCN ATM 83.4 48.4

Baseline ATM FCN 109.9 47.9

+ DToP@Finetune ATM FCN 73.3 46.9

Table 6. Exploration of different segmentation heads. Results

in the second part uses p0 = 0.98 and others 0.9. ‘Decode’ means

the final decoder head and ‘Aux’ auxiliary head.

setting in all other experiments and note that it may not be

optimal on account of limited explorations.

4.3.4 Ablation for Pruning Method

After grading all token difficulty levels at the current stage,

the specific pruning method is flexible. We experiment with

four token pruning methods. Following LC [11], we remove

easy tokens directly without the consideration of halting

easy category information. We also prune a fixed propor-

tion of tokens by removing the top 35% highest confidence

tokens to evenly allocate computation among images. To

uphold context information, an alternative is to average all

easy token values into one token for each semantic category.

In contrast, this work keeps k highest confidence tokens for

each appeared semantic category to uphold representative

context information, marked as top-k. Results are shown
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Figure 3. Illustration of the effects for different confidence threshold. Samples are from ADE20K dataset. For each sextuplet, we show

the pruned token distribution and the ground truth (first row), as well as its corresponding segmentation results (second row). Bright areas

represent pruned tokens, and those in the dark are kept tokens for the following computing. A small p0 value (left two examples) leads to

more pruned tokens in early stages but results in inferior segmentation results (see the red arrow).

Figure 4. Predicted results of three stages during the token pruning processes. Examples are from ADE20K with different image

complexity: most tokens are pruned (left group), the majority are pruned (middle group), and very few are pruned (right group). For each

sextuplet, we show the pruned token distribution and the corresponding segmentation results at each stage.

in Table 5, where the proposed top-k method outperforms

others by a large margin, suggesting its effectiveness. Fur-

thermore, we observe that combining the Average and top-k
strategies yields slightly better results.

4.3.5 Influence of Segmentation Heads

In Table 6, we verify different segmentation heads and ob-

serve that the proposed DToP performs effectively in both

ATM and FCN settings (first two parts), indicating its gen-

eral applicability. To ensure a fair comparison, we select

different p0 values to maintain similar GFLOPs and com-

pare the performance. We notice that the choice of the aux-

iliary head significantly influences the performance. Par-

ticularly, the powerful ATM head provides a more accurate

estimation of all tokens’ difficulty levels, resulting in supe-

rior results.

4.4. Application to Existing Methods

We apply the proposed DToP to two mainstream seman-

tic segmentation frameworks in plain vision transformers.

SETR [30] with DToP uses the naive upsampling decoder,

and SegViT [28] adopts our adapted ATM module. Re-

sults are shown in Table 7 using three challenging bench-

marks. With an appropriate confidence threshold p0, the
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Method Backbone p0
ADE20K Pascal Context COCO-Stuff-10K

mIoU(%) GFLOPs mIoU(%) GFLOPs mIoU(%) GFLOPs

SETR [30] ViT-Base - 47.0 107.7 58.1 92.4 41.2 107.7

+ DToP@Finetune ViT-Base 0.90 46.3 72.5 57.5 61.4 40.6 77.6

+ DToP@Finetune ViT-Base 0.98 47.0 80.6 58.2 69.1 40.9 86.4

SegViT [28] ViT-Large - 53.3 617.0 63.0 315.4 47.4 366.9

+ DToP@Finetune ViT-Large 0.90 52.4 380.3 62.2 206.1 46.6 253.1

+ DToP@Finetune ViT-Large 0.95 52.8 412.8 62.7 224.3 47.1 276.2

Table 7. Main results on three semantic segmentation benchmarks. We apply the proposed DToP with the finetuning training scheme to

current state-of-the-art semantic segmentation networks based on plain vision transformers. GFLOPs is the average number of the whole

validation dataset. We perform token pruning at {8th, 16th} layers for ViT-Large.

Figure 5. Visualized results. The segmentation results are predicted on ADE20K (first row), Pascal Context (middle row), and COCO-

Stuff-10K (last row). The model is SegViT with DToP@Finetune based on ViT-Large.

proposed DToP can reduce on average 20% ∼ 35% com-

putation cost without notable accuracy degradation. More

specifically, SETR with DToP@Finetune reduces 25.2%
computation cost (FLOPs 107.7G → 80.6G) without mIoU

drop on ADE20K and even obtains a slightly better mIoU

(58.1% → 58.2%) on Pascal Context dataset. SegViT with

DToP@Finetune based on ViT-large reduced about 35%
computation with only 0.5% mIoU lower on ADE20K.

A qualitative comparison regarding the pruned token

number of different images is presented in Figure 4. We

see that most tokens are pruned at very early stages for im-

ages of simple scenarios. For complex scene images, most

tokens remain until the final prediction. Consequently, the

computation is unevenly allocated among images by adjust-

ing the pruned token number, yielding a considerable im-

provement in computation efficiency. We also observe that

pruned easy tokens are primarily located at the central area

of objects, while kept hard tokens are located on the bound-

aries, similar to the segmentation process by humans. Some

visualized predictions are shown in Figure 5.

5. Conclusion

This work studies the problem of reducing computation

costs for existing semantic segmentation based on plain vi-

sion transformers. A Dynamic Token Pruning paradigm is

proposed based on the early exit of tokens. Motivated by

the coarse-to-fine segmentation process by humans, we as-

sume that different tokens representing image regions have

dissimilar recognition difficulties and grade all tokens’ diffi-

culty levels using the inherent auxiliary blocks. To this end,

we finalize the predictions of easy tokens at intermediate

layers and halt their forward propagation, which dynami-

cally reduces computation. We further propose a strategy to

uphold context information by preserving extremely easy

semantic categories after token pruning. Extensive exper-

imental results suggest that the proposed method achieves

compelling performance.

Similar to all other dynamic networks, DToP can not take

full advantage of the calculation efficiency of a mini-batch.

We will make optimization in the future and further expedite

vision transformers using the proposed DToP.
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