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Abstract

Human driver can easily describe the complex traffic
scene by visual system. Such an ability of precise percep-
tion is essential for driver’s planning. To achieve this, a
geometry-aware representation that quantizes the physical
3D scene into structured grid map with semantic labels per
cell, termed as 3D Occupancy, would be desirable. Com-
pared to the form of bounding box, a key insight behind oc-
cupancy is that it could capture the fine-grained details of
critical obstacles in the scene, and thereby facilitate subse-
quent tasks. Prior or concurrent literature mainly concen-
trate on a single scene completion task, where we might
argue that the potential of this occupancy representation
might obsess broader impact. In this paper, we propose Oc-
cNet, a multi-view vision-centric pipeline with a cascade
and temporal voxel decoder to reconstruct 3D occupancy.
At the core of OccNet is a general occupancy embedding
to represent 3D physical world. Such a descriptor could
be applied towards a wide span of driving tasks, including
detection, segmentation and planning. To validate the effec-
tiveness of this new representation and our proposed algo-
rithm, we propose OpenOcc, the first dense high-quality 3D
occupancy benchmark built on top of nuScenes. Empirical
experiments show that there are evident performance gain
across multiple tasks, e.g., motion planning could witness
a collision rate reduction by 15%-58%, demonstrating the
superiority of our method.

1. Introduction
When you are driving on the road, how would you de-

scribe the scene in 3D space through your eyes? Human
driver can easily describe the environment by “There is a
Benz on the left side of my car in around 5 inches”, “There
is a truck carrying huge protruding gas pipe on the rear,
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Figure 1. Scene as Occupancy. Representing objects as ViDAR
(a) or 3D occupancy (b) has been endorsed by industry [1, 2].
due to the fact that conventional 3D bounding box cannot describe
in detail irregular vehicles in daily driving scenes, e.g., protruding
tail in (a) or (c). Defining the 3D world as Occupancy in (d) serves
better to represent obstacles and avoid collision. In this paper, we
envision Occupancy as a general Scene Descriptor as in (e) for a
wide span of driving tasks beyond detection, such as planning, and
witness performance gain compared to previous alternatives.

in around 50 meters ahead” and so on. Having the ability
to describe the real world in a “There is” form is essential
for making safe autonomous driving (AD) a reality. This is
non-trivial for vision-centric AD systems due to the diverse
range of entities present in the Scene, including vehicles
such as cars, SUVs, and construction trucks, as well as static
barriers, pedestrians, background buildings and vegetation.
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Quantizing the 3D scene into structured cells with semantic
labels attached, termed as 3D Occupancy, is an intuitive so-
lution, and this form is also advocated in the industry com-
munities such as Mobileye [1] and Tesla [2] . Compared to
the 3D box that oversimplifies the shape of objects, 3D oc-
cupancy is geometry-aware, depicting different objects and
background shapes via the 3D cube collections with differ-
ent geometric structure. As illustrated in Figure 1(c-d), 3D
box can only describe the main body of the construction
vehicle, while 3D occupancy can preserve the detail of its
crane arm. Other conventional alternatives, such as point
cloud segmentation and bird’s-eye-view (BEV) segmenta-
tion, while being widely deployed in the context of AD,
have their limitations in cost and granularity, respectively.
A detailed comparison can be referred in Table 1. Such ev-
ident advantages of 3D occupancy encourage an investiga-
tion into its potential for augmenting conventional percep-
tion tasks and downstream planning.

Similar works have discussed 3D occupancy at an initial
stage. Occupancy grid map, a similar concept in Robotics,
is a typical representation in mobile navigation [29] but only
serves as the search space of planning. 3D semantic scene
completion (SSC) [33] can be regarded as a perception task
to evaluate the idea of 3D occupancy. Exploiting temporal
information as geometric prior is intuitive for the vision-
centric models to reconstruct the geometry-aware 3D occu-
pancy, yet previous attempts [19, 21, 5, 26] have failed to
address this. A coarse-to-fine approach is also favorable in
improving 3D geometric representation at affordable cost,
while it is ignored by one-stage methods [19, 26, 5]. In
addition, the community still seeks a practical approach to
evaluate 3D occupancy in a full-stack autonomous driving
spirit as vision-centric solutions [16, 8] prevail.

