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Figure 1. Single-letter artistic typographies generated fully automatically by our network. Each result is produced from a prompt consisting
of a word, e.g., “unicorn”, and a letter in the word, e.g., “C”, to be stylized based on the semantics of the word and the input font.

Abstract

We introduce a novel method to automatically generate
an artistic typography by stylizing one or more letter fonts
to visually convey the semantics of an input word, while
ensuring that the output remains readable. To address an
assortment of challenges with our task at hand including
conflicting goals (artistic stylization vs. legibility), lack of
ground truth, and immense search space, our approach uti-
lizes large language models to bridge texts and visual im-
ages for stylization and build an unsupervised generative
model with a diffusion model backbone. Specifically, we
employ the denoising generator in Latent Diffusion Model
(LDM), with the key addition of a CNN-based discriminator
to adapt the input style onto the input text. The discrimina-
tor uses rasterized images of a given letter/word font as real
samples and the output of the denoising generator as fake
samples. Our model is coined DS-Fusion for discriminated
and stylized diffusion. We showcase the quality and versa-
tility of our method through numerous examples, qualita-
tive and quantitative evaluation, and ablation studies. User
studies comparing to strong baselines including CLIPDraw,
DALL-E 2, Stable Diffusion, as well as artist-crafted ty-
pographies, demonstrate strong performance of DS-Fusion.
Code is available at https://ds-fusion.github.io/.

1. Introduction
We explore the artistic-creative potential of automated

generative processes modeled by modern neural networks.

Specifically, we are interested in the generation of artistic
typography. According to Wikipedia, typography is the art
and technique of arranging type to make written language
legible, readable, and appealing when displayed. Artistic
typography represents a style of typography that goes be-
yond the basic function of conveying information through
text and seeks to create a visual impact on the reader. It in-
volves using typography as a form of artistic expression and
allows designers to create eye-catching typographic designs
that express a message visually and creatively.

In this paper, we aim to automatically generate an artistic
typography by stylizing one or more letter fonts, to visually
convey the semantics of an input word, while ensuring that
the output typography is readable; see Figure 1 for such ex-
amples referred to as “word-as-image” [3, 27, 34, 9]. It is
an arduous task to combine semantics and text in a legible
and artistic manner for several reasons. First, the goal of
incorporating the aesthetics of a style in an abstract and cre-
ative way into a letter or word can conflict with the desire
to maintain readability of the original word/letter. Second,
what a good artistic typography is can be a subjective mat-
ter. Without a universally accepted “ground truth”, a viable
learning approach will have to be unsupervised. Last but
not least, semantics can be depicted in numerous ways. For
instance, to indicate the presence of a lion, one can use the
entire face, the tail, or the whole animal. There is a vast
range of lion images, icons, and shapes that are accessible,
making it nearly impossible to manually search, deform,
and substitute them. While experienced artists and design-
ers are capable of producing beautiful semantic typography,
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Figure 2. The pipeline of DS-Fusion, which takes as input a style prompt and a glyph image. The style images are generated according to
the style word and attribute. DS-Fusion first utilizes a latent diffusion process [21] to construct the latent space of the given style and then
introduces a discriminator to blend the style into the glyph shape. The parameters of a module are pre-trained and frozen if there is an icon
of a lock on the bottom right. The “+” module denotes the iterative noise injection process of diffusion models.

obtaining reasonable results for ordinary users and hobby-
ists without proper assistive tools are out of reach.

To address all the above challenges, we resort to recently
popularized large language models [21, 19] to bridge texts
and visual images for stylization and build our unsupervised
generative model for artistic typography on Latent Diffu-
sion [21]. Specifically, we employ the denoising generator
in Latent Diffusion Model (LDM), with the key addition
of a CNN-based discriminator to adapt the input style onto
the input text (Figure 2). The discriminator uses rasterized
images of a given letter/word font as real samples and out-
put of the denoising generator as fake samples. To obtain
images for the denoising generator to guide the letter styl-
ization, we generate 25 style images from the input word,
again, with Latent Diffusion Model. The selection of this
number aims to ensure an adequate number of instances for
the diffusion model to extract underlying features and attain
diversity in the outputs. We fine-tune the denoising gener-
ator on these images using the diffusion loss based on the
style images and the discriminator loss.

