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Abstract

Most video compression methods aim to improve the de-
coded video visual quality, instead of particularly guar-
anteeing the semantic-completeness, which deteriorates
downstream video analysis tasks, e.g., action recogni-
tion. In this paper, we focus on a novel unsupervised
video semantic compression problem, where video seman-
tics is compressed in a downstream task-agnostic man-
ner. To tackle this problem, we first propose a Semantic-
Mining-then-Compensation (SMC) framework to enhance
the plain video codec with powerful semantic coding ca-
pability. Then, we optimize the framework with only un-
labeled video data, by masking out a proportion of the
compressed video and reconstructing the masked regions of
the original video, which is inspired by recent masked im-
age modeling (MIM) methods. Although the MIM scheme
learns generalizable semantic features, its inner generative
learning paradigm may also facilitate the coding frame-
work memorizing non-semantic information with extra bit
costs. To suppress this deficiency, we explicitly decrease the
non-semantic information entropy of the decoded video fea-
tures, by formulating it as a parametrized Gaussian Mixture
Model conditioned on the mined video semantics. Com-
prehensive experimental results demonstrate the proposed
approach shows remarkable superiority over previous tra-
ditional, learnable, and perceptual quality-oriented video
codecs, on three video analysis tasks and seven datasets.

1. Introduction
Video compression has been actively researched over

the past few decades. Most methods, including traditional
methods [102][14] and learnable ones [83][61], aim at im-
proving the reconstructed video quality for human percep-
tion, rather than particularly preserving AI task-required
semantic information, e.g., human key-points and object
shapes. This degrades downstream AI tasks [135][104].

To tackle this problem, lots of research efforts have
been devoted to a new problem of Video Coding for
Machine (VCM), i.e., lossy video compression for sup-
porting downstream AI tasks. For example, early
works [142][23][8] and standards [46][44][45] additionally
transport the manually-designed image descriptors, sup-
porting limited tasks with undesirable performance. Later,
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some methods [86][53][33] improve the traditional codec
with hand-crafted designs to better cope with the specific
tasks, e.g., saliency-aware bit allocation for object detection
task [53]. Meanwhile, some methods [34][29][28][100][51]
compress the feature maps of AI models instead of the im-
ages, where the tail task modules shall adapt to the fea-
tures by supervised learning. Besides, most scalable cod-
ing methods [79][133][126][35][36][103] are optimized by
supervised learning or task-relevant feature matching loss
functions. Despite these efforts, rare methods are task-
agnostic while still exploiting data-driven semantics. Task-
agnostic decouples the coding system from downstream
tasks and is friendly to data scarcity scenarios. Data-driven
objective prompts the system to learn a more generalizable
semantic representation than hand-crafted designs.

In this paper, we focus on a novel Unsupervised Video
Semantic Compression task that satisfies the two above re-
quirements, where compressed videos readily support vari-
ous analysis tasks. Considering plain video codecs are al-
ready of powerful visual coding capability, it is natural to
build the semantic compression framework upon them for
inheriting the advantages. However, it is non-trivial to deal
with the semantic information lost during the compression,
especially without the guidance of task-specific data labels.

To address these issues, we first propose a simple
yet effective Semantic-Mining-then-Compensation (SMC)
framework as a baseline method, to improve current
plain video codecs with better semantic coding capability.
Specifically, the semantic feature of the original video and
the lossy video is extracted by neural networks on the en-
coder side, and only the residual part is transported. On
the decoder side, the lossy video and its semantics com-
pensated by the residual, together synthesize the final de-
coded video. As for the self-supervised optimization of the
framework, we mask out a large proportion of the decoded
video patches, and use the unmasked parts to reconstruct
the masked regions of the original video, inspired by re-
cent Masked Image Modeling (MIM) methods [56][113].
The reconstruction task facilitates decoded videos to be of
rich semantics in terms of both intra-patch appearance and
inter-patch interactions. Although the MIM scheme learns
generalizable semantic features, its inner generative learn-
ing paradigm also facilitates the coding framework mem-
orizing non-semantic information [41], which makes the
extracted semantic features contain redundant information,
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consuming extra bitcost. To suppress this deficiency, we ex-
plicitly decrease the non-semantic information entropy of
the video, by formulating it as a parameterized Gaussian
Mixture Model conditioned on the mined video semantics.
The alternative semantic learning and non-semantic sup-
pressing procedures make the system bootstrapping itself
toward more efficient semantic coding. As a result, it shows
remarkable performance on a wide range of tasks without
leveraging any data labels.

Contributions:
• We focus on a novel unsupervised video semantic

compression problem, proposing a concise yet effec-
tive baseline framework dubbed SMC.