Towards these issues aforementioned, we propose Oc-
cNet, a multi-view vision-centric pipeline with a cascade
voxel decoder to reconstruct 3D occupancy with the aid of
temporal clues, and task-specific heads supporting a wide
range of driving tasks. The core of OccNet is a compact
and representative 3D occupancy embedding to describe the
3D scene. To achieve this, unlike straightforward voxel fea-
ture generation from image features or sole use of BEV fea-
ture as in previous literature [22, 7, 37], OccNet employs
a cascade fashion to decode 3D occupancy feature from
BEV feature. The decoder adopts a progressive scheme to
recover the height information with voxel-based temporal
self-attention and spatial cross-attention, bundled alongside
a deformable 3D attention module for efficiency. Equipped
with such a 3D occupancy descriptor, OccNet simultane-
ously supports general 3D perception tasks and facilitates
downstream planning task, i.e., 3D occupancy prediction,
3D detection, BEV segmentation, and motion planning. For
fair comparison across methods, we build OpenOcc, a 3D
occupancy benchmark with dense and high-quality annota-

Representation
Output
space

Foreground
object

Background
& Mapping

Description
Granularity

Require point
cloud input

3D Box 3D ✓ - 0.4 ∼ 12m -
BEV Seg. BEV ✓ ✓ 0.5m ∼ 1m -
Point cloud 3D ✓ - ∼ 0.02m ✓
3D Occupancy 3D ✓ ✓ 0.25 ∼ 0.5m -

Table 1. Comparison on different representations. 3D Occu-
pancy unifies foreground objects and background stuff into a fine-
grain and dense voxel space, and is input-modality-agnostic.

tions, based on nuScenes dataset [4, 11]. It comprises 34149
annotated frames with over 1.4 billion 3D occupancy cells,
each assigned to one of 16 classes to describe foreground
objects and background stuff. Such dense and semantic-rich
annotations leverage vision models towards superior 3D ge-
ometry learning, compared to the sparse alternative. It takes
object motion into consideration with directional flow anno-
tations as well, being extensible to the planning task.

We evaluate OccNet on OpenOcc benchmark, and em-
pirical studies demonstrate the superiority of 3D occupancy
as a scene representation over traditional alternatives from
three aspects: 1) Better perception. 3D occupancy facili-
tates the acquisition of 3D geometry from vision-only mod-
els, as evidenced by the point cloud segmentation perfor-
mance comparable with LiDAR-based methods and the en-
hanced 3D detection performance with occupancy-based
pre-training or joint-training. 2) Better Planning. More
accurate perception also translates into improved plan-
ning performance. 3) Dense is better. Dense 3D occu-
pancy proves more effective than sparse form in supervis-
ing vision-only models. On the OpenOcc benchmark, Oc-
cNet outperforms state-of-the-art, e.g. TPVFormer [19],
with a relative improvement of 14% in the semantic scene
completion task. Compared with FCOS3D [38], the detec-
tion model performance pre-trained on OccNet increases by
about 10 points when fine-tuned on small-scale data. For
the motion planning task based on 3D occupancy, we can
reduce the collision rate by 15%-58% compared with the
planning policy based on BEV segmentation or 3D boxes.

To sum up, our contributions are two folds: (1) We pro-
pose OccNet, a vision-centric pipeline with a cascade voxel
decoder to generate 3D occupancy using temporal clues. It
better captures the fine-grained details of the physical world
and supports a wide range of driving tasks. (2) Based on the
proposed OpenOcc benchmark with dense and high-quality
annotations, we demonstrate the effectiveness of OccNet
with an evident performance gain upon perception and plan-
ning tasks. The conclusion is that 3D occupancy, as scene
representation, is superior to conventional alternatives.

2. Related Work
3D object detection [32, 38, 22, 25, 40, 12] adopts 3D
boxes as the objective of perception in AD since the box-
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Figure 2. OccNet pipeline. The core of OccNet is to obtain a representative Occupancy Descriptor and apply it for various driving tasks.
Our proposed algorithm consists of two stages. I. Reconstruction of Occupancy. Given multiple visual inputs, we first generate features
from the BEV encoder. Voxel Decoder is performed in a cascade fashion where voxels are refined progressively. A 3D deformable attention
(att.) unit serves similar functionality as does in 2D case. Temporal voxels Vt−1 are also incorporated. Some connections are omitted for
brevity. See context for details. II. Exploitation of Occupancy. Equipped with the occupancy descriptor, we can proceed tasks including
semantic scene completion and 3D object detection. Compacting them in BEV space would obtain a BEV segmentation map, which can
be directly fed into the planning pipeline [15]. Such a design can ensure desirable improvement in planning task.