Our model is coined DS-Fusion for discriminated and
stylized diffusion. While the core idea is quite simple, it is
among the first to integrate adversarial learning and diffu-
sion in a single framework. By utilizing the powerful gener-
ation capabilities of diffusion models and employing a dis-
criminator as a critic, we ensure that the produced artistic
typography remains true to the input font. Figure 1 shows
some results generated by DS-Fusion fully automatically.

We showcase the effectiveness of DS-Fusion for generat-
ing artistic typography through numerous experiments. Our
approach produces visual results that demonstrate its gener-
ality and versatility in accommodating different semantics,
letters, and artistic styles. We report quantitative evaluations
and ablation studies to assess the contribution of individual
components. Additionally, we have conducted user studies

to assess the quality of our automatically generated typog-
raphy results. These studies reveal that in about 42% of the
cases, our results were favored over or considered equally
good as results produced by professional artists, and in close
to 50% of cases, our method outperforms the state-of-the-
art alternatives, including DALL-E 2 [20], a strong base-
line that had been trained on significantly more images than
LDM. It is worth noting that we did not choose specific in-
puts catering to DS-Fusion for these comparisons. Instead,
we performed a Google image search on “artistic typogra-
phy” and extracted a suitable subset of artist-generated re-
sults to come up with inputs for both user studies.

2. Related work
Learning fonts. There are numerous techniques to study,
design, and stylize fonts. Campbell and Kautz [4] utilized
an algorithm to learn a font manifold from the polyline rep-
resentation of glyph outlines. By exploring this manifold,
new fonts can be obtained, or existing fonts can be inter-
polated to achieve a desired effect. Balashova et al. [2]
proposed an approach that uses a stroke-based geometric
model for glyphs and a fitting procedure to reparametrize ar-
bitrary fonts to the representation, which is again estimated
through a manifold learning technique that estimates a low-
dimensional font space. More recently, Wang et al. [29] pro-
posed a dual-modality learning scheme to synthesize vector
fonts, which are refined with glyph images using differen-
tiable rasterization.
Font stylization. Efforts have also been made to stylize fonts
to enhance their artistic and aesthetic appeal. For instance,
Azadi et al. [1] proposed a conditional-GAN [17, 10] to
generate glyph images with different font and texture styles
that match a given template. Berio et al. [3] proposed to
segment a font’s glyphs into a set of overlapping and in-
tersecting strokes to generate artistic stylizations. To ac-
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complish context-aware text image stylization and synthe-
sis, Yang et al. [31, 33, 32] proposed a style transfer method
with the ability to preserve legibility. Nonetheless, artistic
typography surpasses mere manipulation of fonts and often
entails imbuing letters with a semantic meaning.
Semantic and artistic typography. Semantic typography in-
volves adding certain elements to a text to emphasize cer-
tain aspects, communicate a message, or highlight a prop-
erty. There have been several endeavors to integrate mul-
tiple elements in the creation of a logo, text, or other de-
sign elements. One example of this is through the use of
collage-based techniques to fill a letter by incorporating se-
mantic elements within it [13, 23, 5, 35]. The concept of
legible calligrams [36] focuses on solving an inverse prob-
lem by placing a word or group of letters into a semantic
shape. When our approach is applied to an entire word as
the input (as shown in Figure 5), it may yield results that re-
semble legible calligrams. However, our problem statement
is entirely distinct, and our approach to solving it is signifi-
cantly dissimilar because our method is learning-based and
not limited to a predetermined template shape that dictates
the letter placement and deformation.

