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Abstract

We present ShapeScaffolder, a structure-based neural
network for generating colored 3D shapes based on text
input. The approach, similar to providing scaffolds as in-
ternal structural supports and adding more details to them,
aims to capture finer text-shape connections and improve
the quality of generated shapes. Traditional text-to-shape
methods often generate 3D shapes as a whole. However,
humans tend to understand both shape and text as being
structure-based. For example, a table is interpreted as be-
ing composed of legs, a seat, and a back; similarly, texts
possess inherent linguistic structures that can be analyzed
as dependency graphs, depicting the relationships between
entities within the text. We believe structure-aware shape
generation can bring finer text-shape connections and im-
prove shape generation quality. However, the lack of ex-
plicit shape structure and the high freedom of text structure
make cross-modality learning challenging. To address these
challenges, we first build the structured shape implicit fields
in an unsupervised manner. We then propose the part-level
attention mechanism between shape parts and textual graph
nodes to align the two modalities at the structural level. Fi-
nally, we employ a shape refiner to add further detail to
the predicted structure, yielding the final results. Extensive
experimentation demonstrates that our approaches outper-
form state-of-the-art methods in terms of both shape fidelity
and shape-text matching. Our methods also allow for part-
level manipulation and improved part-level completeness.

1. Introduction
The advance of 3D representation learning and gener-

ative models has sparked increasing interest in 3D shape
generation. However, text-guided shape generation remains
a challenging task. Many current approaches generate the
3D shape as a whole when no part information is utilized,
while others treat text as a simple collection of words in or-
der to provide finer guidance. Both shape and text, however,
possess inherent internal structures that can be leveraged to

armrests
seat

curved

wooden brown

plush

blue

Text Graph

Input Text

Structure

Coarse Fine

chair

cushion

brown wooden chair with 
curved armrests and a blue 

plush seat cushion

Figure 1. Text to shape generation with structure awareness. Raw
description generates the initial coarse shape with structures. Fur-
ther correspondence is built between shape parts and text graph
nodes for fine-grained refinement.

improve the alignment between the two modalities.
Humans are born with a sense of physical understanding

of the world [3]. Studies have shown that the human vi-
sual system perceives objects as hierarchical arrangements
of parts [4], comprising high-level structural properties and
low-level details. In addition, humans use language to de-
scribe objects, including their appearance, structure, and
functions. It has been discovered that language, shaped by
the human brain over time, has evolved to have hierarchi-
cal linguistic structures in order to convey more complex
meanings [10]. This suggests that structure-based reason-
ing is present in both the visual and language modalities.
While this is intuitive and effortless for humans, it is a chal-
lenge for intelligent algorithms to understand the structural
connection between these two modalities.

In this research, we aim to augment shape generation
from text with an awareness of structure in both shape and
language modalities. This would allow for shape genera-
tion to be guided not only by high-level descriptions, such
as a sentence but also refined with part-level guidance from
semantic text entities. This process is similar to how hu-
mans create visual artworks: sketching an idea’s gist and
then progressively refining the details. However, there are
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several challenges to overcome. One challenge is that the
shape structures are unknown unless annotated segmenta-
tion labels are provided. Even with annotation, where the
process is time-consuming and labor-intensive, the defini-
tion of “parts” in shapes is subjective and ambiguous at
multiple levels. Another challenge is that text descriptions
of shapes are diverse and complex, making it difficult to op-
timize learning. In addition, for colored shapes, the align-
ment between structure and color representation must also
be taken into consideration.

To address the challenges above, we propose a two-stage
approach. First, we leverage an unsupervised hierarchical
shape structure given part hierarchy is a prevalent and effec-
tive approach for representing shape structures, as demon-
strated in previous research [22, 28]. To achieve this, we
introduce a decomposition model to progressively decom-
pose the shape into parts at multiple levels of granularity,
from coarse to fine, such that each level can reconstruct the
entire shape. Additionally, we learn color reconstruction at
the part level. Fig. 1 illustrates the process. While the struc-
tures and parts identified in the first stage hold significance
within the shape domain, they do not have a corresponding
relationship with the text. In the second step, we establish
a connection between the shape structure and the text struc-
ture. We utilize linguistic dependency graphs, which can
be used to represent the structural elements present in the
text, as attention signals to form the structure-level connec-
tion. Through these two steps, we are able to improve the
generation results at the part level by building upon the es-
tablished structure.