form is well structured for downstream rule-based ap-
proaches. Such a representation abstracts 3D objects with
different shapes into standardized cuboids, hence only cares
about foreground objects and oversimplifies object shape.
In contrast, 3D occupancy is a fine-grained description of
the physical world and can differentiate objects with vari-
ous shapes.
LiDAR segmentation [42, 28] is tasked as point-level 3D
scene understanding. It requires point cloud as input, which
is expensive and less portable. Since LiDAR inherently suf-
fers from limited sensing range and sparsity in 3D scene
description, it is not friendly to holistic 3D scene semantic
understanding [33] using such a pipeline.
3D reconstruction and rendering. Inferring the 3D geom-
etry of objects or scenes from 2D images [13, 27] is pre-
vailing yet challenging for many years in computer vision.
Most approaches in this domain [30, 6, 34, 36] cope with
a single object or scene. For AD application, this is not
feasible since it requires strong generalization ability. Note
that 3D reconstruction and rendering concentrates more on
the quality of the scene geometry and visual appearance. It
pays less attention to model efficiency and semantic under-
standing.
Semantic Scene Completion. The definition of occupancy
prediction discussed in this work shares the most resem-
blance with SSC [33]. MonoScene [5] first adopts U-Net
to infer from a single monocular RGB image the dense 3D
occupancy with semantic labels. There is a burst of related
works released in arXiv recently. We deem them as concur-
rent and briefly discuss below. VoxFormer [21] utilizes the

depth estimation to set voxel queries in a two-stage frame-
work. OccDepth [26] also adopts a depth-aware spirit in
a stereo setting with distillation to predict semantic occu-
pancy. TPVFormer [19] employs LiDAR-based sparse 3D
occupancy as the supervision and proposes a tri-perspective
view representation to obtain features. Wang et al. [39]
provides a well human-crafted occupancy benchmark that
could facilitate the community.

Despite different settings from ours with work conducted
on Semantic-KITTI [3] and NYUv2 [31] (monocular or
RGB-D), prior or concurrent literature unanimously neglect
the adoption of temporal context. Utilizing history voxel
features is straightforward; it is verified by Tesla [2]. Yet
there is no technical details or report to the public. More-
over, we position our work to be the first to investigate oc-
cupancy as a general descriptor that could enhance multiple
tasks beyond detection.

3. Methodology
In this paper, we propose an effective and general frame-

work, named OccNet, which obtains robust occupancy fea-
tures from images and supports multiple driving tasks, as
shown in Figure 2. Our method comprises two stages, Re-
construction of Occupancy and Exploitation of Occupancy.
We term the bridging part as Occupancy Descriptor, a uni-
fied description of the driving scene.
Reconstruction of Occupancy. The goal of this stage is to
obtain a representative occupancy descriptor for supporting
downstream tasks. Motivated by the fast development in
BEV perception [22, 7, 23], OccNet is designed to exploit
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that gain for the voxel-wise prediction task in 3D space. To
achieve this, the sole usage of BEV feature in downstream
tasks, as the simplest architecture, is not suitable for height-
aware task in 3D space. Going from one extreme to another,
directly constructing voxel feature from images has huge
computational cost. We term these two extreme as BEVNet
and VoxelNet, and the design of OccNet finds a balance be-
tween them, achieving the best performance with affordable
cost. The reconstruction stage first extracts multi-view fea-
ture Ft from surrounding images, and feeds them into BEV
encoder along with history BEV feature Bt−1 and current
BEV query Qt to get current BEV feature. The BEV en-
coder follows the structure of BEVFormer [22], where his-
tory BEV feature Bt−1, current BEV query Qt and image
feature Ft go through a spatial-temporal-transformer block
to get current BEV feature. Then, the image feature, the
history and current BEV feature are together decoded into
occupancy descriptor via Cascade Voxel Decoder. Details
of the decoder is presented in Sec. 3.1.
Exploitation of Occupancy. A wide range of driving tasks
can be deployed based on the reconstructed occupancy de-
scriptor. Inspired by Uni-AD [16], an explicit design of
each representation is preferred. Intuitively, 3D semantic
scene completion [33] and 3D object detection are attached
upon the occupancy descriptor. Squeezing 3D occupancy
grid map and 3D boxes along the height generates a BEV
segmentation map. Such a map can be directly fed into mo-
tion planning head, along with sampler of high-level com-
mand, resulting in the ego-vehicle trajectory via argmin and
GRU module. Detailed illustration is provided in Sec. 3.2.