The works that are most closely related to ours are
those that attempt to alter a letter or a set of letters to
achieve a specific semantic meaning, whether through re-
placement, deformation, or texturization. For instance,
Zhang et al. [34] propose a semi-manual technique that
involves manually dividing a letter into sections, fitting se-
mantically related shapes to those sections, and perform-
ing post-processing to eliminate artifacts. However, the ef-
fectiveness of this method is heavily reliant on the accu-
racy of manual letter segmentation and the use of prede-
fined shapes, which can impact the quality of the results.
Trick or treat [27] is an attempt to replace a letter with an
icon by identifying an icon that closely matches the letter
from a joint embedding of letters and icons. The chosen
icon is then slightly deformed to better represent the let-
ter. However, this method requires the existence of an icon
that closely resembles the letter in order to produce satis-
factory results. Instead, we argue that a more effective so-
lution would involve learning how to generate the desired
semantic typography by creating letters or words that con-
vey a particular semantic or aesthetic feature in a subtle yet
effective manner, as depicted in Figure 4.
Text-based generative design. Large Language Models such
as BERT [6] significantly advance the understanding of hu-
man language, which makes text-based generation tasks
much easier. With the emergence of powerful models that
can establish connections between natural language and im-
ages, such as CLIP [19], several downstream tasks have
benefited from these models, including mesh and image
editing, stylization, and generation [15, 12, 28, 16]. Of
particular relevance to our work, CLIPDraw [7] aims to

produce SVG-format drawings by first rasterizing them us-
ing DiffVG [14], and then utilizing CLIP for evaluation.
Recently, there has been a surge in popularity of diffu-
sion models [24, 8, 25, 26], including stable diffusion [21],
which has produced impressive text-to-image results. Our
approach utilizes latent diffusion [21] to encode and decode
glyph and style images, and employs BERT to condition
the denoising process (Figure 2). To ensure both glyph
and style images are respected, we utilize a discriminator to
combine adversarial learning and diffusion, making it one
of the first of its kind. In contrast to Diffusion-GAN [30]
which uses a discriminator to distinguish a diffused real im-
age from a diffused fake image at all steps, our discrim-
inator is designed to preserve glyph structures in stylized
images as one component of our optimization objectives.
Semantic Typography. In concurrent work, Word-as-Image
Semantic Typography (ST) [9] stylizes a letter through a
semantic-aware font deformation; see Figure 14. To guide
the deformation, ST uses a pre-trained Stable Diffusion
model along with losses to preserve the font structure. Our
approach differs from ST in multiple ways. We focus on
extracting salient features of a style and applying them to
a glyph shape and ensure legibility using a discriminator
rather than deforming a font. This allows us to incorporate
multiple relevant colors to semantic and stylistic attributes
in raster form, while the results produced by ST remain sin-
gle color in vector form. In addition, we can stylize mul-
tiple letters together as a single shape (Figure 5) while ST
deforms each letter individually.

3. Method
Our method takes as input a style prompt, in the form of

text, and a glyph to be stylized, as a raster image. As we
focus on generating artistic typographies in this work, the
input glyph represents a graphical form of a letter or a word,
e.g., in a particular font. The output of our method is a styl-
ized version of the glyph based on the style prompt, which
consists of a style word, and optionally a style attribute.
The style word is a noun specifying an object or activity
whose semantics are embedded into the resulting typogra-
phy, while the style attribute provides a further character-
ization. Compelling typographies can be generated when
the input glyph letters are part of the style word, e.g., “C” in
“cat”, and the stylized glyph is displayed within the word,
resulting in a “word-as-image” [3, 27, 34, 9]; see Figure 1.

We express an input by putting the style prompts in quo-
tations and use the function G (·) to denote a mapping from
letter contents to glyph images. For example, the running
example in Figure 2 has the input, “cat” + “cute” + G (C).

3.1. Overview

To generate artistic typography, we first turn the input
style word into a visual representation by employing a La-
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tent Diffusion Model [21] to obtain a set of twenty-five
style images. The generative task then amounts to embed-
ding the input semantics and the style images into a new,
artistically stylized glyph, based on the input font. In the
absence of any target images to provide direct supervision,
we not only need a suitable feature representation for both
the glyph and the style prompts but also a means to evaluate
the stylized results implicitly and effectively.