In our experimentation on the ShapeNet dataset [7],
we have demonstrated the efficacy of utilizing a structure-
aware representation in improving the correspondence be-
tween text and shape. As a result of the part-aware refine-
ment, we observe a significant improvement in the qual-
ity of generated shapes, particularly in terms of their con-
stituent parts. Additionally, our approach attains state-
of-the-art results regarding several commonly used met-
rics such as Intersection over Union (IOU), Accuracy, and
Inception Score (IS). Furthermore, through further explo-
ration of the latent shape structure space, it is demonstrated
that our method has the capability of generating previously
unseen shapes.

The main contributions of this work are: (1) An unsuper-
vised hierarchical decoder for building shape structural im-
plicit field. (2) A structure-aware text-to-shape generation
method that improves part-level correspondence and refine-
ment. (3) Comprehensive experiments that demonstrate the
effectiveness of our method.

2. Related Work
Text Guided 3D Shape Generation. Deep learning has
led to a surge in works exploring text-guided 3D shape or

scene generation [6, 8, 1, 25, 27, 13]. Recently, to achieve
faithful results, some works tend to adopt pre-trained CLIP
models [35, 17, 26] or diffusion-based methods [33, 23] for
large-scale learning on open datasets. Our work, however,
focuses on the classic ShapeNet dataset [7], examining the
generation of structure-aware, colored shapes from text and
comparing our results to previous baselines.

Generating 3D shapes directly from text remains a chal-
lenge, particularly when attempting to concurrently gen-
erate colors. [8] proposes a method that learns a joint
text-shape embedding space and then uses a generative ad-
versarial network (GAN) [14] to generate colored voxels
from text. However, this approach has not been success-
ful in terms of shape resolution, color quality, and cross-
modality consistency. To address these issues, [25] pro-
poses a method that uses an implicit 3D representation
with word-level attention to improve control over generated
shape structures and colors. [27] and [13] both adopt a dis-
crete autoencoder to capture patch-based shape priors and
subsequently employ a transformer for autoregressive gen-
eration. However, it is worth noting that these methods do
not take into account color information, which is an essen-
tial attribute of object appearance. Also, all these meth-
ods have treated the shape as a whole, ignoring the internal
structure within the shape. Additionally, text modeling has
been limited to language-level features, such as sentence
and word features, rather than considering the structure of
the text for structure-level matching with the shape domain.

3D Structure-Aware Representation and Parsing. Al-
though structure-based shape generation with text guidance
has not been previously explored, there is a significant
amount of research on learning structure-aware 3D shape
representation or parsing 3D shapes into parts. For super-
vised methods, [22] proposes the use of a symmetry hier-
archy [39] for hierarchical shape structure representation,
while StructureNet [28] represents shapes using a graph
neural network that considers both primitives and hierar-
chies. Similarly, [16] utilizes a binary parsing tree to repre-
sent the 3D structure of a cable-stayed bridge. Recently,
semantic-based shape decomposition or parsing methods
have been proposed in [19, 18], which use learned oper-
ations to obtain grammar-level shape parts. Unsupervised
methods such as [37, 31] use convolutional neural networks
(CNNs) to generate primitive shapes, e.g., cuboids or su-
perquadrics, which abstract the input shape. BAE-NET [9]
attempts to co-segment shapes into parts using a branched
autoencoder architecture that disentangles common features
for segmentation. However, these methods only predict the
parts without considering their dependencies in the shape
structure. [30] recovers the 3D objects into a hierarchy of
parts directly from an RGB image using CNN, while the
parts are primitive and lack details. RIM-NET [29] infers
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hierarchical structures of 3D shapes using recursive implicit
fields. It decomposes an input shape into two parts at each
level, resulting in a binary tree hierarchy, where each level
of the tree corresponds to an assembly of shape parts repre-
sented as implicit functions. However, the method does not
consider color information and only processes one shape at
a time during training. Our work uses a hierarchical tree
structure for shape representation, but also includes color
information for part-level implicit representation. In addi-
tion, our model is able to learn a shared latent space for a
set of shapes.