3.1. Cascade Voxel Decoder

To obtain a better voxel feature effectively and effi-
ciently, we design a cascade structure in the decoder to pro-
gressively recover the height information in voxel feature.
From BEV to Cascaded Voxel. Based on the obser-
vation that directly using BEV feature or directly recon-
structing voxel feature from perspective view suffers from
performance or efficiency drop (see our ablation in Ta-
ble 9), we break this reconstruction from BEV feature
(Bt ∈ RH×W×CBEV ) to the desired voxel feature (Vt ∈
RZ×H×W×CVoxel ) into N steps, named a cascade structure.
Here H and W are the 2D spatial shape of BEV space,
C the feature dimension and Z the desired height of voxel
space. Between the input BEV feature and the desired cas-
caded voxel feature, we term the intermediate voxel fea-
ture with different height as V

′

t,i ∈ RZi×H×W×Ci , where
Zi and Ci are uniformly distributed between {1, N} and
{CBEV, CVoxel} respectively. As shown in Figure 2, the
Bt−1 and Bt are lifted into V

′

t−1,i and V
′

t,i via feed-forward
network, go through the i-th voxel decoder to obtain a
refined V

′

t,i, and the later steps follow the same scheme.
Each voxel decoder comprises voxel-based temporal self-

attention and voxel-based spatial cross-attention modules,
and refines V

′

t,i with history V
′

t−1,i and image feature Ft re-
spectively. Step by step, the model gradually increases Zi

and decreases Ci to learn the final occupancy descriptor Vt

effectively and efficiently.
Voxel based Temporal Self-Attention. The temporal in-
formation is crucial to represent the driving scene accurately
[22]. Given the history voxel feature V

′

t−1,i, we align it to
the current occupancy features V

′

t,i via the position of ego-
vehicle. For a typical self-attention, each query attends to
every key and value, so the computation cost is very huge
and even increases Z2 times in 3D space compared to the
2D case. To alleviate the computation cost, we design a
voxel-based efficient attention, termed as 3D Deformable
Attention (3D-DA in short), to handle the computational
burden. By applying it in the voxel-based temporal self-
attention, we ensure that each voxel query only needs to
interact with local voxels of interest, making the computa-
tional cost affordable.
3D Deformable Attention. We extend the traditional 2D
deformable attention [41] to 3D form. Given a voxel feature
V

′

t,i ∈ RZi×H×W×Ci , a voxel query with feature q ∈ RC
i

and 3D referent point p, the 3D deformable attention is rep-
resented by:

3D-DA(q,p, V
′

t,i) =

M∑
m=1

Wm

K∑
k=1

AmkW
′

kV
′

t,i(p+∆pmk),

(1)
where M is the number of attention heads, K is the sampled
key number with K ≪ ZiHW , Wm ∈ RCi×(Ci/M) and
Wk ∈ R(Ci/M)×Ci are the learning weights, Amk is the
normalized attention weight, and p+∆pmk is the learnable
sample point position in 3D space, in which the feature is
computed by trilinear interpolation from the voxel feature.
Voxel-based Spatial Cross-Attention. In the cross atten-
tion, the voxel feature V

′

t,i interacts with the multi-scale im-
age features Ft with 2D deformable attention [41]. Each i-
th decoder directly samples Nref,i 3D points from the cor-
responding voxel to the image view, and interact with the
sampled image feature. Such a design maintains the height
information and ensures the learning of voxel-wise feature.

3.2. Exploiting Occupancy on Various Tasks

The OccNet depicts the scene in 3D space with fine-
grained occupancy descriptor, which can be fed into various
driving tasks without excessive computational overhead.
Semantic Scene Completion. For simplicity, we design
the MLP head to predict the semantic label of each voxel,
and apply the Focal loss [24] to balance the huge numerical
inequality between occupied and empty voxels. In addition,
the flow head with L1 loss are attached to estimate the flow
velocity per occupied voxels.
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3D Object Detection. Inspired by the head design in BEV-
Former [22], we compact the occupancy descriptor into
BEV, then apply a query-based detection head (an invari-
ant of Deformable DETR [41]) to predict the 3D boxes.
BEV segmentation. Following the spatial-temporal-fusion
perception structure in ST-P3 [15], map representation and
semantic segmentation are predicted from the BEV feature
as in 3D object detection. The BEV segmentation head in-
cludes the drivable-area head and the lane head for map rep-
resentation, the vehicle segmentation head and the pedes-
trian segmentation head for semantic segmentation.
Motion Planning. For motion planning task, either the pre-
dicted occupancy results in SSC or 3D bounding box can
be transformed into the BEV segmentation, as shown in 2.
The 3D occupancy results is squeezed along the height di-
mension and the 3D boxes as well. All the semantic labels
per BEV cell from either 3D occupancy or 3D boxes are
turned into a 0-1 format, where 1 indicates the cell is oc-
cupied and 0 for empty. Then, such a BEV segmentation
map is applied to the safety cost function, and we compute
the safety, comfort and progress cost on the sampled trajec-
tories. Note that compared to 3D boxes, the richer back-
ground information in occupancy scene completion leads to
the more comprehensive safety cost function, and thus the
safety cost value is needed to be normalized between these
two kinds of BEV segmentation. All candidate trajectories
are sampled by random velocity, acceleration, and curva-
ture. Under the guidance of high-level command including
forward, turn left and turn right, the trajectory correspond-
ing to the specific command with the lowest cost will be
output. GRU refinement enabled with the front-view vision
feature is further performed on this trajectory as ST-P3 [15]
to obtain the final trajectory.