Utilizing the Latent Diffusion as our architecture back-
bone, we introduce the key idea of incorporating a discrimi-
nator, which guides the Diffusion model to produce images
that fully blend styles into the input glyph images. Specif-
ically, the diffusion first constructs the latent space of the
given styles and outputs plausible latent codes, then the dis-
criminator aims to distinguish between synthesized results
and vanilla glyphs. Figure 2 shows our method pipeline,
with details to follow.

3.2. The Style Latent Space

To generate a diversity of artistic typography images, we
need to construct a latent space of given styles. Following
the LDM, the style images are first fed into an encoder and
then passed through a diffusion process. The encoder out-
puts the features maps zs. A Gaussian noise ϵ ∈ N (0, I)
is applied on zs to obtain z̄s, following an iterative noise
injection process introduced by diffusion models.

A denoising generator, with a U-Net [22] architecture
conditioned on an encoded vector by BERT, performs the
denoising process for z̄s. It aims to predict the added noises
ϵ̂ from z̄s and then denoise z̄s to ẑs. The prompt serves as a
condition to the diffusion process, to enforce the fusion of
the styles and glyphs into our desired images. Technically,
any text-conditioning vector fed to the denoising genera-
tor, even a random one, could be applied since over time,
the generator will fine-tune it. However, in our current im-
plementation, we combine the input style prompt with the
designated input letters as a prompt to BERT, and use the
BERT-encoded vector for text conditioning, with the intent
to “warm start” the generator for faster convergence. Fi-
nally, we obtain z̄s for sampling styles and ẑs for generating
our desired images. During training and inference, ẑs will
be sent into the discriminator and the decoder, respectively.

The pre-trained encoder and decoder from Latent Diffu-
sion [21] are used in our network; they are frozen during
both the training and testing processes. The encoder and
decoder were trained with 400M images and can extract
high-quality image features. We employ a diffusion loss
which measures the mean square error (MSE) between the
predicted noise ϵ̂ and the input noise ϵ: Ldiff = ||ϵ̂− ϵ||22.

3.3. The Discriminator

Since there are no target images available in this task,
the generated results can only be supervised implicitly. It

is inappropriate to directly align the generated images with
glyph images because the former is highly textured and
might have a displacement of glyph outlines. To this end,
we propose to employ a discriminator in the style of GANs
as the examiner. Different from vanilla GANs, the discrim-
inator here takes input as feature maps instead of raw im-
ages. The feature maps contain both spatial information and
local semantics, which helps the Discriminator to more eas-
ily build the correspondence between real and fake inputs.

Specifically, the rasterized glyph images are fed into the
encoder to obtain the glyph feature maps zg . Afterwards,
the feature maps of style and glyph images (ẑs and zg) are
sent into a CNN-based discriminator as fake and real sam-
ples, respectively. The discriminator loss Ldis is Binary
Cross-Entropy Loss of real/fake prediction:

Ldis = log(D(zg)) + log(1−D(ẑs)),

where D(·) denotes the function of the discriminator. Ad-
versarially training Ldis will fine-tune the denoising gener-
ator to adapt the prompt to result incorporating the style of
input images but following the shape of glyph.

3.4. Overall loss function and result ranking

The overall loss function is composed of the discrimina-
tion loss and the diffusion loss. We alternately optimize the
Discriminator D and the Denoising Generator G:

min
G

max
D

(Ldiff + λLdis), (1)

where λ is a hyperparameter that makes a tradeoff between
maintaining the shape of letters and incorporating charac-
teristics of style images. Typically, λ works best set less
than 1 and is experimentally set to 0.01. The effect of dif-
ferent λ values on results and training is shown in ablation.
The combination of diffusion loss and discriminator loss re-
sults in images that incorporate elements of the style while
maintaining a structure similar to the glyph.

Since our model outputs several candidate images from
random noises, we have designed a strategy to select bet-
ter candidates automatically. We employ CLIP to judge the
quality of results from both stylistic and glyph preservation
standards. Two different prompts are employed to judge
each individually: the first is the glyph content like “Let-
ter R” and the second is style word like “Dragon.” Figure 3
shows a visual example of ranking a set of stylized glyphs,
where the most top-right results are preferred.