Text as Textual Graph Guidance. Text-to-image (T2I)
generation has seen significant progress in recent years,
with a focus on both generating realistic images and in-
creasing consistency between texts and images. Some ap-
proaches use attention-based methods [40] for fine-grained
alignment, while others leverage shared structures in im-
ages and texts. Scene graphs, which are derived from texts
and contain expressive structural relationships between en-
tities, have been widely used to reduce the cross-modality
gap between texts and images for tasks such as text-image
matching [24], fine-grained image generation [2], and im-
age manipulation [12]. Given that both shapes and texts
contain structural elements, we opt to employ textual graphs
as additional guidance in conjunction with the generation of
structural parts.

3. Method
3.1. Overview

The task is to generate 3D shapes with colors based on
the given text description T . The predicted object is denoted
as O ∈ RN×4, comprising the shape occupancy values S ∈
RN×1 and the color RGB values C ∈ RN×3, where N is
the number of sample points.

The overview of our method is illustrated in Fig. 2. Our
framework consists of a text encoder ET , textual graph en-
coder EG, hierarchical structure-aware shape decoder DT ,
and shape encoder ES . In contrast to general methods
that generate the whole shape at once, our approach, called
ShapeScaffolder, aims to generate the 3D shape by consid-
ering its internal structures, enabling refinement at the part
level and improvement of text-shape correspondence. To
achieve this, we propose to capture the part-level informa-
tion from both shape and text. For the shape, we intro-
duce the concept of structural implicit field in the shape
decoder to capture the underlying structure and relation-
ships of shape parts and colors. As shown in Fig. 2 (middle
right), the structure latent fields capture the semantic shape
parts for a chair, including arm, cushion, legs, etc. For the
text, in addition to encoding it as a global feature such as
a sentence vector, we also propose using a linguistic tex-

tual graph parsed from the text that includes explicit entities
with relations. This enables the structure latent fields to in-
teract with textual entities at a finer level, resulting in more
direct and explicit correspondence between the text descrip-
tion, such as “curved armrests” and the corresponding arm
part of the generated shape. However, it is non-trivial to
train a hierarchical structure-aware generator conditioned
on text. We approach this task by dividing the training pro-
cess into two stages: (A) for learning the structural implicit
field using an autoencoder, and (B) for generating shapes
guided by text, as summarized in Fig. 2. Stage B can be
further divided into text encoding (B-1) and shape genera-
tion (B-2). The following describes each stage in detail.

3.2. Shape-Specific Pre-training

To capture the internal semantic structures of shapes and
facilitate shape decoding conditioned on text, we employ
a pre-training technique using a shape-specific hierarchical
decoder DS and a shape encoder ES , forming an autoen-
coder (see Fig. 2 (A)). The encoder ES , which is a convolu-
tional neural network (CNN), takes the volume of an object
O as input and produces latent shape and color features to be
used by the decoder. The decoder then creates an implicit
field by partitioning the shape (f̄s) and color (f̄c) latents
at each hierarchical level, reconstructing the latent features
into parts and assembling them into the final object. An ex-
ample of a successfully learned structural implicit field is
shown in Fig. 2 (right), where semantic shape parts can be
reconstructed from their corresponding latent positions.

Hierarchical Shape Decoder The Hierarchical Decoder
consists of two modules at each level: the Structure Di-
vider (SD) and the Part Generator (PG). Given a pair of
shape/color latent features (f l,i