4. OpenOcc: 3D Occupancy Benchmark
To fairly evaluate the performance of occupancy across

literature, we introduce the first 3D occupancy benchmark
named as OpenOcc built on top of the prevailing nuScenes
dataset [4]. Compared with existing counterparts such as
SemanticKITTI [3] with only front camera, OpenOcc pro-
vides surrounding camera views with the corresponding 3D
occupancy and flow annotations.

4.1. Benchmark Overview

We generate occupancy data with dense and high quality
occupancy annotations utilizing the sparse LiDAR informa-
tion and 3D boxes. It comprises 34149 annotated frames
for all 700 training and 150 validation scenes. We anno-
tate over 1.4 billion voxels and 16 classes in the bench-
mark, including 10 foreground objects and 6 background
stuffs. Moreover, we take the foreground object motion
into consideration with additional flow annotation of object
voxels. We compare our occupancy data with other bench-

Dataset Multi-view Scenes Flow Density

SemanticKITTI [3] - 22 - -
SparseOcc [19] ✓ 850 - ∼ 0.11
OccData [10] ✓ 850 - ∼ 0.76
OpenOcc (Ours) ✓ 850 ✓ 1

Table 2. Comparison of OpenOcc with existing benchmarks.
Multi-view denotes the dataset that use muti-view image as input.
Flow represent the flow annotation is given in the dataset. The
density measures the voxel density in the dataset.

Figure 3. Visual comparison on 3D occupancy annotations.
Compared to (a) sparse occupancy [19] and (b) OccData [10], we
generate (c) dense and high-quality annotations with (d) the addi-
tional flow annotation of foreground objects, which can be applied
for motion planning.

mark in Table 2, indicating that our benchmark can provide
the most complete representation of the scene including the
occupancy and flow information. As depicted in Figure 3,
SparseOcc [19] only utilized the sparse key frame LiDAR
data to voxelize the 3D space, which is too sparse to repre-
sent the 3D scene. In comparison, our occupancy can repre-
sent the complete scene with flow information and capture
the local fine grained scene geometry with high quality.

4.2. Generating High-quality Annotation

Independent Accumulation of Background and Fore-
ground. To generate dense representation, it is intuitive
to accumulate all sparse LiDAR points from the key frame
and intermediate frame to obtain the dense representation
[3]. However, directly accumulating points from intermedi-
ate frame by coordinate transformation is problematic ow-
ing to the existence of moving objects. We propose to split
the LiDAR point into the static background points and fore-
ground points based on 3D box and accumulate them sep-
arately. Then we can accumulate static background points
in the global world system and object points in the object
coordinate system to generate dense points.
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BEVDet4D [17] ResNet50 18.27 9.85 13.56 0.00 13.04 26.98 0.61 1.20 6.76 0.93 1.93 12.63 27.23 11.09 13.64 12.04 6.42 9.56
BEVDepth [20] ResNet50 23.45 11.88 15.15 0.02 20.75 27.05 1.10 2.01 9.69 1.45 1.91 14.31 31.92 7.88 17.08 16.27 8.76 14.75
BEVDet [18] ResNet50 27.46 12.49 16.06 0.11 18.27 21.09 2.62 1.42 7.78 1.08 3.4 13.76 33.89 10.84 17.55 22.03 11.72 18.15
OccNet (ours) ResNet50 37.69 19.48 20.63 5.52 24.16 27.72 9.79 7.73 13.38 7.18 10.68 18.00 46.13 20.6 26.75 29.37 16.90 27.21