4. Results and evaluation
To evaluate our DS-Fusion for artistic typography gen-

eration, we present qualitative results with single-letter and
whole-word inputs and show the effects of input fonts, style
attributes, and single- vs. multi-font training. Qualitative
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Figure 3. Ranking results. The horizontal and vertical axes respec-
tively denote the scores of glyph and stylistic preservation.

and quantitative comparisons are made to the closest al-
ternatives that can be adapted to produce similar forms of
typographies, including DALL-E 2 [20], Stable Diffusion
(SD) [21], CLIPDraw [7], and a Google search baseline. As
artistic creations are often judged subjectively, we conduct
user studies for our comparative studies including those
against searchable contents produced by human artists.

Inputs. We test our method on input style prompts and
glyphs that are applicable to a variety of object categories
such as those from animals, plants, professions, etc. The
input choices reflect an intention to generate compelling
artistic typographies, as well as to facilitate comparisons to
baseline approaches and artist creations. Particularly, where
possible, we attempt to produce results using DS-Fusion on
inputs picked in other works to ensure fairness and stress
test our method. On the other hand, the input fonts are ran-
domly selected from Ubuntu built-in font library.

Training details. For all experiments, we use the pre-trained
Latent Diffusion Model with BERT [21], An Adam opti-
mizer with learning rate of 1 x 10−5 is applied for the de-
noising generator and for the discriminator, the learning rate
is 1 x 10−4. All the hyper parameters associated with the
Latent Model are kept to their default values. The complete
network, including the discriminator, is fine-tuned to one
particular style and glyph combination. We train the net-
work for 800 epochs for one-font mode and 1,200 epochs
for multi-font mode. On a NVIDIA GeForce RTX 3090,
this takes ∼5 minutes and ∼8 minutes, respectively, to ob-
tain the final results.

Parameters. There are two free parameters in our method:
the number of style images and discriminator weight λ.
Both were set experimentally and fixed throughout our ex-
periments. We provide an ablation study in Section 4.4.

Evaluation metrics. Objectively, we evaluate the generated
typographies for their legibility via optical character recog-
nition provided by EasyOCR [11] and style incorporation
via CLIP. Specifically, we use affinity scores calculated by
CLIP between the generated typography results and those
produced with the prompt “Picture of <style word>.” Sub-
jective tests to additionally assess the artistry and creativity
of the results are conducted via user studies.

4.1. Qualitative results

Single-letter input. In Figures 1 and 4, we show a sam-
pler of compelling single-letter artistic typography results
generated by our method. Each result is produced by com-
posing generated single-letter results with renderings of the
remaining letters in the input style word. Since the gen-
erated results may have noisy backgrounds, we employ a
tool called “rembg” [18] for object segmentation to remove
them. To render the other letters, we use the same font as
the stylized glyph and select a complementing color which
is often the dominant color in the stylized glyph. More re-
sults can be found in the supplementary material.

Multi-letter input. Synthesizing artistic typographies from
multiple glyphs is more challenging due to the added struc-
tural complexities in the inputs, as well as the more global
context to account for. With a higher degree of freedom in
the generative process, the tradeoff between legibility and
artistry becomes harder to control. In Figure 5, we show a
sampler of results from whole-word stylization.

In more ways than one, our DS-Fusion demonstrates its
ability to utilize all the letters of a word to convey semantic
features, in a creative manner. Particularly compelling are
the two results for the style word “OWL”; the owls’ bodies
are well formed by the stylized glyphs. Auxiliary styliza-
tions can also be generated to offer a global context, e.g.,
the tree and mountain tops, while the ship image shows the
word “SHIP” replacing the vessel itself, even including a re-
flection in water. On the other hand, stylization could also
be applied to individual letters, e.g., for “PARIS.”

Effect of input fonts. Figure 6 shows results produced by
varying the fonts of the input glyphs, for “Dragon” + G (A).
They highlight the ability of our method to preserve various
shape characteristics of the input, such as stroke thickness,
slanting, and even small-scale details such as the accent on
top of the letter stylized as dragon heads.