s ∈ Rd, f l,i
c ∈ Rd) at level l

and position i(1 ≤ i ≤ 2l), the SD first divides the shape
latent into two child shape features and then generates the
color latent for each child conditioned on the corresponding
child shape latent. The SD constructs the latent space for
both shape and color, as depicted by the grey and yellow
squares in Fig. 2. The PG then generates shape parts one
by one from its shape/color latents at a given set of point
coordinates p = {(x, y, z) | x, y, z ∈ R}. For each point p,
the input is the concatenation of p with the latent value, and
SD outputs one occupancy probability for the shape channel
and three values (RGB) for the color channel. The resulting
generated shape Ol at level l is a composite of generated
parts, where a point is occupied by a part with the high-
est occupancy probability, provided that this probability ex-
ceeds a pre-defined threshold. The color of each point is
determined based on the corresponding color values of the
occupying part. Both SD and PG are implemented using
multi-layer perception (MLPs). The SD is implemented us-
ing a two-layer MLP for partitioning the shape latent space
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Figure 2. Method overview. The proposed method includes two phases: shape autoencoder pre-training (A) and text-to-shape (T2S) phase
including (B-1) and (B-2). Phase (A) trains the shape-specific decoder using shape/color reconstruction loss and hierarchical bond loss.
Phase (B-1) utilizes the text encoder ET to convert text into global-level shape (t̄s) and color (t̄c) representations, as well as local-level
features in the form of a textual graph (g). In Phase (B-2), the shape decoder generates the object hierarchically using the global input
from Phase (B-1), with further use of a part-node attention module and refiner (R) to connect part latents and graph node features for more
precise guidance.

and a one-layer MLP for partitioning the color latent space.
The PG has three layers for the shape latents and two layers
for the color latents. Both SD and PG use LeakyReLU as
intermediate activation layers and Sigmoid as the final one.
Note SD and PG have shared weights within each level of
the hierarchy tree, but different weights between the levels.

Reconstruction Loss The total reconstruction loss of
shape and color is calculated by summing the individual re-
construction losses at each level using Mean Squared Error
(MSE), as shown below:

Lrecon = λrecon

L∑
l=1

(Sgt − Sl)
2
, (1)

Lcolor = λcolor

L∑
l=1

(Cgt − Cl)
2
, (2)

where Sgt and Cgt represent the ground truth for shape
and color, respectively. Sl and Cl are the assembled part’s
occupancy and color value at level l.

Hierarchical Bond Loss The generated shape parts, fol-
lowing the hierarchical tree structure, need to be constrained
by the relationships between parent and child parts in terms
of geometric composition. To ensure this, a bond loss is cal-
culated between level l and the next level l + 1. The bond
loss is defined as the error between the occupancy value of
each parent part and the maximum of the occupancy values
of its two derived parts:

Ll
bond =

2l∑
i=1

(Sl
i −max(Sl+1

2i−1, S
l+1
2i ))2, (3)

where Sl
i is the occupancy value of the parent part at

position i and level l, and Sl+1
2i−1 and Sl+1

2i are the occupancy
values of the two derived child parts. The total bond loss is
computed by summing the bond loss across all levels when
l < L: Lbond = λbond

∑l<L
l=1 Ll

bond.

Regularization Loss To reduce the complexity of the net-
work and avoid overfitting, we introduce regularization loss
Lreg at the last layer of each Structure Divider at each level.
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This loss is calculated as the sum of the absolute values
of all weight parameters, multiplied by a small regulariza-
tion parameter λreg . The regularization loss is given by:
Lreg = λreg

∑n
i=1 |wi|, where wi is the i-th weight pa-

rameter in the layer, and n is the total number of weight
parameters. Our experiments show that without using regu-
larization loss, the generated shapes may contain parts that
are over-segmented or lack reasonable shape.

Comparison with Existing Method Our method differs
from previous approaches that utilize (hierarchical) de-
coders for unsupervised shape part learning (such as in
[9, 29]) in several ways. Firstly, our hierarchical decoder
aims to learn semantic shape part-level implicit field rather
than simply segmenting the shape into more parts. For
example, when generating a chair with four legs, our ap-
proach considers the legs as a whole unit rather than seg-
menting them individually, as we typically describe the legs
as a whole rather than as individual parts. To balance the
network’s fitting ability with its complexity, we utilize a
regularization loss. Secondly, we also construct hierarchi-
cal color latent fields, which are often overlooked in other
methods, to represent colored shapes.