Occ3D∗ [35] ResNet101 33.93 21.68 27.55 9.45 28.67 36.17 10.69 14.23 17.55 12.41 11.24 22.97 44.15 23.54 28.10 25.11 11.88 23.20
TPVFormer∗ [19] ResNet101 37.47 23.67 27.95 12.75 33.24 38.70 12.41 17.84 11.65 8.49 16.42 26.47 47.88 25.43 30.62 30.18 15.51 23.12
OccNet (ours) ResNet101 41.08 26.98 29.77 16.89 34.16 37.35 15.58 21.92 21.29 16.75 16.37 26.23 50.74 27.93 31.98 33.24 20.80 30.68

Table 3. 3D Occupancy Prediction in terms of Semantic Scene Completion. The semantic occupancy prediction and geometric predic-
tion metrics are compared for models with RGB input. OccNet significantly outperforms previous SOTAs in terms of mIoU and IoUgeo.
Methods with ∗ stands for training and evaluating on OpenOcc dataset. The Occ3D is implemented on its baseline method.

Figure 4. Qualitative results of occupancy prediction. Our method outperforms TPVFormer [19] in terms of scene details and the
semantic classification accuracy of foreground objects, such as the pedestrian in the dashed region.

Generation of Annotation. Given dense background and
object points, we first voxelize the 3D space and label the
voxel based on the majority vote of labelled points in the
voxel. Different with existing benchmark with only occu-
pancy labels, we annotate the flow velocity of voxel based
on the 3D box velocity to faciliatate the downstream task
such as motion planning. Only Using key frame will cause
sparsity of generated occupancy data, thus we annotate
the voxel with unlabeled LiDAR points from intermediate
frame based on the surrounding labelled voxels to further
improve the data density. In addition, as nuScenes has the
issue of missing translation in the z-axis, we refine the oc-
cupancy data by completing the scene, such as filling the
holes on the road for higher quality. Moreover, we set part
of voxels as invisible from the camera view by tracing the
ray, which is more applicable for the task with camera input.

5. Experiments

Benchmark Details. We select a volume of V =
[−50m, 50m] × [−50m, 50m] × [−5m, 3m] in LiDAR co-
ordinate system for occupancy data generation, and vox-

elize the 3D space by the resolution of ∆s = 0.5m into
200 × 200 × 16 voxels to represent the 3D space. Evalua-
tion metric can be referred in Supplementary.
OccNet Details. Following the experimental setting of
BEVFormer [22], we use two types of backbone: ResNet50
[14] initialized from ImageNet [9], and ResNet101-DCN
[14] initialized from FCOS3D [38]. We define the BEV
feature as Bt with H = 200, W = 200, and CBEV = 256.
For the decoder, we design N = 4 occupancy feature maps
V

′

t,i ∈ RZi×H×W×Ci with Zi = 2i, C1 = C2 = 128,
C3 = C4 = 64. For the voxel-spatial cross attention, we
sample Nref,i = 4 points in each queried voxel. By de-
fault, we train OccNet with 24 epochs with a learning rate
of 2× 10−4.

5.1. Main Results

Semantic Scene Completion. We compare OccNet with
previous state-of-the-art methods for semantic scene com-
pletion task in Table 3 and Figure 4. We reproduce
BEVDet4D [17], BEVDepth [20] and BEVDet [18] by re-
placing the detection head with the scene completion head
built on their BEV feature maps, and OccNet outperforms
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RangeNet++ [28] LiDAR 65.50 66.00 21.30 77.20 80.90 30.20 66.80 69.60 52.10 54.20 72.20 94.10 66.60 63.50 70.10 83.10 79.80
Cylinder3D [42] LiDAR 76.10 76.40 40.30 91.20 93.80 51.30 78.00 78.90 64.90 62.10 84.40 96.80 71.60 76.40 75.40 90.50 87.40

TPVFormer∗ [19] Camera 58.45 65.99 24.50 80.88 74.28 47.04 47.09 33.42 14.52 53.96 70.79 88.55 61.63 59.46 63.15 75.76 74.17
OccNet (ours) Camera 60.46 66.95 32.58 77.37 73.88 37.62 50.87 51.45 33.69 52.20 67.08 88.72 57.99 58.04 63.06 78.91 76.97

Table 4. The performance of OccNet (ResNet101) on nuScenes validation set for LiDAR segmentation task. OccNet with camera
input is comparable with LiDAR based method.Methods with ∗ stands for training form stratch on OpenOcc dataset.