• Our work is the first one that applies Masked Image
Modeling (MIM) scheme to semantic coding problem,
aiming to learn a semantic representation that is appli-
cable to various downstream tasks.

• We propose the Non-Semantics Suppressed (NSS)
learning strategy to better adapt the general MIM
scheme to the compression problem, suppressing the
framework from encoding non-semantic information.

• Our approach demonstrates notable superiority over
previous traditional, learnable and perceptual codecs,
on three video analysis tasks and seven datasets.

2. Related Works
Video Compression. Previous video codecs, in-

cluding traditional ones [121][102][14][138], learn-
able ones [83][61][73][85][30][84][82][83] and mixed
ones [106][110][139], are designed to achieve better
pixel-wise signal quality metrics, e.g., PSNR and MS-
SSIM [118], which mainly serve the human visual experi-
ence. Recently, there are also some generative video coding
methods [132][88] that mainly consider visual comfort and
perceptual quality [136][145][146][147][55][78].

Video Coding for Machine (VCM). Early stan-
dards such as CDVA [45] and CDVS [44][46] pro-
pose to pre-extract and transport the image keypoints,
supporting image indexing or retrieval tasks. Some
works [142][23][8][34][29][28][100][51] compress the in-
termediate feature maps instead of images. Besides,
some works [86][53][33][64] [37][15][140] improve tra-
ditional codecs by introducing downstream task-guided
rate-distortion optimization strategy or another task-specific
feature encoding stream [115][23]. Also, some meth-
ods [71][4][134][43][36] optimize the learnable codecs by
directly incorporating the downstream task loss. Recently,
some methods exploit hand-crafted structure maps [59][47]
for semantic coding. Nevertheless, most above methods
rely on task-specific labels or hand-crafted/heuristic priors,
the effectiveness of which is limited to the targeted tasks.

Recently, some works leverage self-supervised represen-
tation learning methods for learning a compact semantic

representation. As an pioneering work, Dubois et al. [48]
theoretically reveals that the distortion term of the lossy
rate-distortion trade-off for image classification can be ap-
proximated by a contrastive learning objective [57]. How-
ever, the compressed semantics are empirically effective to
a group of tasks that share the similar prior (i.e. , labels are
invariant to data augmentations), but may severely discard
the semantics useful to other tasks such as detection and
segmentation. Recently, Feng et al. [51] proposes to learn
a unified feature representation for AI tasks from unlabeled
data in a similar manner. In these two methods, the down-
stream models are required to be fine-tuned for adapting to
the features. Very recently, Tian et al. [107] propose a self-
supervised edge representation as the semantic intermediary
to constrain the semantic structure of the video. Although
working without a task-specific post-adaptation procedure,
the edge representation is still highly hand-crafted.

Scalable Coding and Visual-Semantic Fusion Cod-
ing. Scalable coding methods [59][133][79][126][35][37]
can achieve excellent compression efficiency when mea-
sured with the trained tasks, but usually show undesirable
results on the tasks/data out of the training scope, due to the
supervised learning paradigm. Visual-semantic fusion cod-
ing methods [47][3][62][59][148], a.k.a, conceptual cod-
ing [19][21][22][20], first extract the structure information
and the texture information on the encoding side, and then
fuse the two parts into a image on the decoding side. The
fused images are readily fed into various task and achieve
superior performance even at very low bitrate levels. How-
ever, almost all these methods employ a pre-trained net-
work to generate semantic segmentation map [47] or edge
map [59] as the semantic stream, not fully discarding the
task-specific priors.

Compressed Video Analysis. There are also amounts of
works such as [80][116][72][117][137] perform video anal-
ysis tasks, such as image recognition [39][128][127], action
recognition [123][98][16][50][111][105][108] and multiple
object tracking (MOT) [67][68][38], in the compressed
video domain. But, these methods focus on developing
video analysis models that better leverage the partially de-
coded video stream, such as the motion vector. In contrast,
our work focuses on the coding procedure.

Self-Supervised Semantic Learning. Recent methods
can be mainly divided into two catogories, i.e., Contrative
Learning (CL) ones [57][27][25][91] and Masked Image
Modeling (MIM) ones [144][56][113][41]. CL methods use
two augmented views of the same image as the positive pair,
and other images as negative samples. The learned seman-
tics relies on the employed augmentation strategy [109], and
is usually biased to global semantics. Recently, MIM meth-
ods have gain increasing attentions. MIM simply predicts
masked patches from unmasked ones, while showing re-
markably strong performance in downstream tasks. After
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the pioneering works, e.g., MAE [56] and Beit [7], amounts
of works have been proposed for improving the MIM frame-
work [26][125][41] or the prediction target [40][144][119].
Although MIM methods are superior to CL ones in many
aspects, when the masked region reconstruction loss serves
as the semantic learning objective of a compression system,
it also facilitates the system encoding some non-semantic
information, and wasting extra bitcosts. Our work solves
this problem by explicitly suppressing the non-semantics
information within the MAE feature space.