3.3. Text-Guided Shape Generation

Fig. 2 (B) shows the text-guided shape generation net-
work, comprising three modules: text encoder ET , textual
graph encoder EG, and hierarchical shape decoder DT . The
DT module is similar to the pre-trained shape-specific de-
coder DS (as described in Section 3.2), with the addition of
a new part-node attention module and a refiner. This atten-
tion module allows the network to learn the local connec-
tions between shape parts/colors and textual graph entities,
followed by a refiner module R for final results generation.
DT module is initialized from the pre-trained DS to lever-
age its predefined structural implicit fields and facilitate the
generation process in a hierarchical manner. We provide a
detailed description of each part in the following sections.

Text Global Encoding We utilize a pre-trained BERT
model [11] as the text encoder base. The encoded [CLS] to-
ken feature is used to extract global-level latent features t̄s
and t̄c for shape and color, respectively, which serve as the
input for the hierarchical shape decoder D. Most existing
approaches employ word-level features w as fine-grained
guidance in text-conditioned image or 3D shape generation
tasks [40, 25]. However, we argue that the use of structured
textual representation, such as the textual graph, would be
more appropriate in aligning with shape structures. As a re-
sult, we opt to use the word features to initialize the graph
node representation, as described below.

Figure 3. The dashed box shows a triplet (vs, vr, vo) in the graph,
denoting the subjective, relation, and objective nodes. The three
nodes are first concatenated and then jointly processed using MLP,
which outputs a new value for each node. The final updated state
v′s of vs is the result of pooling the corresponding values from all
triplets in which the node vs is involved.

Shape-Oriented Text Graph We use a unique text graph
representation designed specifically for shapes. The graph
nodes are classified into root, part, and attribute cate-
gories, which represent the class of the shape, the parts,
and the attribute for root/part nodes, respectively. We
use a special type node relation to connect these nodes,
forming the edges. For example, the text “brown wooden
chair with curved armrests” would be parsed as (chair:
brown, wooden), (armrests: curved), and their relation
triplet (chair, with, armrests) in the (subjective, relation, ob-
jective) convention. To construct graphs from the original
text, we first use the spaCy library [15] to parse the text’s
semantic dependencies. These raw dependencies contain
many linguistic terms and do not correspond well with real-
world structures. To obtain more clear and shape-oriented
graph formation, we introduce a custom parser targeting 3D
shapes based on [36]. To ensure that the graph remains con-
nected, we connect all part nodes with the root node using
the with relation if no linguistic relation is found. The lower
left of Fig. 2 illustrates these two forms of text. Finally, we
use the resulting relation triplets for training. Further details
can be found in the supplementary materials.

Spatial-Aware Graph Encoding One challenge in using
a shape-oriented graph, where entity or attribute nodes are
connected through relation nodes, is the lack of a canonical
grid for embedding the graph since nodes in such a graph
exist in a non-Euclidean space. Existing methods based
on Graph Convolution Networks (GCN) [21] typically rely
on an adjacency matrix to represent the relations between
nodes, which reduces their ability to represent spatial rela-
tions. To address the issue, we designed a novel Spatial-
Aware Graph Encoder (SAGE) that differentiably encodes
relation nodes in order to capture the structural relations be-
tween nodes. Specifically, we represent each graph triplet
g in the form (vs, vr, vo), where vs, vo, and vr represent
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Figure 4. The Part-Node attention. The attention map is obtained
by the dot-product between the features from the intermediate part
latent feature (f l

s) at level l and the graph node features g.

the values of subjective, objective, and relation nodes in a
relationship, respectively. This makes the graph directional
through the order of the nodes between the relation node,
like chair has arms. As shown in Fig. 3, the computational
layer in SAGE jointly encodes the nodes and their relation
in each triplet, followed by a pooling layer that fuses the
features of each node involved in more than one triplet.