these methods by a large margin as shown in Table 3. Com-
pared with BEV feature map, our occupancy descriptor is
better for the voxel-wise prediction task. We also com-
pare OccNet with TPVFormer [19], which is developed for
surrounding 3D semantic occupancy prediction task, and
our model surpasses it over 3.31 points in terms of mIOU
(26.98 vs. 23.67), indicating that occupancy descriptor is
better than TPV features for scene representation. Note that
TPVFormer surpasses the OccNet in car, truck and trailer,
because samples of these three objects are relatively large
in the benchmark and TPVFormer learns better feature on
these classes from their sampling strategy. However, for the
objects with small size such as pedestrian and traffic cone,
our method can outperform TPVFormer [19] with a large
margin of 10 points in Table 3.
Occupancy for LiDAR Segmentation. Occupancy is a
voxelized representation of points in 3D space, and seman-
tic scene completion is equivalent to semantic LiDAR pre-
diction task when ∆s → 0. We transfer semantic occu-
pancy prediction to LiDAR segmentation by assigning the
point label based on associated voxel label, and then evalu-
ate the model on the mIoU metric. As reported in Table 4,
given camera as input without LiDAR supervision, OccNet
can be comparative with the LiDAR segmentation model
RangeNet++ [28] in terms of mIoU (60.46 vs. 65.50), and
OccNet can even outperforms RangeNet++ in the IoU of bi-
cycle (32.58 vs. 21.30). Compared with TPVFormer [19],
OccNet also outperforms it with 2 points in mIoU.
Occupancy for 3D Detection. In the scene completion
task, the location of foreground object can be coarse re-
gressed, which can help the 3D detection task with 3D box
regression. As shown in Table 5, the joint training of scene
completion and 3D detection task can improve the detector
performance for all our three models, including BEVNet,
VoxNet and OccNet, in terms of mAP and NDS. Note that
the voxelized representation of occupancy with ∆s = 0.5m
is too coarse when calculating the metric dependent on the
precise center distance and IoU of 3D box, and thus mATE
and mASE is a little increased with joint training.
Pretrained Occupancy for 3D Detection and BEV seg-
mentation. The OccNet trained on semantic scene com-
pletion task can obtain general representation for 3D space

Method Joint mAP↑ NDS↑ mAOE↓ mAVE↓ mAAE↓ mATE↓ mASE↓

BEVNet
- 0.259 0.377 0.600 0.592 0.216 0.828 0.290
✓ 0.271 0.390 0.578 0.541 0.211 0.835 0.293

VoxNet
- 0.271 0.380 0.603 0.616 0.219 0.832 0.284
✓ 0.277 0.387 0.586 0.614 0.203 0.828 0.285

OccNet
- 0.276 0.382 0.655 0.588 0.209 0.817 0.290
✓ 0.276 0.390 0.585 0.570 0.190 0.842 0.292

Table 5. Joint training of 3D occupancy and 3D detection. Re-
sults reported on nuScenes validation set show that joint training
of 3D occupancy and 3D detection can help the latter task.
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Figure 5. The comparison of detector performance using dif-
ferent pretained models and different scale of training dataset.
OccNet (sparse) and OccNet (dense) means the OccNet trained on
sparse and dense occupancy data respectively. Best view in color.

owing to the scene reconstructed in the occupancy descrip-
tor. Thus, the learned occupancy descriptor can be di-
rectly transferred to the downstream 3D perception tasks
with model fine-tuning. As described in Figure 5, the model
performance on 3D detection with pretained OccNet is su-
perior to that pretrained on FCOS3D [38] detector in dif-
ferent scales of training dataset with the performance gain
about 10 points for mAP and NDS. We also compare the oc-
cupancy pretraining and detection pretraining for the BEV
segmentation task, indicating that the occupancy pretrain-
ing can help BEV segmentation achieve higher IoU in the
fine-tuning stage on both semantic and map segmentation
as shown in Table 6.
Occupancy for Planning. With the prediction results from
upstream tasks, i.e., bounding box and occupancy, the fi-
nal trajectory can be obtained through a cost filter and a
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Task Main value Drivable area Lane Vehicle Pedestrian

Det 18.18 44.59 13.62 12.29 2.21
Occ 19.17 47.21 13.83 12.91 2.74

Table 6. Different pretraining tasks for BEV segmentation. Oc-
cupancy task can help BEV segmentation task achieve higher IoU.

