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Abstract

Knowledge transfer from multi-modal, i.e., LiDAR points
and images, to a single LiDAR modal can take advantage of
complimentary information from modal-fusion but keep a
single modal inference speed, showing a promising direc-
tion for point cloud semantic segmentation in autonomous
driving. Recent advances in point cloud segmentation distill
knowledge from strictly aligned point-pixel fusion features
while leaving a large number of unmatched image pixels
unexplored and unmatched LiDAR points under-benefited.
In this paper, we propose a novel approach, named Pro-
toTransfer, which not only fully exploits image representa-
tions but also transfers the learned multi-modal knowledge
to all point cloud features. Specifically, based on the ba-
sic multi-modal learning framework, we build up a class-
wise prototype bank from the strictly-aligned fusion fea-
tures and encourage all the point cloud features to learn
from the prototypes during model training. Moreover, to
exploit the massive unmatched point and pixel features, we
use a pseudo-labeling scheme and further accumulate these
features into the class-wise prototype bank with a carefully
designed fusion strategy. Without bells and whistles, our
approach demonstrates superior performance over the pub-
lished state-of-the-arts on two large-scale benchmarks, i.e.,
nuScenes and SemanticKITTI, and ranks 2nd on the com-
petitive nuScenes Lidarseg challenge leaderboard.

1. Introduction

Semantic segmentation on point cloud [6, 15, 37, 40]
has attracted increasing attention from the computer vision
community for its crucial role in scene understanding of
3D space. Although LiDAR point cloud can provide ac-
curate location and depth information of interested scenes,
the sparse and textureless shortages inevitably restrict its se-
mantic segmentation performance. On the other hand, 2D
images consist of dense pixels with rich color and subtle
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Figure 1. (a) Point-pixel matching and feature fusion: only
features of strictly matched point-pixel pairs can be fused. (b)
Distillation-based methods are only performed between fusion
prediction and the corresponding matched point prediction while
other unmatched points have no chance to mimic the fusion predic-
tion. (c) Our ProtoTransfer performs knowledge transfer from
prototype bank to all point features directly without being re-
stricted by matching requirements. The prototype bank is updated
using fusion, point, and unmatched image features.

textures [34]. Therefore, incorporating these two comple-
mentary modals altogether can be a more plausible solution.

Recently, there are mainly two stream approaches of uti-
lizing multi-modal data, i.e., fusion-based methods [10, 50]
and distillation-based methods [42]. The former methods
project point clouds to the camera coordinate to obtain
a point-to-pixel mapping, based on which point features
are fused with corresponding image features to produce
the final point-wise segmentation during both the training
and evaluation phases. Although robust and accurate seg-
ments are achieved by fusing different sensors, the fusion-
based methods may suffer from heavy memory and time
consumption for processing these two modal data simul-
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taneously. In order to benefit from multi-modal fusion
while bypassing the computation burden, the latter meth-
ods [42] propose to utilize the distillation technique to trans-
fer knowledge learned from cross-modal fusion at the train-
ing stage and discard the fusion module for evaluation. The
impressive segmentation performance suggests the feasibil-
ity of the methods in this stream. Therefore, this paper fur-
ther explores this research direction.

Unlike common distillation approaches in image classi-
fication tasks [14, 44], distilling from multi-modal to the
single LiDAR modal may meet quite different pitfalls: (1)
Not all LiDAR points can be used in knowledge distillation
because LiDAR-to-image is partially matched. Due to the
difference in the way sensors collect data, not all the LiDAR
points can be aligned to the dense image pixels. For exam-
ple, we empirically find that only around 16.07% LiDAR
points in SemanticKITTI dataset can be matched to cor-
responding image pixels, and Fig. 1(a) also demonstrates
this observation. Thus, classic logit-/probability-style dis-
tillation strategies [42] can only be performed on the well-
aligned point clouds, leading to a sub-optimal knowledge
distillation. (2) Massive image pixels are overlooked. Since
only partial image pixels1 will contribute to the modal fu-
sion based on the above matching constraints, a large num-
ber of pixels are not used in knowledge distillation, resulting
in a great loss of rich semantic information in dense pixels.

In this paper, we propose a novel approach for point
cloud semantic segmentation which successfully avoids
the above pitfalls. Specifically, following the existing
work [17, 34, 42], we first construct a modal fusion mod-
ule to combine the feature representations of matched Li-
DAR points and image pixels. Next, in order to transfer
the knowledge from the fusion module to each point feature
representation, we create a class-wise prototype bank to ac-
cumulate the fusion features learned in the fusion module
and encourage the similarity between features of all LiDAR
points and corresponding-class prototypes as high as possi-
ble. By this means, every LiDAR point has a fair chance
to mimic the fusion features as shown in Fig. 1(c), and we
dub our method as ProtoTransfer. Moreover, to make full
use of semantic information inhered in dense image pix-
els, we propose to incorporate the image features into the
class-wise prototype bank through a cleverly designed fu-
sion strategy. Since images in the point cloud semantic seg-
mentation datasets usually lack per-pixel annotations, we
further use a pseudo-labeling scheme to generate pseudo-
labels for each pixel and thus make the update of pixel-
feature into class-wise prototypes become possible. In sum-
mary, the main contributions of this paper are three aspects:
• We investigate the pitfalls of point cloud semantic

segmentation on distillation-based methods and find that a

1Only 5% image pixels are matched to LiDAR points for a typical 32-
beam LiDAR scanner as presented in BEVFusion [22].