3. Approach
3.1. Framework Overview

We propose the Semantic-Mining-then-Compensation
framework SMC, as shown in Figure 1. Let a high-quality
X and its compressed lossy version X̃ by plain video codec
such as VVC. On the encoder side, SMC additionally trans-
mits the residual semantic information Res that is lost dur-
ing the lossy compression procedure. On the decoder side,
SMC fuses the compensated semantic feature Ŝ and the
lossy video X̃ to synthesize a high-quality video X̂ , which
can be readily processed for various analysis tasks. The
framework subcomponents are detailed as follows.

Semantic Extraction Network (Sem-Net). To trans-
form the videos from RGB space to semantic space, the
original input frame and the lossy encoded video X̃ are en-
coded as the semantic representations S and S̃, respectively.
The tensor shape of S and Ŝ is both RT×512× H

32×
W
32 , where

T and H ×W represent the temporal length and spatial di-
mensions of the input video. For producing S, we adopt
the ResNet18 [58] network as the Sem-Net, but replacing
its first Max-pooling layer with a stride two convolution
layer for retaining more information. For producing S̃, we
adopt a more lightweight network denoted Sem-Nets, sim-
ply consisting of five convolution layers of stride size two
and kernel size three. The weights of the two networks are
randomly initialized.

Semantic Residual Coding. The residual semantic fea-
ture Res between the original video semantic feature S and
lossy one S̃ will be compressed by using an auto encoder-
decoder (AED) network. Both the encoder and the decoder
networks are composed of three causal temporal convolu-
tions [90], ensuring the current feature only depends on
the previous state, which is consistent with the low-delay P
frame (LDP) mode of coding methods [131][132]. Adding
back the reconstructed residual semantic feature R̂es to S̃,
we produce the compensated semantic feature Ŝ.

Semantic-Visual Information Fusion. After obtaining
the compensated semantic feature Ŝ and the lossy video X̃
on the decoder side, we use a UNet-style [96] generator net-
work termed F-Net, where the deep latent features are mod-
ulated by Ŝ with the AdaIN [63] operations, to synthesize
the final video X̂ . X̂ will be consumed by machine models.
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Figure 1: Overview of the proposed SMC framework, which en-
compasses two bitstreams, i.e., video stream from VVC codec and
residual semantic stream encoded by AED network. During the
compression, the semantic features of the original video X and
the lossy video X̃ are separately mined. Then, the residual seman-
tics Res is transported to compensate the lossy video semantics.
Finally, the compensated semantic feature Ŝ and the lossy video X̃
is fused into a video X̂ for supporting various downstream tasks.
The framework is optimized via a non-semantics suppressed MAE
task loss. × denotes the gradient stopping operation.

3.2. Optimization of Framework

The optimization target is to enforce the decoded video
X̂ of both rich semantics and good visual quality, while
minimizing the bitrate of the residual semantic feature. The
whole loss function can be given by L = αLsem+Llpips+
LGAN + H(Res), where Lsem denotes the proposed self-
supervised semantic learning loss, which will be detailed in
the next section, α is the balancing weight. Following [49],
we introduce the combined Llpips +LGAN item to regular-
ize the visual quality of X̂ , where Llpips denotes the learned
image perceptual loss [141], and LGAN denotes the GAN
loss. The discriminator network architecture of the GAN
is same as that of PatchGAN [65]. LSGAN loss [87] is
adopted for its better stability than vanilla GAN [54].

H(Res) represents the bitrate of the residual semantic
stream, which is estimated by the simple bitrate estimation
model in [5]. During entropy coding, the latent feature of
Res, which is extracted by the encoder part of AED net-
work, will be first quantized and then transformed into the
bitstream. Following [6], we approximate the quantization
operation by adding the uniform noise in the training stage.

3.3. Self-Supervised Semantic Learning

In this section, we describe how to learn semantic rep-
resentation from unlabeled videos, which is one of the
core challenges for unsupervised semantic coding prob-
lem. The semantic learning objective of our framework is
based on the MAE framework [56], inspired by the fact that
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MAE learns strong and generalizable semantic representa-
tion from unlabeled image/video data. Considering the dis-
tinct characteristic of the coding problem, i.e., unnecessary
information should be excluded from the coding system for
saving bitcost, we introduce a Non-Semantics Suppressed
(NSS) learning strategy to guide the MAE framework more
preserving semantic information within the video.