Input
Collision (%)↓ L2 (m)↓

1s 2s 3s 1s 2s 3s

Bbox GT 0.23 0.66 1.50 1.32 2.16 3.00
Occupancy GT 0.20 0.56 1.30 1.29 2.13 2.98

Segmentation pred. [15] 0.50 0.88 1.49 1.39 2.21 3.02
Bbox pred. (OccNet) 0.27 0.68 1.59 1.32 2.17 3.03
Occupancy pred. (OccNet) 0.21 0.55 1.35 1.31 2.18 3.07
Occupancy pred. (OccNet, full) 0.21 0.59 1.37 1.29 2.13 2.99

Table 7. Planning results with different scene representations.
Occupancy representation helps the planning task achieve a lower
collision rate and more accurate L2 distance in all time intervals.

Figure 6. Visualization of planning. The blue line represents the
planned trajectory, and the lower figures are rasterisation results of
bounding box and occupancy, respectively.

GRU refinement module [15] with the BEV segmentation
inputs. To obtain these segmentation results, we rasterize
the outputs of our OccNet in BEV space. We compare the
rasterisation results of bounding box and occupancy by us-
ing the predictions from OccNet. We also compare our re-
sults with the direct segmentation from ST-P3 [15]. For a
fair comparison, we follow the same setup as ST-P3 with
only vehicle and pedestrian classes kept. We also add the
ground truth rasterisation inputs for better comparison. As
shown in Table 7, the best performance can be obtained by
using ground truth of occupancy to filter trajectories. For
predicted results, the collision rate can be reduced by 15%
- 58% based on the occupancy prediction from OccNet. We
also conduct the experiment using all 16 classes of occu-
pancy, which shows that full classes of occupancy can bring
the performance improvement on L2 distance. As shown in
the Figure 6, planning with full classes of occupancy can
make decisions within the feasible areas to avoid collisions
from the background objects.

Method mIOU IoUgeo Params↓ Memory↓ FPS↑

BEVNet 17.37 36.11 39M 8G 4.5
VoxelNet 19.06 37.59 72M 23G 1.9
OccNet 19.48 37.69 40M 18G 2.6

Table 8. Efficiency and performance analysis with model struc-
ture. The evaluation is measured on a V100 GPU.

Task ∆s mIoUir truck trailer cons. veh.

Det 0.5m 15.92 23.19 9.57 15.00
Occ 0.5m 18.13 (+2.21) 25.59 12.29 16.51

Det 0.25m 9.90 14.84 5.10 9.75
Occ 0.25m 13.41 (+3.51) 18.85 7.14 14.25

Table 9. The comparison of detection task and occupancy task
on the recognition of irregular object. mIoUir denotes mean
IoU of truck, trailer and construction vehicle.

Figure 7. Visualization of 3D box and occupancy prediction.
Compared with 3D box, occupancy representation can identify the
irregular object well.

5.2. Discussion

Model Efficiency. In Table 8, we compare the performance
of different models in the semantic scene completion task.
Compared with BEVNet and VoxelNet, OccNet can obtain
the best performance in terms of mIOU and IoUgeo with
efficiency and effectiveness.
Irregular Object. Representing the irregular object such
as construction vehicle with 3D box or the background stuff
such as traffic sign is difficult and inaccurate as indicated
in Figure 7. We transform 3D box into voxel to compare
the 3D detection and occupancy task on irregular object in
Table 9, verifying that occupancy can describe the irregular
object better. To study the effect of voxel size, we also gen-
erate the dataset with ∆s = 0.25m. With the decrease of
∆s from 0.5m to 0.25m, the performance gap between 3D
box and occupancy increases because the finer granularity
can better depict the irregular object.
Dense v.s. Sparse Occupancy. Compared with sparse oc-
cupancy, dense occupancy can help depict the complete ge-
ometry of background and foreground object in detail as
shown in Figure 3. Intuitively, dense occupancy is better
for 3D perception and motion planning owing to more abun-
dant information input. We validate that model pretrained
on dense occupancy can benefit the downstream 3D detec-
tion task more as shown in Figure 5.
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6. Conclusion
We dive into the potential of the 3D occupancy as scene

representation and propose a general framework OccNet
to evaluate the idea. The experiments on various down-
stream tasks validate the effectiveness of our method. The
OpenOcc benchmark with dense and high-quality labels is
also provided for community.
Limitations and future work. Currently, the annotation is
still based on the well-established dataset. Utilizing self-
supervised learning to further reduce the human-annotation
cost is a valuable direction. We hope occupancy framework
can be the foundation model of autonomous driving.
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