large number of image features are not well-utilized and
point features are not well distillation-benefited.
• We introduce the prototype bank concept into point

cloud semantic segmentation and propose a novel approach
ProtoTransfer to successfully overcome the above pitfalls.
• We conduct experiments on both SemanticKITTI and

nuScenes benchmarks to demonstrate the effectiveness of
our approach and also achieve a 2nd place on the competi-
tive nuScenes Lidarseg leaderboard.

2. Related Work

Multi-Modal 3D Semantic Segmentation. Since differ-
ent modal can provide complimentary information to each
other, multi-modal point cloud semantic segmentation at-
tracts increasing attention [8, 20, 24]. RGBAL [8] casts
RGB images to a polar-grid mapping representation and
designs an early-mid-level hybrid fusion architecture. Re-
cently, PMF [50] projects LiDAR points to camera coor-
dinates, which is called perspective projection [25]. Then,
they use two 2D U-net [27] to extract the image and point
features. The multi-scale image and point features in both
U-nets are fused to produce better segmentation results.
Though satisfactory performance are achieved, these meth-
ods need multi-modal inputs during both training and infer-
ence phases, which is time-/memory-consuming.

Prototype Networks. Prototype-based learning methods
has been widely used in machine learning [9, 11, 28].
Recently, a surge of attention is paied to employ proto-
type networks on various tasks, presenting great potential
in few-shot learning [29] and zero-shot learning[18, 36].
Moreover, [48] shows a prototype view of image seman-
tic segmentation network. Another prototype-based semi-
supervised method is also proposed [39]. Our work sheds
light on the possibility of using prototypes for knowledge
transfer from multi-modal to single-modal.

Cross-Modal Knowledge Transfer. Knowledge distilla-
tion, first proposed by Hinton et al. [14], is a common
knowledge transfer method, which pushes the student net-
work mimic the soft logits of the teacher network. Very
recently, knowledge distillation is introduced into percep-
tion tasks in autonomous driving, such as 3D object detec-
tion [7, 19, 46] and point cloud segmentation [42]. During
training, they use distillation to transfer multi-modal knowl-
edge learned by the multi-modal teacher to a single-modal
student. However, these methods suffers from strict point-
pixel alignment, leading to massive unmatched image pixels
unexplored and points under-benefited. Our work performs
knowledge transfer in another way. Contrary to [42], we
construct a prototype bank from fusion and unmatched im-
age features and encourage all the point cloud features to
learn from the prototypes during model training, thus fully
exploiting and transferring multi-modal knowledge.
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Figure 2. Pipeline overview of our ProtoTransfer. The model first uses modal-specific backbones to generate image features F 2d and point
features F 3d and feeds them into the point-pixel matching module to generate matched point feature F 3d m, matched and unmatched image
features F 2d m and F 2d u, respectively. Then modal-specific segmentation heads are used to produce predictions for loss calculation, i.e.,
L3d,L2d and Lfuse, where Lfuse will update the feature F fuse fused from F 2d m and F 3d m. To take advantage of the fusion features, we
introduce a class-wise prototype bank whose input source includes features F 3d, F fuse and F 2d u and propose a loss Lproto to transfer
fusion knowledge to all point features. Please note 2D&Fusion GT is derived from the 3D GT based on point-pixel matching.

3. Methodology
3.1. Framework Overview

Given a LiDAR point cloud frame with N unordered
points P = {pi ∈ Rdin}Ni=1 where din is input feature di-
mension2, the goal of point cloud semantic segmentation is
to assign a single class label c ∈ {1, 2..., C} to each point.
To make up for the sparsity and lack of texture of point
clouds collected in outdoor scenes [42], the other modal of
the corresponding scenes, raw images I ∈ RW×H×3, where
W,H denote the resolution of a given image, are also pro-
vided for model learning to achieve a better segmentation
performance.

As the overall structure presented in Fig. 2, the main con-
tributions of our approach are (1) introducing a class-wise
prototype bank for knowledge transfer from a fusion modal
to all LiDAR points and (2) proposing to make full use of
image features to enhance the prototype quality. Specifi-
cally, paired point cloud and image are first fed into modal-
specific backbones to extract feature representations respec-
tively. Next, based on the given LiDAR-to-image trans-
formation matrix, features are fused for matched LiDAR
point and corresponding image pixels, as done in previ-
ous modal-fusion-related work [17, 34, 42]. Due to the
differing data acquisition mechanisms of different modal
sensors, the matching rate between LiDAR points and im-
age pixels is often quite low. Instead of distilling knowl-
edge solely for the limited matched LiDAR points, we pro-
pose a novel knowledge transfer module that can enable un-
matched points to also benefit from fused feature represen-
tations. With this framework, we explore and exploit un-
matched image pixels to further enhance the overall point

2Input feature normally contains Cartesian coordinates, intensity of re-
turning laser beam, colors, etc.

cloud segmentation performance.
During inference, the enhanced point cloud segmenta-

tion branch can produce accurate segmentation results with-
out the image backbone and multi-modal fusion, and thus
challenges can be tackled within a real-time speed.