Part-Node Attention We introduce the Part-Node Atten-
tion modules for learning the relationship between interme-
diate parts/colors with textual graph nodes. These modules
are based on the multi-head attention mechanism presented
in [38]. For level l, given the intermediate shape latents
f l
s ∈ R2l×d as query, and the encoded graph node features,
g ∈ Rn×d (n is node number), as key and value, the calcu-
lation inside an attention head is:

f̂ l
s = softmax

(
QK√
dh

)
V, (4)

where Q = FQ(f
l
s), K = FK(g), V = FV (g), and

FQ, FK , and FV are functions implemented using MLPs.
d is the feature dimension for g and f l

s, while dh represents
the dimension used within an attention head. The SoftMax
operation is applied across the graph nodes, resulting in a
weighted aggregation of the graph node features as the new
intermediate part latents, f̂ l

s. This process is visualized in
Fig. 4. Also, attention is applied between the paired color
features f l

c with the graph nodes using a separate module. In
practice, we use the attention module at level 2 of the hier-
archical decoder due to the generated semantically detailed
shape components aligned with graph nodes.

Joint Refiner The hierarchical bond loss, introduced in
Section 3.2, serves as the foundation for structure-aware
generation by constraining the composition of shape parts
to follow a hierarchical tree structure. However, we posit
that this also negatively impacts the generated results, as
demonstrated in the perception-distortion tradeoff [5]. To

mitigate this issue, we introduce a refiner R in one level
that uses the level latents jointly to generate the final shape.
The refiner is also an implicit shape decoder with six layers
of MLPs. The final shape output is accompanied by an ad-
ditional refiner reconstruction loss LR but without the need
to consider the hierarchical bond, which allows for the in-
corporation of additional detail in the final shape.

Training Strategy and Losses Training text-guided hier-
archical shape generation directly presents significant chal-
lenges considering the big discrepancy between text and
shape modalities. To address this, we propose a three-step
strategy to ensure stable and effective training. First, we
collect the shape and color latents from the shape encoder
ES as guidance and train the text global feature encoder
ET alone. The loss is using MSE: Llatent = λs

latent(t̄s −
f̄s)

2+λc
latent(t̄c−f̄c)

2, where t̄s and t̄c are encoded by text
encoder while f̄s and f̄c are encoded by shape encoder. Sec-
ond, we train the decoder with attention modules, freezing
the decoder during the first ten epochs to allow for warmed-
up training. Finally, we train the entire network together.
The total loss then includes the aforementioned shape/color
reconstruction losses and the bond loss in shape-specific
pre-training (see Sec. 3.2), and the refiner loss.

4. Experiments

This section introduces our experimental design and im-
plementation, followed by a comprehensive analysis of the
results from various aspects and an ablation study. Supple-
mentary material provides additional results and analysis.

4.1. Experimental Settings and Implementation

We conduct experiments using the text-shape dataset [8],
which is derived from the 3D shape dataset, ShapeNet [7],
and augmented with textual annotations. The dataset com-
prises approximately 15,000 shapes and 75,000 textual de-
scriptions, encompassing the table and chair shape classes.
We also adhere to the same training and testing splits as
previously established.

We implement our framework in PyTorch [32]. We set
N = 4096 as the sampled points. We pre-train the shape-
specific decoder for 1000 epochs and the text-guided model
for another 500 epochs. The learning rate is constant 1e−4

using Adam [20] for all phases. The loss weights are set
as follows: λrecon = 10.0, λcolor = 1.0, λbond = 1.0,
λreg = 1e−4, λs

latent = 10.0 and λc
latent = 1.0. Detailed

training strategy can be found in Sec. 3.3. Additionally, as
our model outputs shapes at different levels, we select the
results from level 2, as it is at this level that most shapes’
parts have been parsed and refined. Level 3 is used as a
spare level for monitoring no further parts are parsed.
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IoU (↑) IS (↑) EMD (↓) Acc (↑)
Text2Shape [8] 9.64 1.96 0.4443 97.37
T2S-Implicit [25] 12.21 1.97 0.2071 97.48
ours 13.65 1.98 0.1767 97.5

Table 1. Quantitative comparison with state-of-the-art. ↑ and ↓
indicate higher or lower is better, respectively.