Effect of style attributes. The use of style attributes in the
input prompts can be an effective means to further fine-tune
the stylization, as shown in Figure 7.

Single- vs. multiple-font training. In single-font mode, we
pick one random font out of a set of five selected fonts. Dur-
ing training, we change the color of the font randomly. Re-
sults of the single-font training show a high degree of shape
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Figure 4. Single-letter artistic typography generated by DS-Fusion, demonstrating the quality and versatility of the stylization based on
semantics of the word and the input glyph shapes. First row: all letters are stylized. Second row: selected letters are stylized.

Figure 5. Results from DS-Fusion to stylize whole words, showing
artistic letter combination and auxiliary complementation.

Input Glyph Results Input Glyph Results

Figure 6. Details in the input fonts, e.g., thickness, slanting, and
accents, are well reflected in results produced by our method.

Peacock

Pixel Silhouette

Deer

Picasso SketchInput Font Input Font

Figure 7. Additional style attributes such as “pixel”, “sketch”, and
“Picasso” can be well reflected in our results.

correlation to the input font, as shown in Figure 6.
In multiple-font mode, we pick both a random font and

a random color in each training step. It takes longer for the
model to converge, but it can produce more abstract results,
as reflected by the comparisons in Figure 8. Note that we
cannot control the font shape in this mode, however, it fol-
lows the general shape of the input glyph.

Randomly selected results. Figure 9 shows five results by
DS-Fusion, from three style categories, which were ran-
domly selected from the pool of generated typographies.

Mermaid

One Font Multiple Font

Robot

Figure 8. One-font vs. multi-font training. Results show a stronger
legibility in the former, and a more abstract stylization in the latter.

SOCKS

BUTTERFLY

OCTOPUS

Figure 9. Random results without any selection method applied.

Within Training Set

Outside Training Set

HA    P Z M IE HA

IRUNN
Figure 10. Results from the generalized model.

They offer empirical evidence for the robustness of our
method in generating diverse and high-quality results. More
such results can be found in the supplementary material.

Generalized model. We can generalize our current model
by training it across 40 categories of styles that encompass
objects, animals, and professions. We also make a slight
adjustment to the discriminator so that it can be trained us-
ing all 26 letters. This results in a fully generalized model
that can produce results from outside the training set with-
out requiring any further fine-tuning. In Figure 10, we show
results from both in and out of training-set examples gener-
ated using such a generalized model.
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Method OCR↑ OCR [blurred]↑ CLIP↑
DALL-E 2 [20] 4.9 9.8 22.3
SD [21] 7.0 4.9 23.1
CLIPDraw [7] (SF) 4.6 15.8 22.7
DS-Fusion (SF) 36.4 61.8 21.1

CLIPDraw [7] (MF) 6.4 17.9 23.2
DS-Fusion (MF) 5.1 20.5 24.1

Table 1. Quantitative comparisons between different methods in
terms of legibility (OCR) and style incorporation (CLIP). “SF”
and “MF” denote single- and multi-font inputs, respectively.

Extensions to other glyphs/shapes. DS-Fusion can also em-
ploy general shapes as input glyphs, not limited to Latin
alphabets only. In Figure 12, we show our method at work
on other languages such as Chinese and Japanese fonts. Fig-
ure 13 shows examples with object shapes including a chair,
a teddy bear, and a car as input glyphs, where “RABBIT,”
“ZOMBIE,” and “UNICORN” are the style words and con-
ditioning prompts for these objects, respectively.

4.2. Comparisons

Qualitative comparisons. We compare DS-Fusion to
DALL-E 2 [20], vanilla Stable Diffusion (SD) [21], Google
Search, and CLIPDraw [7] for which we modify its input
from random strokes to vector outlines of the input glyphs to
fit the task at hand. For DALL-E 2, SD, and Google Search,
we input a template prompt “<style word> in <letter>”,
e.g., “MERMAID in letter M.” As visual comparisons in
Figure 11 indicate, in most cases, DALL-E 2 cannot blend
the semantics into the letters; the objects simply surround
the letters. Results from SD usually do not contain the shape
of the input letters. Google search could occasionally return
good results only because the input prompts have had cor-
responding artist designs that were retrieved. For less com-
mon queries such as “Snail in letter N,” retrieval clearly can-
not work. As for CLIPDraw, neither the content legibility
nor the semantic embedding is satisfactory.