3.2. Cross-Modal Prototype Transfer

Considering the data structures of point cloud and image
pixels are totally different, various network architectures are
utilized to extract feature representations for the two modal
inputs independently. Specifically, ResNet34 [13] encoder
and FCN [23] decoder are used for 2D images to extract
dense-grid features F 2d ∈ RW×H×D2d , and a sparse con-
volution [12] based hierarchical point-voxel backbone [42]
are designed for 3D point cloud to generate point-wise fea-
tures F 3d ∈ RN×D3d . Since LiDAR points and image pix-
els are not naturally aligned due to the differences in data
collection of LiDAR and camera devices, LiDAR-camera
transformation matrix is used to find the point-to-pixel cor-
respondence3 and further obtain the matched pixel feature
F 2d m and matched point features F 2d m. Following the
previous work [42], we concatenate the matched point-pixel
features and use a multi-layer perceptron (MLP) to obtain
the fusion feature

F fuse = MLP
(
cat(F 2d m, F 3d m)

)
(1)

where⊙ is Hadamard product of two matrices. The MLP is
used to reduce feature dimension to D3d and obtain F fuse.
With LiDAR per-point ground truth Y 3d, the fusion branch
is got supervised

Lfuse = LCE

(
hfuse(F fuse), Ŷ

)
+LLovasz

(
hfuse(F fuse), Ŷ

)
(2)

3Detailed point-to-pixel mapping mechanism is provided in supple-
mentary material.
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where hfuse is the segmentation head of fusion branch. Ŷ is
the subset of Y 3d, representing the ground truth for matched
points. LCE and LLovasz denote the cross entropy loss and
the IoU-style Lovasz loss [3] respectively.

Attributed to the integration of rich semantic informa-
tion from 2D images, the segmentation performance of the
fusion branch is superior to the LiDAR-sole branch (the bot-
tom branch in Fig. 2). In order to make a single LiDAR
point cloud segmentation benefit from the fusion branch,
one straightforward way is to introduce a knowledge dis-
tillation loss between these two branches, as done in [42].
However, due to the matched point-pixel being limited, only
partial point features can benefit from the fusion features
and leave massive unmatched points under-benefited.

To bypass the strict matching restriction, we introduce
a class-wise prototype bank to accumulate the fusion fea-
tures during model optimization. Such a prototype bank can
be served as a parameter-free segmentation head to regular-
ize the distribution of all point features with LiDAR ground
truth

Lproto =
1

N

N∑
i=1

LCE(pci , ci) + LLovasz(pci , ci), (3)

where pci := p(y = ci|F 3d
i ) =

exp
(
cos(pci , F

3d
i )/T

)∑C
j=1 exp

(
cos(pj , F 3d

i )/T
)

where F 3d
i and ci denote the feature and semantic label of

i-th point respectively. pci ∈ RD3d represents the prototype
in class ci. cos is the cosine function to calculate the similar-
ity of the prototype and point feature. T is the temperature
parameter to adjust the scale of similarity measurement and
is empirically set to 0.1 in our study.

The proposed cross-modal prototype-based knowledge
transfer module encourages the point features to be close to
the same-class prototype while staying far away from other-
class prototypes. Therefore, through the class-wise proto-
type bank as a bridge, we successfully transfer the knowl-
edge learned from the fusion feature to the whole point
cloud and we term our method as ProtoTransfer.

3.3. Prototype Bank Initialization and Update

In our work, the prototype bank is designed to be non-
parametric and non-learnable and thus the quality of the
prototype bank plays a critical role in the success of cross-
modal knowledge transfer. Instead of using random vectors
to initialize the prototype bank at the beginning of model
training, we propose to use the fusion features of the first
few iterations to warm up the class-wise prototype bank for
a stable optimization procedure.

Meanwhile, since the initial prototype bank can not cap-
ture the distribution of fusion features, we also dynamically
update the prototype bank throughout the training stage.
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Figure 3. Prototype bank update demonstration. The fusion fea-
ture F fuse, unmatched image feature F 2d u and point feature F 3d

are respectively clustered into class-wise feature sets using cor-
responding GT or pseudo-label obtained with Eq. (6). Then the
feature sets are class-wise averaged to produce class-mean embed-
dings. F̄ 2d u and F̄ 3d are fused to get F̄ fuse u. Finally, both F̄ fuse

and F̄ fuse u are accumulated into the class-wise prototype bank.