MAE Learning. Given the decoded video X̂ , we first di-
vide it into regular non-overlapping patches of size 16×16,
and each patch is transformed to tokens by linear embed-
ding, forming the token set Tok. Then a proportion of to-
kens are randomly masked, and the remaining unmasked
ones are fed into the prediction network ϕ (including an en-
coder and a decoder) for reconstructing the video. The re-
construction loss of the MAE task is given by, LMAE =
1
M

∑
i∈M ||ϕ[Tok(i)] − X(i)||, where i is the token in-

dex, M is the set of masked tokens, and X is the ground-
truth video. During the optimization procedure, the en-
coder of ϕ implicitly clusters the video patches/tokens into
some semantic centers, and the decoder builds a spatial-
temporal reason graph among these semantic primitives to
predict the remained region pixels. This facilitates pre-
serving semantics-relevant information within each patch,
as well as interactions among different patches. However,
with only pixel-wise regularization, the MIM objective also
facilitates X̂ over-memorizing some non-semantic informa-
tion, such as the object surface details, which degrades the
compression efficiency.

Non-Semantics Suppressed (NSS) Learning. To sup-
press the non-semantic information leaked from X to X̂ , we
explicitly regularize the information entropy of Tok, con-
ditioned on the mined semantic feature S. However, due
to the difficulty of estimating the entropy of a continuous
variable, we insert quantization operation in the tail of the
tokenization procedure, so that Tok is a discrete variable.
Then, we use a Gaussian Mixture Model (GMM) [95] with
component number K to approximate its distribution. The
distribution of each token Tok(i) is defined by the dynamic
mixture weights wi, means µi and log variances σi, which
are produced by a density parameter estimation network
(Density-Net). With these parameters, the distributions can
be determined as,

p(Tok(i)|S) ∼
K∑

k=1

wk
i · N (µk

i , e
σk
i ). (1)

Then, the discretized likelihoods of each video patch token
can be given by,

p(Tok(i)|S) = c(Tok(i) + 0.5)− c(Tok(i)− 0.5), (2)

where c(·) is the cumulative function [92] of the GMM in
Equation 1. Finally, the non-semantics suppressed mask
learning objective can be given by,

LSem = −β log(p(Tok|S)) + LMAE , (3)

where β is the balancing weight.
Discussion. Although Equation 2 shares a similar format

with the bit estimation procedure of the hyper-prior-based
image compression methods [6][32], our goal is fundamen-
tally different from them. Our method aims to suppress
the extra non-semantic information that is introduced by the
MAE task, transporting zero bits, while the method [6] ex-
plores the hierarchical redundancies within images, and the
estimated bits are additionally transported.

Density-Net. It consists of two convolutions of kernel
size three, followed by one temporal causal convolution
of temporal kernel size three, aiming to align the seman-
tic feature S to the token feature space. Then, we append
three different multiple layer perceptrons (MLPs) for pre-
dicting w, µ, and σ in Equation 1. The gradient of S is
detached during the back-propagation procedure, forming a
self-bootstrapping paradigm, i.e., NSS scheme enforces S
capturing semantic-only information, while the semantic-
rich S leads to a more principled NSS objective.

4. Experiments
4.1. Evaluation Datasets

For action recognition task, we evaluate it on four large-
scale video datasets, UCF101 [101], HMDB51 [70], Ki-
netics [16], and Diving48 [76]. For multiple object track-
ing (MOT) task, we evaluate it on MOT17 [89]. For
video object segmentation (VOS) task, we evaluate it on
DAVIS2017 [94]. We also compare the visual quality of
the decoded videos on HEVC Class C dataset [102].

Dataset Processing. During the training procedure,
we randomly select 60K videos of resolution larger than
1280×720 from the training set of Kinetics400. We down-
sample the shortest side of the training videos to 256 pix-
els for removing compression artifacts introduced by prior
codecs on YouTube, which follows [122]. During training,
the quantization parameter (QP) value of VVC is randomly
sampled, so that the framework is learned to adapt to vari-
ous QPs with a single model. For the evaluations of videos
of action recognition datasets, we also pre-downsample the
shortest side of them to 256 pixels and crop the video to the
size 224×224 before the coding procedure. For the eval-
uation of MOT, we adopt the original MOT17 dataset of
resolution 1920×1080 because many tracking methods re-
quire high-resolution inputs. For the evaluation of VOS,
we download the high-resolution version of DAVIS2017,
which contains videos from 720p to 1080p, and then down-
sample them to 480p (854×480), which is the input resolu-
tion of most VOS methods.