Quantitative comparisons. To evaluate the performance of
different methods in terms of legibility and style incorpo-
ration, we tested on 21 style words across a wide range of
semantic categories (see supplementary material for the list)
and stylized all the letters from them. Since both CLIPDraw
and our method can receive multiple fonts as input, we also
separately report their performances when receiving single
and multiple fonts. For each style word, 4 random results
were sampled from each method to obtain statistics.

The quantitative results are shown in Table 1. On single-
font inputs, our method significantly outperforms the others
in OCR accuracy both for raw and blurred versions of the
generated results. The style score of DS-Fusion is slightly
behind the others, which is not unexpected since in one-font

mode, the output favors the glyph, and the style is less pro-
nounced; see Figure 8. Since CLIPDraw is over-fitted to the
CLIP loss, its style score tends to be high while the corre-
sponding visual results are not satisfactory; see Figure 11
and the following user study. When taking multiple fonts
as input, DS-Fusion achieves the best score (24.1) of style
incorporation among all methods. The letters are stylized in
a much more abstract fashion, which also makes them more
difficult to be recognized. Nevertheless, the OCR accuracy
of DS-Fusion is comparable to CLIPDraw.

Comparison with Semantic Typography. We compare DS-
Fusion to Word-as-Image Semantic Typography [9] in Fig-
ure 14. Both methods perform similarly; both results are
still readable and semantically relevant (e.g., rhino, vio-
lin). However, our method is capable of adding colorful
and artistic textures to make the results more semantically
relevant and visually appealing, e.g., candle and octopus.

4.3. User Study

A user study serves to evaluate our method via subjec-
tive human judgement. We perform two such studies: in the
first one, users select between DS-Fusion and other gener-
ative methods; in the second, a different group of partici-
pants selects between DS-Fusion and artist designs. Both
studies start by showing participants the definition and ex-
amples of artistic typography, which give them an idea of
what to expect. We directly chose artist-created examples
from a popular online tutorial on artistic typography design,
instead of picking inputs that may favour our method. The
same 10 inputs with distinguishable style words (e.g., Cat,
Parrot, etc.) were used in both studies.

The first study compares our results to those from CLIP-
Draw, DALL-E 2, and SD. To prepare the study, we asked
a professional designer to select the most representative re-
sult for each of the four candidate results generated by each
method. The study collected responses from 32 participants
with different occupations and varying artistic backgrounds
to determine which result was deemed best. Table 2 shows
that DS-Fusion significantly outperformed other methods.

While DALL-E 2 also gathered close to 30% votes, some
of its results preferred by users do not contain any styliza-
tion of the input letters, e.g., see the last two columns of
Figure 11. DALL-E 2 simply placed an image of a cat or
rooster near an un-stylized letter. Clearly, these are not sat-
isfactory typography results, yet user subjectivity has led to
them receiving 25% and 50% of the votes, respectively.

The second study collected responses from 42 partic-
ipants to choose between our results and professionally
crafted examples found in the tutorial. The study results are
shown in the second part in Table 2. In about 42% of the
cases, users found our results better or equivalent to that of
human-designed examples. This is a satisfactory outcome
since human-designed examples heavily rely on the creativ-
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DRAGON PLANT OCTOPUS SNAIL

CLIPDraw

DALL-E 2

SD

Google 
Search

Ours

USER STUDY

CATROOSTER

Figure 11. Visual comparison on single-letter (underlined) generation between different methods, with three most compelling results picked
per method. The last two columns show sample results from the first user study (Section 4.3), where Google search was not considered.

DRAGON

FIRE HORSE WATER

Figure 12. Results on Chinese and Japanese fonts.