Given all fusion features {F fuse
i }, we can use their corre-

sponding class labels {ci} to cluster the fusion features into
class-wise feature set. As shown in the top branch of Fig. 3,
the fusion feature set of class k can be obtained by

Ωfuse
k = {F fuse

i | ci = k}. (4)

We then use the moving average trick to update the class-
specific prototype pk of class k

pk ← α · pk + (1− α) · F̄ fuse
k , (5)

where F̄ fuse
k =

1

∥Ωfuse
k ∥

∑
j
Ωfuse

k,j

where α is a fixed hyper-parameter to control the prototype
update speed and is empirically set as 0.999 in our study.
F̄ fuse
k is the class-mean embedding of fusion features in

class k.

3.4. Unmatched Image Features Exploration and
Exploitation

Although prototype-based knowledge transfer has
helped all point features benefit from the fusion features and
enhanced the point segmentation performance, the fusion
features, which are the knowledge source of the prototype
bank, are only available on matched point-pixel pairs. Since
the point-pixel matching rate is quite low, the rich seman-
tic information lying in a large amount of unmatched image
pixels is not explored and exploited.

However, the exploitation of unmatched image pixels is
non-trivial and there are at least two challenges: 1) Natu-
rally lacking matching points for modal fusion. Since modal
fusion requires well-matched point-pixel features, it is dif-
ficult to construct matching points for unmatched pixels.

3340



2) Hardly obtaining semantic labels of unmatched pixels.
Since 2D images are provided without annotations and it
can be costly to additionally annotate these dense pixels, the
semantic labels of unlabeled pixels are thus unknown with-
out the matching correspondence from the LiDAR point
cloud ground truth.

Based on our proposed cross-modal prototype transfer
framework, we further design a novel strategy to incorpo-
rate the unmatched pixel features into the prototype bank to
improve the transferred knowledge, and Fig. 3 presents an
overview. Specifically, in order to solve the challenge 2),
we formulate the image pixel class label generation prob-
lem as a weakly-/semi-supervised task [5, 30], i.e., taking
the LiDAR-to-image matched pixels as labeled samples and
taking other unmatched pixels as unlabeled ones. Consid-
ering the segmentation head h2d for image input has been
optimized on features of matched pixels4, we can generate
posterior probability estimation for unmatched pixels

p(y|F 2d u) = softmax
(
h2d(F 2d u)

)
,

where F 2d u is the features of unmatched pixels. Then the
pseudo-labels can be obtained for these unmatched pixels
when their maximal posterior probability is greater than a
pre-defined confidence threshold δ (set as 0.8 in our study)

y2d u = argmaxc p(y = c|F 2d u), (6)

only if p(y = y2d u|F 2d u) ≥ δ.

Given the pseudo-labeled unmatched pixels, it is still
non-trivial to fuse the features of unmatched pixels and
points due to the challenge 1) mentioned above. One
straightforward way is to directly add the features of un-
matched pixels to the prototype bank, empirical results in
Tab. 4 show that this simple way can not bring a perfor-
mance gain and we postulate that it may be caused by the
distribution gap between image features and prototypes. Al-
ternatively, we propose to first calculate a class-mean em-
bedding F̄ 2d u

k of unmatched pixel features in the same
pseudo-label k

F̄ 2d u
k =

1

∥Ω2d u
k ∥

∑
j
Ω2d u

k,j ,

where Ω2d u
k = {F 2d u

i | y2d u
i = k},

Ω2d u
k is class-wise unmatched image feature set and is ob-

tained using pseudo labels but not ground-truth as in Eq. (4).
And the class-mean embedding F̄ 3d of point features can be
obtained from F 3d with LiDAR ground truth. Then, modal
fusion can be performed between class-mean embeddings

4Please note that the segmentation head for 2D images already exists
in our training framework.

of the same class

F̄ fuse u = MLP
(
cat(F̄ 2d u, F̄ 3d)

)
, (7)

where the MLP shares parameter with the one in Eq. (1).
Finally, the class-wise prototype bank updating in Eq. (5)
can be extended as

pk ← α · pk +(1−α) · (λ · F̄ fuse
k +(1−λ) · F̄ fuse u

k ), (8)

where λ is the balance weight of these two fusion features.
Since the pseudo-labeling scheme for unmatched pixels

may not be activated at the beginning of model training, the
prototype bank is still initialized with the method mentioned
in Sec. 3.3.

3.5. Overall Objective Function

Apart from the loss terms in Eq. (2) and Eq. (3), we also
have separate losses L3d and L2d for LiDAR point cloud
input and image input respectively. Both of these two losses
are composed of a cross-entropy loss and a Lovasz loss as
those in Eq. (2). Finally, the overall object function is the
weighted sum of these loss terms

L = ω3dL3d + ω2dL2d + ωfuseLfuse + ωprotoLproto,

where we empirically set ω3d = 2.0 and ω2d = ωfuse =
ωproto = 1.0 in our study.

4. Experiments
In this section, we first provide details of our experimen-

tal setup. Then we evaluate ProtoTransfer on both nuScenes
dataset and SemanticKITTI dataset. Finally, extensive ab-
lation studies of our approach are presented.