4.2. Experimental Setting

Downstream Task Models. For the action recognition
task, we adopt the following popular models, i.e., TSM [77],
SlowFast [50], and TimeSformer [10], including 2D CNN,
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Figure 2: Semantic coding performance on Action Recognition, MOT and VOS tasks. The plot titles are in {Dataset}-{Model} format.

3D CNN and the recent Transformer architectures. The
model weights are provided by the MMAction2 frame-
work [2]. For the MOT task, we adopt ByteTrack [143], of
which the model weights is provided by MMTracking [1].
For the VOS task, we adopt XMem [31], of which the model
weights is officially released by the authors. We emphasize
that we directly feed the decoded videos by our framework
into these official models, without any model fine-tuning.

Baseline Codecs. HEVC is evaluated with FFmpeg
software [112] and x265 codec. VVC is evaluated with
VVenC1.5.0 software [120], the performance of which is
similar to VTM15.0, but consumes much less encoding
time. FVC [61] is a representative work on learnable
codec. PLVC [132] is a recent perceptual quality-oriented
codec. For traditional codecs, the CRF value is selected
from {47,43,39,35}, as setting CRF to larger values does
not degrade the downstream task obviously. All codecs and
our framework are evaluated on LDP mode with group-of-
picture(GOP) size 10, for a fair comparison.

Evaluation Metrics. We use bpp (bit per pixel) to mea-
sure the average number of bits used for one pixel in each
frame. For the action recognition task, we adopt the Top1
accuracy as the performance indicator. For the MOT task,
we adopt MOTA (multiple object tracking accuracy) [66],
MOTP (multiple object tracking precision), FN (false neg-
ative detection number) and IDF1, which is the ratio of
correctly identified detections over the average number of
ground truth and computed detections. For the VOS task,

the standard metrics Jaccard index J , contour accuracy F
and the average of J and F (J&F) are adopted. We also
report the contour recall F-Recal.

Implementation Details. Following VideoMAE [113],
the masking ratio for MAE task is set to 90%, where the
encoder and decoder networks consist of six and two ViT
blocks [42] with divided space-Time attention [10], respec-
tively. The weights of the networks are randomly initial-
ized. K in Equation 1 is empirically set as 5. α and β are set
to 1 and 0.1, respectively. We use the Adam optimizer [69]
by setting the learning rate as 0.0001, β1 as 0.9 and β2 as
0.999, respectively. The resolution of training videos is 256
× 256 and the clip length is 8. The training iteration number
is 1000k. The mini-batch size is 24. The system is imple-
mented with Pytorch [93] and it takes about seven days to
train the model using eight Nvidia 2080Ti GPUs.

4.3. Experimental Results
Action Recognition. In Table 1, we compare different

video compression methods in terms of the action recogni-
tion accuracy performance. It is observed that our method
outperforms all other methods, including the traditional
HEVC and VVC codecs, the learnable FVC codec and the
perceptual-oriented codec PLVC by a large margin. When
compared with FVC on the UCF101 dataset with TSM per-
forming action recognition, our proposed method achieves
a remarkable 22% improvement at 0.04bpp level in terms
of Top1 accuracy. Compared with the latest video com-
pression standard VVC on the above setting, our proposed
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TSM Top1 (%) Slowfast Top1 (%) TimeSformer Top1 (%)
UCF101 HMDB51 Kinetics400 Diving48 Diving48 UCF101 HMDB51 HMDB51 UCF101 HMDB51

Bpp @0.04 @0.04 @0.06 @ 0.05 @ 0.07 @0.03 @0.02 @0.03 @0.04 @0.04
HEVC 52.70 36.64 35.28 22.48 37.24 85.13 47.78 62.68 69.92 37.45

FVC [61] 64.61 47.54 37.23 22.94 46.29 79.43 52.15 59.81 72.47 45.11
PLVC [132] 71.40 48.67 48.65 30.13 42.63 87.38 56.33 64.50 70.06 44.59

VVC 76.97 55.72 49.11 42.75 53.23 86.93 59.95 65.74 85.10 57.83
Ours 86.46 62.92 59.26 51.36 60.16 88.89 63.48 67.30 89.60 60.74

Original 93.97 72.81 70.73 75.99 75.99 94.92 72.03 72.03 95.43 71.44

Table 1: Results on action recognition. “Original” denotes the performance upper-bound, which is evaluated on the original dataset.

method still surpasses it by 10% at 0.04bpp level. In addi-
tion to the largely improved recognition accuracy, we also
calculate the bitcost reduction of our method with BDBR
algorithm [11] when using VVC as the anchor. Our method
substantially saves the bitcost of VVC by 31.65%, 48.93%
and 31.41% on UCF101, Kinetics400 and Diving48, re-
spectively. We also provide the rate-performance (RP)
curve of different video compression methods on action
recognition task. As shown in the first row of Figure 2, our
method outperforms all other methods by a large margin on
all datasets. Please refer to the supplementary material for
the RP curves of Slowfast and TimeSformer model.