4.2. Text-Guided Shape Generation

Comparison with the State-of-the-art We compare our
method to two existing text-conditioned colored shape gen-
eration methods, Text2Shape [8] and T2S-Implicit [25]. We
employ the same quantitative metrics for evaluation, includ-
ing (1) Mean intersection-over-union (IoU) for shape occu-
pancy measurement, regardless of color; (2) Earth Mover’s
Distance (EMD) for color distribution evaluation; (3) Incep-
tion Score (IS) to quantify the realism of the results; and (4)
Accuracy (Acc) computed by a pre-trained shape classifier
to indicate whether the predicted class matches the ground
truth. To ensure fairness in comparison, we convert the gen-
erated shapes to volumes of the same size as in [8, 25] be-
fore calculating the quantitative values. The comparison re-
sults are presented in Table 1, where the numbers of the
existing methods are directly taken from the respective pa-
pers. Our method exhibits superior performance across all
metrics. The qualitative result presented in Fig. 5 provides
further evidence of the effectiveness of our approach. As
can be observed, our method achieves a higher degree of
correspondence between the predicted shape structure and
the text description, as demonstrated in Row 1 of the figure
with the example of “wood armrests”. Additionally, our ap-
proach exhibits an increased level of completeness in part
generation, as evidenced by the absence of incomplete parts
or extra artifacts, which are clearly labeled with red circles
in the results generated by the existing methods.

Part-level Refinement As T2S-Implicit [25] also em-
ploys an implicit decoder similar to our approach, we con-
duct a comparison with it to highlight the distinctions, par-
ticularly with regard to part-level details. The results are
presented in high resolution in Fig. 6. We observed that
[25] tends to struggle with smaller or complex parts, such
as the legs of a sofa or the wheels of an office chair. In
contrast, our method is capable of interpreting these parts
explicitly, resulting in more realistic part-level generation.
Another advantage of our approach is that the generation of
a single part does not affect the other parts, which is a com-
mon issue in previous methods. For example, generating
“silver legs” may result in the bottom of the sofa appearing
slightly silver in the connection area, creating a noticeable
color artifact.

Text2Shape T2S-Implicit Ours Structure 
(Level 2)Ground TruthInput Text

Modern, brown 
color, square shape, 
wooden table with a 
curve at bottom

a desk, made out of 
what appears to be 
wood, with a white 
top and six white 
drawers. it is shaped 
like an angular 
upside down u

chair with wave back. 
seat is light grey and 
legs and armrests are 
curved wood

A rectangle glass 
table with a unique 
base design.

Figure 5. Visualization of the results of our method in comparison
to Text2Shape [8] and T2S-Implicit [25]. Red circles indicate in-
complete parts or extra artifacts.

Dark brown 
material armchair 
with silver metal 
feet. 

a large blue office 
chair. the office 
chair has a back and 
head support .

T2S-Implicit Ours with predicted structure

Figure 6. Comparison of part-level refinement.

Part-level Manipulation The ability to learn structure-
based 3D shape representations and align them with textual
descriptions enables precise and convenient manipulation of
shapes. In the process of generating a shape from text, our
method allows for manipulation at various levels, including
modification of the part-level structure, attributes, or colors.
The results of this manipulation are illustrated in Fig. 7. The
changes made in the text appear to reflect the changes in
part structure (a), part attribute (c), and part-related color re-
finement (b), suggesting a possible consistency between the
constituent parts of the shape and the corresponding text.

4.3. Ablation Studies

We conduct extensive ablation studies to validate the ef-
fectiveness of the proposed hierarchical structure-based rep-
resentation, graph-part attention, and joint refiner. We also
use Frechet Inception Distance (FID) and CLIP [34] to eval-
uate the quality of the generated shapes and the similarity
between the generated shapes and their corresponding text
descriptions, respectively. More detailed information on the
metrics can be found in the supplementary material. The re-
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Method Level 1 Level 2 Level 3
IOU↑ FID↓ CLIP↑ IOU↑ FID↓ CLIP↑ IOU↑ FID↓ CLIP↑

HierD [base] 11.20 17.47 45.43 11.07 17.52 45.36 10.85 17.60 43.92
FlatD 10.38 19.55 40.72 - - - - - -

HierD + WordAttn (L2) 11.13 17.42 44.88 11.66 16.46 47.43 10.72 17.69 46.10
HierD + GraphAttn (L2) 11.29 17.36 45.01 12.63 16.31 50.64 12.41 16.70 50.01
HierD + GraphAttn (L1) 11.54 16.86 52.75 11.30 17.09 51.40 11.27 17.12 50.56