4.1. Experimental Setup

Datasets. NuScenes [4] collects 1000 driving scenes from
various locations in Boston and Singapore using 1 LiDAR
and 6 cameras covering 360◦ FoV. According to the offi-
cial setting, it is split into training, validation and test set
as 700, 150 and 150 scenes. For point cloud semantic seg-
mentation task, it annotates labels for 16 classes under dif-
ferent traffic and weather conditions. SemanticKITTI [2]
contains 22 LiDAR sequences numbered from 00 to 21, in
which sequence 08 is officially selected as validation set, se-
quence 00-10 except 08 is training set and 11-21 is test set.
Unlike nuScenes, SemanticKITTI has only two front-view
cameras.
Evaluation Metric. Following previous work [49, 42], we
calculate intersection-over-union (IoU) of each class and
mean IoU (mIoU) of all classes, which is formulated as
mIoU = 1

C

∑C
c=1

TPc

TPc+FPc+FNc
, where TPc, FPc and

TPc denotes the number of true positive, false positive and
false negative points of class c.
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PolarNet [45] L 69.4 72.2 16.8 77.0 86.5 51.1 69.7 64.8 54.1 69.7 63.5 96.6 67.1 77.7 72.1 87.1 84.5 -
JS3C-Net [41] L 73.6 80.1 26.2 87.8 84.5 55.2 72.6 71.3 66.3 76.8 71.2 96.8 64.5 76.9 74.1 87.5 86.1 -

Cylinder3D [47] L 77.2 82.8 29.8 84.3 89.4 63.0 79.3 77.2 73.4 84.6 69.1 97.7 70.2 80.3 75.5 90.4 87.6 63
AMVNet [21] L 77.3 80.6 32.0 81.7 88.9 67.1 84.3 76.1 73.5 84.9 67.3 97.5 67.4 79.4 75.5 91.5 88.7 85
SPVCNN [31] L 77.4 80.0 30.0 91.9 90.8 64.7 79.0 75.6 70.9 81.0 74.6 97.4 69.2 80.0 76.1 89.3 87.1 63

(AF)2-S3Net [6] L 78.3 78.9 52.2 89.9 84.2 77.4 74.3 77.3 72.0 83.9 73.8 97.1 66.5 77.5 74.0 87.7 86.8 270
PMF [50] L+C 77.0 82.0 40.0 81.0 88.0 64.0 79.0 80.0 76.0 81.0 67.0 97.0 68.0 78.0 74.0 90.0 88.0 125*

2D3DNet [10] L+C 80.0 83.0 59.4 88.0 85.1 63.7 84.4 82.0 76.0 84.8 71.9 96.9 67.4 79.8 76.0 92.1 89.2 -
2DPASS [42] L 80.8 81.7 55.3 92.0 91.8 73.3 86.5 78.5 72.5 84.7 75.5 97.6 69.1 79.9 75.5 90.2 88.0 44

ProtoTransfer [Ours] L 82.1 81.1 55.5 93.9 91.5 77.9 87.3 82.7 78.9 85.1 76.5 97.6 69.8 79.6 75.9 91.5 89.1 44
Table 1. Semantic segmentation results on nuScenes test set. Methods published before the submission deadline (08/03/2023) are listed.
L and C respectively denote LiDAR and camera. * The latency of PMF [50] is tested without TensorRT acceleration. The bold numbers
indicate the best results, and the blue numbers indicate the second best results.
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SqueezeSegV2 [35] 39.7 88.6 67.6 45.8 17.7 73.7 81.8 13.4 18.5 17.9 14.0 71.8 35.8 60.2 20.1 25.1 3.9 41.1 20.2 26.3 -
DarkNet53Seg [2] 49.9 91.8 74.6 64.8 27.9 84.1 86.4 25.5 24.5 32.7 22.6 78.3 50.1 64.0 36.2 33.6 4.7 55.0 38.9 52.2 -

RangeNet53++ [25] 52.2 91.8 75.2 65.0 27.8 87.4 91.4 25.7 25.7 34.4 23.0 80.5 55.1 64.6 38.3 38.8 4.8 58.6 47.9 55.9 83.3
3D-MiniNet [1] 55.8 91.6 74.5 64.2 25.4 89.4 90.5 28.5 42.3 42.1 29.4 82.8 60.8 66.7 47.8 44.1 14.5 60.8 48.0 56.6 -

SqueezeSegV3 [38] 55.9 91.7 74.8 63.4 26.4 89.0 92.5 29.6 38.7 36.5 33.0 82.0 58.7 65.4 45.6 46.2 20.1 59.4 49.6 58.9 238
PointNet++ [26] 20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9 5900

TangentConv [32] 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5 3000
PointASNL [43] 46.8 87.4 74.3 24.3 1.8 83.1 87.9 39.0 0.0 25.1 29.2 84.1 52.2 70.6 34.2 57.6 0.0 43.9 57.8 36.9 -
RandLA-Net [16] 55.9 90.5 74.0 61.8 24.5 89.7 94.2 43.9 29.8 32.2 39.1 83.8 63.6 68.6 48.4 47.4 9.4 60.4 51.0 50.7 880