Multiple Object Tracking (MOT). In addition to the
action recognition task that relies on the global spatial-
temporal discriminative semantic cues, we also benchmark
the coding methods on a much challenging MOT task. This
task requires not only inducing the local location of each
object, but also extracting occlusion-robust appearance fea-
tures for these objects. As shown in Table 2, our method
still achieves the best performance in terms of all metrics
when compared to all baseline codecs. Our method out-
performs FVC, PLVC, VVC codecs by 26.50%, 2.97% and
5.98%, respectively, in terms of MOTA at 0.01bpp. We no-
tice FVC poorly performs on MOT task, mainly due to its
I frames are based on hand-crafted BPG codec [9] and P
frames are based on neural codec. We conjecture the reason
is that the tracking task heavily relies on consistent feature
representation to lock on and keep track of the same ob-
ject across different frames, and the I/P frame domain shift
problem drastically confuses the tracktor. We also notice
that PLVC achieves the second best result, and is even supe-
rior to the strong VVC codec, because the equipped GAN
loss by PLVC right normalizes the object features into a
more consistent space. Finally, we provide the RP curves
on MOT task, as shown in the second row of Figure 2. It is
observed that our method largely outperforms other ones.

Video Object Segmentation (VOS). We further bench-
mark the semantic coding performance of different methods
on VOS task, which is more fine-grained than the MOT task
and relies on pixel-level details to obtain accurate segmen-
tation results. As shown in Table 3, our method achieves the
best performance in terms of all metrics when compared to
all baseline codecs. For example, our method outperforms
VVC and PLVC by 6.73% and 12.75% at 0.01bpp level in

MOTA (%)↑ MOTP (%)↓ IDF1 (%)↑ FN↓
HEVC 61.30 19.88 64.32 17377
FVC 44.24 21.97 52.53 27508

PLVC 67.87 18.44 68.95 13299
VVC 64.86 19.49 68.99 15621
Ours 70.84 17.79 71.89 11710

Original 78.60 15.80 79.00 7000

Table 2: MOT performance comparison of different coding meth-
ods on MOT17 dataset at 0.01bpp. “Original” denotes the results
with original videos, which is the performance upper bound.

J&F (%)↑ J (%)↑ F (%)↑ F-Recal (%)↑
HEVC 57.68 56.84 58.51 67.44
FVC 62.39 61.22 63.55 75.67

PLVC 61.45 60.02 62.87 74.07
VVC 67.47 65.59 69.36 80.92
Ours 74.20 60.21 78.19 91.10

Original 87.70 84.06 91.33 97.02

Table 3: VOS performance comparison of different coding meth-
ods on DAVIS2017 at 0.01bpp. “Original” denotes the results with
original videos, which is the performance upper bound.

terms of J&F . We also illustrate the RP curves on VOS
task. As shown in the third row of Figure 2, our framework
consistently outperforms other methods.

Video Quality. We further provide the rate-distortion
(RD) curves of the proposed framework in Figure 3. Com-
pared to perceptual quality-oriented video compression
method PLVC [132] and traditional methods HEVC/VVC,
our method achieves the best perceptual quality, which
is indicated by the much lower LPIPS [141]. From the
distortion-perception theory [12][13][52][129], the good
perceptual coding capability is at the cost of high distor-
tion, i.e., the pixel-wise fidelity. Therefore, when evaluating
with the PSNR metric, we fine-tune the decoder part of our
framework by using the MSE loss as the distortion term. We
refer to this model as “Ours*”. It is worth noting that em-
ploying an alternative decoder for PSNR assessment does
not compromise the practicality of our approach due to the
bitstream is right the previously received one for AI tasks.
Our method consistently outperforms HEVC/VVC codecs,
as well as other recent PNSR-oriented learnable methods,
i.e., FVC [61], C2F [60] and DCVC [73]. For example, our
improvement over VVC is 0.25db at 0.1bpp level.