HierD + GraphAttn (L2) + Refiner(L2) [Full] 11.19 17.38 47.27 13.65 15.81 54.89 12.22 16.34 52.20

Table 2. Results of the ablation study on output levels. The base model, HierD, is the proposed hierarchical decoder using sentence-level
guidance only. L1/L2 indicates component application at Level 1/Level 2. ↑/↓ denote better higher/lower results, respectively.

brown wooden chair 
with curved 
armrests and a red 
plush seat cushion

brown wooden chair 
with curved 
armrests and a blue 
plush seat cushion

brown wooden chair 
with curved 
armrests and a blue 
plush seat cushion

brown wooden chair 
without curved 
armrests and a red 
plush seat cushion

(a) (b) (c)

Part 
Removal

Color
Change

Attribute
Change

Figure 7. Manipulation of text results in corresponding changes
at the part level. The second row shows the predicted structure
from Level 1 to 2. (a) illustrates the removal of a part, (b) shows a
change in part color, and (c) depicts a change in the part attribute.

sults of our ablation studies are presented in Table 2. We use
the Hierarchical Decoder with sentence-level guidance (Hi-
erD) as a base model, and then add various modules such as
word-level attention (WordAttn), our proposed graph-part
attention (GraphAttn), and the joint refiner to different lev-
els of the hierarchy (L1/L2 for Level 1 and 2). We present
the results for each level for an in-depth analysis of the im-
pact of the hierarchy level on the performance of the model.

Hierarchical Representation We compare HierD to a
flattened decoder (FlatD) which directly outputs 8 parts at
Level 1. Utilizing the same settings as HierD, FlatD demon-
strates inferior performance. Our qualitative analysis re-
veals that FlatD is more prone to overfitting, resulting in
the generation of fewer parts that are overly complex geo-
metrically, instead of generating finer parts.

Graph-based Attention We have observed the clear ad-
vantages of utilizing graph-based attention over word-based
attention. Specifically, when applied to Level 2, the use of
GraphAttn results in superior performance across all met-
rics. Furthermore, the results from Level 3 also demonstrate
improved performance. This can be attributed to the seman-
tic alignment of the entity nodes in the graph with the inter-
mediate parts. However, when applied to Level 1, the use of

GraphAttn does not yield similar results as in Level 2. We
speculate that this discrepancy may be due to the coarser
nature of the parts at Level 1, which hinders the ability to
establish effective connections between shape parts and tex-
tual graph entities.

Joint Refiner The utilization of a refiner as the final shape
output in our method is driven by the observation of the
perception-distortion tradeoff [5]. As the level increases,
we have noted a slight decline in performance as compared
to previous levels. For instance, the IOU in Level 2 is con-
sistently lower than that in Level 1. We posit that the hi-
erarchical bond loss employed in our approach results in a
stronger structural connection, but may impede the gener-
ation of detailed features on top of the structure. The in-
corporation of a refiner, on the other hand, has resulted in a
notable improvement in all metrics.

5. Conclusion, limitation, and future work

The ShapeScaffolder is a method for generating shapes
guided by text, with the understanding that both shape and
text possess internal structures that can be aligned to im-
prove the outcome. We represent shapes as hierarchical
structures and model text as scene graphs. Our part-node
attention mechanism allows us to learn correspondences be-
tween shape and text at various hierarchical levels, which
has been shown to effectively establish connections be-
tween shape parts/colors and linguistic entities. The experi-
ments have demonstrated the superiority of our approach in
both shape generation and text-shape/color consistency.

Several limitations should be acknowledged. Firstly, the
current text-to-shape dataset is limited to chairs and tables,
so further research is needed to explore the generalization
of our method to other shape classes. Secondly, the results
may be influenced by the parts priority problem, where in-
correct occupancy state of parts junctions may result in un-
reasonable visualization. Therefore, further incorporation
of prior interpretations of shapes should be considered in fu-
ture studies. Lastly, it would be beneficial to explore scene
generation that takes structure into account, with a focus on
the composition of different shapes as an outer structure.
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