KPConv [33] 58.8 90.3 72.7 61.3 31.5 90.5 95.0 33.4 30.2 42.5 44.3 84.8 69.2 69.1 61.5 61.6 11.8 64.2 56.4 47.4 -
PolarNet [45] 54.3 90.8 74.4 61.7 21.7 90.0 93.8 22.9 40.3 30.1 28.5 84.0 65.5 67.8 43.2 40.2 5.6 61.3 51.8 57.5 62
JS3C-Net [41] 66.0 88.9 72.1 61.9 31.9 92.5 95.8 54.3 59.3 52.9 46.0 84.5 69.8 67.9 69.5 65.4 39.9 70.8 60.7 68.7 471
SPVNAS [31] 67.0 90.2 75.4 67.6 21.8 91.6 97.2 56.6 50.6 50.4 58.0 86.1 73.4 71.0 67.4 67.1 50.3 66.9 64.3 67.3 259

Cylinder3D [47] 68.9 92.2 77.0 65.0 32.3 90.7 97.1 50.8 67.6 63.8 58.5 85.6 72.5 69.8 73.7 69.2 48.0 66.5 62.4 66.2 131
RPVNet [40] 70.3 93.4 80.7 70.3 33.3 93.5 97.6 44.2 68.4 68.7 61.1 86.5 75.1 71.7 75.9 74.4 43.4 72.1 64.8 61.4 168

(AF)2-S3Net [6] 70.8 92.0 76.2 66.8 45.8 92.5 94.3 40.2 63.0 81.4 40.0 78.6 68.0 63.1 76.4 81.7 77.7 69.6 64.0 73.3 -
2DPASS [42] 72.9 89.7 74.7 67.4 40.0 93.5 97.0 61.1 63.6 63.4 61.5 86.2 73.9 71.0 77.9 81.3 74.1 72.9 65.0 70.4 62

ProtoTransfer [Ours] 73.6 91.5 77.5 71.5 42.8 92.9 97.5 57.1 68.4 76.0 68.0 86.7 74.8 72.6 80.0 76.0 61.4 70.7 65.8 66.7 62
Table 2. Semantic segmentation results on SemanticKITTI test set. Methods published before the submission deadline (08/03/2023) are
listed. The bold numbers indicate the best results, and the blue numbers indicate the second best results.

In order to have a fair comparison, most of the experi-
mental setup and implementations are identical to the recent
work [42]. During the model evaluation, the same test-time
augmentation as in [42] is also used in our study.

4.2. Results on Benchmarks

We compare the results of our ProtoTransfer with
the published state-of-the-art methods on two large-scale
benchmarks, i.e., nuScenes [4] and SemanticKITTI [2].
NuScenes. As shown in Tab. 1, ProtoTransfer success-
fully outperforms all existing methods in terms of both
mIoU and latency, demonstrating its efficacy and efficiency.
Moreover, our ProtoTransfer not only outperforms single-
modal approaches, but also surprisingly surpasses fusion-
based methods which require both of LiDAR point clouds
and images covering the whole FoV as input for the in-
ference stage. In contrast, our method ProtoTransfer only
takes point clouds as input and produces superior segmenta-
tion results. Compared to the recently proposed distillation-
based method 2DPASS [42], our ProtoTransfer achieves
1.3% performance gain, showing the success of explor-

ing prototypes for knowledge transfer from multi-modal to
single-modal. Besides, according to Tab. 1, we can find
that our ProtoTransfer performs best on classes of small size
and with sparse points, such as traffic-cone, motorcycle and
construction vehicle, showing great potential in real-world
practice.
SemanticKITTI. We compare our ProtoTransfer with sev-
eral previous state-of-the-arts works. From Tab. 2, we can
see that our proposed ProtoTransfer still achieves the best
performance among these methods, leaving a margin of
0.7% compared with the distillation-based 2DPASS [42].
Similarly, ProtoTransfer achieves the best results on classes
of small objects such as person and bicycle.

4.3. Qualitative Evaluation

We visualize the segmentation results on nuScenes vali-
dation set in Fig. 4. As can be observed, our ProtoTransfer
achieves the most minor error prediction compared with the
two comparison methods. In the first row of Fig. 4, the car
and bus are close to each other, neither the baseline method
nor the 2DPASS approach can produce an accurate segmen-
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Pedestrian Pedestrian Pedestrian

(a) Error by baseline (b) Error by 2DPASS (c) Error by ProtoTransfer (d) Ground-truth

Figure 4. Qualitative results on nuScenes Lidarseg validation set. Red points are in red. Compared to baseline and the recently proposed
distillation-based method 2DPASS [42], our ProtoTransfer achieves better segmentation on region boundaries (the first row), far objects
(the second row) and small objects (the third row), thanks to the fully exploited and transferred multi-modal knowledge.

baseline Lproto update proto. bank mIoU
✓ 76.21
✓ ✓ 76.50
✓ ✓ ✓ 80.51

Table 3. Ablation study of each component in our ProtoTransfer.

tation for the points in the class of car, while our Proto-
Transfer precisely segments all points belonging to the car.
The second row displays a car far away from the ego-car,
both of the two comparing methods mispredict the point
clouds in the head area of the car and ProtoTransfer seg-
ments the car points perfectly again. The last row presents
a pedestrian with only several LiDAR points. Thanks to the
fully exploited and transferred multi-modal knowledge, our
ProtoTransfer obtains the most accurate segmentation.