Chair Style: Rabbit

Teddy Bear Style: Zombie

Car Style: Unicorn

Figure 13. Employing object shapes as input glyphs.

ity and expertise of designers (more details about our user
study in the supplementary material).

4.4. Ablation studies

Discriminator weight. The impact of the λ value on adjust-
ing the discriminator loss is shown in Figure 15. A high
value of λ pushes the generator towards the glyph shape,

A D E
IOLIN

Semantic Typography DS-Fusion

Figure 14. Visual comparison with semantic typography [9].

CLIPDraw DALL-E 2 SD Equal DS-Fusion

6.88 29.38 9.38 5.31 49.06
Human Equal DS-Fusion

57.14 11.19 31.67
Table 2. User Study comparing DS-Fusion with other generative
methods (Top) and human designs (Bottom). The numbers show
the percentage of user preference for different results. “SD” de-
notes Stable Diffusion. “Equal” denotes equally good.

However, the generator may take a long time to converge to
the glyph shape or may not be able to reach it at all when
a small value of λ is used. Therefore, the value of λ was
selected experimentally.

Number of style images. In Figure 16 we show the effect
of generating different numbers of style images. When the
number is too low, the method struggles with over-fitting
and in extracting common features to apply to the glyph.
As the number of images increases, we see not only im-
provement in generation quality but also in the diversity of
outputs. We do not observe a significant improvement in in-
creasing the value excessively, hence we opt for the number
25 as an optimal balance.
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λ = 0.01

λ = 0.001

Epochs 650400 1000100

Figure 15. Effect of discriminator weight, on “Mermaid” + G (M).

Outputs

5

Number

25

50

Figure 16. Effect of generating a different number of style images.
The left column shows the number of images generated, and on
the right, we see the range of output results.

DRAGONMONSTER DEER ROBOT BUTTERFLY

Figure 17. Results on using CLIP encoder for text conditioning.

Text encoder. Our results are generated using BERT. This
model has a smaller resolution and is faster to generate com-
pared to Stable Diffusion with CLIP. However, we show
some results using the CLIP text encoder in Figure 17 to
demonstrate the generality of our method.

5. Conclusion, limitation, and future work
We developed an automatic method to generate artis-

tic typography for a letter or word by using language-
based generative models equipped with a discriminator. We
demonstrated the effectiveness of our method, coined DS-
Fusion, through extensive experiments and user studies.
Our approach combines adversarial learning and diffusion,
which helps ensure the fidelity of the generated typography.

Our method is generally effective but it still has some
limitations that require further investigation. As an exam-
ple, not all style-glyph combos would lead to quality results.

Glyph structure not preserved Unaesthetic

Figure 18. Some failure cases on single-letter inputs.

GAME SMILE CYCLE SPARROW GARGOYLE

Figure 19. Some failure cases on whole-word inputs.

Some of such failure cases, including PILOT, VIOLIN,
PLANT, CHESS, and HORSE, are shown in Figure 18. The
quality of the results depends on the affinity between the se-
mantics of the style and the target glyph. Chess pieces, for
example, are rigid. Hence a curved glyph such as the letter
“C” would have a higher likelihood for failure. Similarly,
when dealing with multi-letter inputs, our method may also
struggle to generate satisfactory results if the style images
and letters are too dissimilar; see Figure 19.

The primary use of our model involves optimization for
every combination of style and glyph, which places a de-
mand on generation time. Despite having an automatic se-
lection strategy, the model may not always generate or se-
lect the most visually plausible outcome. Rather, it can gen-
erate a range of plausible results to choose from manually.
A stronger selection mechanism deserves further study.

Our glyph is potentially an image in various forms, in-
cluding alphanumeric fonts, foreign language characters, or
even a 2D shape. It is interesting to creatively modify such
shapes to display a semantic (e.g., a flower-shaped chair). In
addition, for personalization, style images can be manually
prepared or drawn if desired. We explored these ideas and
presented preliminary results in the supplementary material,
but further research is necessary to solidify the outcomes.
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