To keep pace with the latest video compression meth-
ods, we further equip our method with the powerful al-
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Figure 3: RD curves of different video coding methods.

beit slow VVC reference software VTM, end-to-end fine-
tuning both our encoder and decoder networks with the RD
loss. Our approach saves the bitcost of VTM17.0 by -11.2%
on HEVC C in terms of BDBR [11], which is superior to
the latest methods, i.e., DCVC-DC [75] (-10.3%), DCVC-
HEM [74] (+22.2%) and DCVC-TCM [97] (+66.3%).

4.4. Ablation Studies
Framework Study. We first train a variant model de-

noted by SMC wo Comp, in which the semantic com-
pensation operation is removed. As shown in Figure 4
(Left), the performance is drastically decreased by 16% in
terms of Top1 accuracy at 0.02bpp. Further, we replace
the simple UNet-Style visual-semantic fusion network of
SMC wo Comp with a compressed video enhancement
method BasicVSR++ [17]. The framework is degraded to
a “lossy codec plus video enhancement” paradigm. The
BasicVSR++ model is dedicatedly trained for video com-
pression artifact removal [18][130]. The improvement over
the simple UNet is marginal and is still far behind our full
semantic compensation framework by -14.23%@0.02bpp.
These results strongly prove that the corrupted semantic in-
formation cannot be effectively fixed by video enhancement
and should be particularly compensated.

We also fine-tune the official UCF101-TSM model using
videos compressed by above variant methods. As shown in
Table 4, the performance of vanilla VVC after fine-tuning
(FT) nearly catches up with that of BasicVSR++ (82.46%),
suggesting that video enhancement procedure mainly nar-
rows the domain gap between the evaluation and training
video data input to TSM model, and bring no new infor-
mation. In contrast, our full SMC framework further im-
proves the accuracy from 86.46% (already higher than Ba-
sicVSR++) to 89.83% at 0.04bpp level. This proves that our
method consistently benefits the downstream task by com-
pensating new semantic information, no matter fine-tuning
the downstream model or not.

Different Semantic Learning Objectives LSem. In
this section, we train several SMC models by equipping
them with different learning objectives, i.e., MoCoV3 [27],

VVC BasicVSR++ Ours
Before FT(%) 76.97 82.46 86.46
After FT(%) 82.35(+5.38) 82.92(+0.46) 89.83(+3.37)

Table 4: Impact of fine-tuning (FT) downstream model to different
coding methods on UCF101-TSM (Top1) at 0.04bpp level.
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Figure 4: Left: Ablation studies on SMC framework. SMC woC
denotes the semantic compensation procedure is removed. Ba-
sicVSR++ denotes the compressed videos by VVC codec are en-
hanced by state-of-the-art BasicVSR++ method [17]. Right: Com-
parison of different semantic learning objectives.

UCF101-TSM@0.02bpp MOT17-ByteTrack@0.01bpp
MoCoV3 → Ours MoCoV3 → Ours

Top1: 75.20% → 76.48% MOTA: 67.62% →70.84%(+3.22%)

Table 5: Comparison of different self-supervised learning methods
on coarse/fine-grained tasks, i.e., action recognition and MOT.

SegMap, HEDMap, and FeatureMatch. The first one is
purely self-supervised. The latter three ones regularize the
compressed video to be similar to the original video in terms
of DeepLabv3 [24] semantic segmentation map, HED [124]
edge map, and VGG16 [99] feature map, respectively.

As shown in Figure 4 (Right), our method consistently
outperforms the contrastive learning-based method Mo-
CoV3. We also compare these two objectives on MOT task,
the large performance gain (+3.22%) clearly proves our
learned semantics is more generalizable. Then, we find that
the hand-crafted SegMap loss achieves similar performance
to MoCoV3 in the lower bitrate ranges. This is consistent
with the previous works [62][20], which relies on the hand-
crafted design, i.e., employing semantic segmentation map
as the semantic intermediary, but still achieves promising
results on downstream AI tasks. However, this paradigm
is still far behind our learning objective, e.g., about a 3%
performance gap at 0.05bpp level. After replacing the seg-
mentation map with the HED edge map, the performance
is further dropped, because the edge map does not con-
tain the category information of each object region and is
of less semantics. The model trained with FeatureMatch
shows the worst results, probably because feature values are
denser than the discretized segmentation/edge maps, which
increase the bitcost. When completely removing the LSem

loss item, the performance is further degraded due to not
particularly enforcing the video semantic completeness.