4.4. Ablation Studies

In this section, we present comprehensive ablation stud-
ies to examine the efficacy of each component in Proto-
Transfer, ways of prototype bank construction, and distri-
bution of feature representations. All the ablation studies
are conducted on the nuScenes validation set.

Effects of each component. As shown in Tab. 3, introduc-
ing the proposed prototype-based loss term Lproto into the
naive baseline method without updating the prototype bank
can only bring minor performance gain. When the pro-
totype bank is dynamically updated with the strategy pre-
sented in Sec. 3.4, the segmentation performance is signifi-
cantly boosted which obviously demonstrates that the qual-

F 3d F 2d F̄ fuse F̄ fuse u mIoU
baseline 76.21

(a) ✓ 76.97
(b) ✓ 75.35
(c) ✓ 78.65
(d) ✓ ✓ 77.11
(e) ✓ ✓ 75.67
(f) ✓ ✓ ✓ 75.58
(g) ✓ 79.83
(h) ✓ ✓ 80.51

Table 4. Abaltion study of inputs of prototype bank.

ity of the prototype bank is critical.

Input Source of Prototype Bank. As presented in Sec. 3,
the inputs of the prototype bank include point-pixel fusion
features, image features and point features.Tab. 4 shows an
ablation study on the effect of different input combinations
on final segmentation performance. As can be observed,
building up the prototype bank using only point cloud fea-
tures (a) can generate a 0.76% performance gain over the
baseline. We think it is because prototypes constructed from
only point features can serve as cluster centers and using the
proposed prototype-based loss Lproto can help point fea-
tures become more discriminative as they are pushed to be
closer to their cluster centers. However, only accumulating
image features5 into the prototype bank leads to a 0.86%
performance drop, we postulate it may be because there is

5Please note the pseudo-labeling scheme presented in Sec. 3.4 can also
be used here to exploit unmatched image features.
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Figure 5. Ablation study of λ in Eq. (8). λ = 0.2 is set as default
in ProtoTransfer.

a distribution gap between image features and point cloud
features and thus it is unwise to force point cloud features to
imitate image feature cluster centers. On the contrary, when
fusing the point-pixel matched features and only using the
fusion features for the prototype bank (c) excels 2.44% over
the baseline, demonstrating the effectiveness of knowledge
transfer from multi-modal to the single LiDAR modal. As
shown by Tab. 4 (h), when the fusion features F̄ fuse and
F̄ fuse u are fully explored and accumulated into the pro-
totype bank, our ProtoTransfer reaches the best mIoU of
80.51%. This ablation study clearly shows that the input
source plays a key role in the quality of the prototype bank.

Fusion Strategy of Features for Prototype Bank. As il-
lustrated in Fig. 3 and Sec. 3.4, we calculate class-mean
embeddings for the unmatched pixel features and point fea-
tures, respectively. Then we concatenate these two embed-
dings and fuse them by reusing the MLP in Eq. (1). The
fused embedding F̄ fuse u is finally accumulated to the pro-
totype bank together with the point-pixel matched fusion
features F̄ fuse. To demonstrate the improvement not only
comes from the additional image and point features but also
comes from the cleverly designed fusion strategy, we use
a naive way to have an investigation, i.e., any combina-
tions among the point-pixel naturally matched fusion fea-
ture F̄ fuse, image feature F 2d and point feature F 3d in the
way of simple summation and use moving average to accu-
mulate them into the prototype bank as presented in Tab. 4
(d)∼(f). We can find that this naive summation of all three
features (f) reduces the mIoU to 75.58%. We owe this to
the large distribution gap between different kinds of fea-
tures which cannot be handled in the naive sum-up way.
In contrast, our ProtoTransfer reuses the MLP to map the
unmatched image features to the fusion feature space, thus
successfully bypassing this problem.

Effect of λ Selection. We have experimented with different
values of λ in Eq. (8) and the results are presented in Fig. 5.
As can be observed, our ProtoTransfer achieves the best per-

(a) Baseline (b) ProtoTransfer
Figure 6. Feature representation visualization of (a) the baseline
and (b) our ProtoTransfer. Outlier points have been pointed out by
the red arrow. The displayed category ID and their corresponding
semantic category is {1: “barrier”, 2: “bicycle”, 3: “bus”, 8: “traf-
fic cone”, 9: “trailer”, 10: “truck”}.

formance when λ = 0.2 which reveals that the unmatched-
pixel-feature-based fusion embedding F̄ fuse u plays a more
important role. Note that when λ = 0, i.e., using only
F̄ fuse u, is able to achieve a satisfactory segmentation accu-
racy, demonstrating the benefits brought by the unmatched
image features.

Distribution of Feature Representation. The essence
of introducing the prototype-based loss term Lproto in our
method is to encourage the point features to be close to the
same-class multi-modal prototype while staying far away
from the other-class prototypes. Hence, it is important to
study the impact of prototypes on feature distribution. As
can be observed in Fig. 6 (a), outlier points appear in the
feature distribution of the baseline method, while our Pro-
toTransfer is able to produce more compact feature distri-
butions for all semantic classes, demonstrating the effec-
tiveness of our method.

5. Conclusion

This work presents a cross-modal knowledge transfer
method dubbed ProtoTransfer for point cloud semantic seg-
mentation. ProtoTransfer achieves remarkable segmenta-
tion performance but keep a single LiDAR inference speed.
By accumulating the fusion features into a prototype bank,
all LiDAR points can learn from their class-specific pro-
totypes, thus being well benefited. The unmatched image
features are further explored and exploited via a pseudo-
labeling scheme and a novel prototype bank update strat-
egy. Through extensive experimental results on nuScenes
and SemanticKITTI dataset, the efficacy of our method has
been successfully demonstrated.
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[1] Iñigo Alonso, Luis Riazuelo, Luis Montesano, and Ana C

Murillo. 3d-mininet: Learning a 2d representation from
point clouds for fast and efficient 3d lidar semantic segmen-
tation. arXiv preprint arXiv:2002.10893, 2020.

[2] Jens Behley, Martin Garbade, Andres Milioto, Jan Quen-
zel, Sven Behnke, Cyrill Stachniss, and Jurgen Gall. Se-
mantickitti: A dataset for semantic scene understanding of
lidar sequences. In Proceedings of the IEEE International
Conference on Computer Vision, pages 9297–9307, 2019.

[3] Maxim Berman, Amal Rannen Triki, and Matthew B
Blaschko. The lovász-softmax loss: A tractable surrogate for
the optimization of the intersection-over-union measure in
neural networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4413–4421,
2018.

[4] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora,
Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Gi-
ancarlo Baldan, and Oscar Beijbom. nuscenes: A multi-
modal dataset for autonomous driving. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition, pages 11621–11631, 2020.

[5] Bowen Cheng, Omkar Parkhi, and Alexander Kirillov.
Pointly-supervised instance segmentation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 2617–2626, 2022.

[6] Ran Cheng, Ryan Razani, Ehsan Taghavi, Enxu Li, and
Bingbing Liu. Af2-s3net: Attentive feature fusion with adap-
tive feature selection for sparse semantic segmentation net-
work. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 12547–12556,
2021.

[7] Zhiyu Chong, Xinzhu Ma, Hong Zhang, Yuxin Yue, Haojie
Li, Zhihui Wang, and Wanli Ouyang. Monodistill: Learning
spatial features for monocular 3d object detection. In Inter-
national Conference on Learning Representations, 2022.

[8] Khaled El Madawi, Hazem Rashed, Ahmad El Sallab, Omar
Nasr, Hanan Kamel, and Senthil Yogamani. Rgb and lidar
fusion based 3d semantic segmentation for autonomous driv-
ing. In 2019 IEEE Intelligent Transportation Systems Con-
ference (ITSC), pages 7–12. IEEE, 2019.

[9] Salvador Garcia, Joaquin Derrac, Jose Cano, and Francisco
Herrera. Prototype selection for nearest neighbor classifica-
tion: Taxonomy and empirical study. IEEE transactions on
pattern analysis and machine intelligence, 34(3):417–435,
2012.

[10] Kyle Genova, Xiaoqi Yin, Abhijit Kundu, Caroline Panto-
faru, Forrester Cole, Avneesh Sud, Brian Brewington, Brian
Shucker, and Thomas Funkhouser. Learning 3d semantic
segmentation with only 2d image supervision. In 2021 In-
ternational Conference on 3D Vision (3DV), pages 361–372.
IEEE, 2021.

[11] Jacob Goldberger, Geoffrey E Hinton, Sam Roweis, and
Russ R Salakhutdinov. Neighbourhood components analy-
sis. Advances in neural information processing systems, 17,
2004.

[12] Benjamin Graham, Martin Engelcke, and Laurens van der
Maaten. 3d semantic segmentation with submanifold sparse
convolutional networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
9224–9232, 2018.

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[14] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

[15] Yuenan Hou, Xinge Zhu, Yuexin Ma, Chen Change Loy, and
Yikang Li. Point-to-voxel knowledge distillation for lidar se-
mantic segmentation. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
8479–8488, 2022.

[16] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan
Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.
Randla-net: Efficient semantic segmentation of large-scale
point clouds. Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2020.

[17] Maximilian Jaritz, Tuan-Hung Vu, Raoul de Charette, Em-
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