Effectiveness of NSS Strategy. Our method adapts the
vanilla MAE to the semantic compression task by suppress-
ing the non-semantic information within its token space.
To study the necessity of this design, we first train a vari-
ant model SMC woNSS by removing the LNSS item from
the loss function. As shown in Table 6, the bitcost of
SMC woNSS is 2.6× larger than the full SMC model, be-
cause the low-level pixel information is back-propagated to
the coding system without any selection. Moreover, this
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SMC VQ SMC woSem SMC woNSS SMC
Res (bpp) 0.0048 0.0042 0.0074 0.0028
Top1 (%) 71.22 71.38 69.57 72.96

Table 6: Comparison of different non-semantic suppression (NSS)
strategies on UCF101-TSM. Res (bpp) denotes the bitcost of the
residual semantic stream. The CRF value of VVC is set to 51.

non-semantic information may be noises to the downstream
tasks, i.e., the action recognition accuracy is dropped from
72.96% to 69.57%. Then, we train a variant model SMC
woSem by using a plain learnable variable as the condition
of the GMM distribution, instead of the semantic feature S.
Both the compression efficiency and the recognition accu-
racy of SMC woSem are superior to SMC woNSS, but still
inferior to our SMC model. This implies that explicitly reg-
ularizing the information entropy of the MAE token space is
beneficial to a coding system, and using learned semantics
as the guidance further improves this idea. Finally, we use
the vector quantization (VQ) [114] codebook to discretize
the token space of MAE, and the resulted SMC VQ model
has similar performance to SMC woSem, indicating that the
idea of information suppression is important for a compres-
sion system, instead of its concrete implementation.

Hyper-parameter Sensitivity. Setting the semantic loss
item weight α to the values in range [1,10] gives the similar
results. Setting the NSS loss item weight β to 0.1 achieve
the best results, while smaller value 0.01 cannot effectively
suppress the non-semantic information and larger value 1
makes the semantic learning item hard to optimize. Setting
the GMM component number K to values in range [3,9]
gives the similar results, while smaller K is slightly worse.

4.5. Model Analysis
Bit-allocation of Semantic and Visual Information.

As shown in Figure 5, the semantic stream is always of
high compression efficiency. Moreover, the bit allocation
strategy is adaptive to the quality (CRF) of the lossy visual
stream, although we do not introduce any explicit adaptive
design and time-consuming online rate-distortion optimiza-
tion (RDO) strategies like [81]. The proportion of semantic
information has been decreased to about 1% when CRF is
larger than 40 (the second column). This 1% bitcost boots
Top1 accuracy by 7% on UCF101-TSM.

Visualization. As shown in Figure 6, the semantic fea-
ture extracted from the input frame is of high semantics and
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Figure 5: Bit consumption of visual and residual semantic infor-
mation. The x-axis indicates the set CRF value of the VVC codec.

(a) Input  Frame (b) Semantic Feature (c) Residual Bitcost

(d) Ground-truth (e) VVC@0.095bpp (f) Ours@0.08bpp 

Figure 6: Visualization of the semantic feature and the bitcost map
of the residual semantics. We also compare the visual quality of
the zoomed-in region, which is denoted by the red box.

close to human perception. The activated regions are con-
centrated on the human body and the saliency objects, i.e.,
vehicle wheels and drum. We further visualize the bitcost
map of the residual part, where the redundant part is re-
moved by subtracting the semantics in lossy video stream.
The residual bitcost map is quite sparse, and further concen-
trated on the AI task-interested regions. We also compare
the VVC codec and our method in terms of qualitative re-
sult. As shown in (e) and (f) of Figure 6, our method based
on VVC (CRF=51) demonstrates much clearer object struc-
tures and sharper edges than vanilla VVC (CRF=47), while
consuming few bits (0.08bpp v.s. 0.095bpp).

Model Complexity. The parameter numbers of Sem-
Net, Sem-Nets, F-Net and Density-Net are 12.2M, 3.1M,
8.4M and 1.3M, respectively. We report the per frame run-
ning time of a 1080p video on the machine with a Nvidia
2080Ti GPU. Our encoding time is 1413ms, of which
993ms is consumed by the VVCenc. Our decoding time is
446ms, of which 126ms is consumed by the VVCenc. Al-
though our framework introduces extra decoding time for
better supporting AI tasks, the frame decoded from visual
stream can be directly analyzed and gives a fast response.

5. Conclusion and Limitation
In this paper, we have focused on a novel unsupervised

video semantic compression problem. We have proposed a
simple baseline framework SMC to better cope with this
problem, which is equipped with a novel non-semantics
suppressed MAE loss. We have also built a benchmark
by evaluating several video codecs on three common video
analysis tasks. Comprehensive experiments demonstrate
our method achieves remarkable results. One limitation is
the learned semantics still relies on the training dataset con-
sisting of natural images, which may not perform well on
professional field, such as medial image analysis.
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