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Abstract

We investigate compositional structures in data embed-
dings from pre-trained vision-language models (VLMs).
Traditionally, compositionality has been associated with al-
gebraic operations on embeddings of words from a pre-
existing vocabulary. In contrast, we seek to approxi-
mate representations from an encoder as combinations of
a smaller set of vectors in the embedding space. These
vectors can be seen as “ideal words” for generating con-
cepts directly within embedding space of the model. We
first present a framework for understanding compositional
structures from a geometric perspective. We then explain
what these compositional structures entail probabilistically
in the case of VLM embeddings, providing intuitions for why
they arise in practice. Finally, we empirically explore these
structures in CLIP’s embeddings and we evaluate their use-
fulness for solving different vision-language tasks such as
classification, debiasing, and retrieval. Our results show
that simple linear algebraic operations on embedding vec-
tors can be used as compositional and interpretable meth-
ods for regulating the behavior of VLMs.

1. Introduction

In natural language, few primitive concepts or words can
be used compositionally to generate a large number of com-
plex meanings. For example, Figure 1 shows a simple ex-
ample of composed phrases {rainy, sunny} ⇥ {morning,
evening}, to which one could add more factors in the form
of adjectives or attributes. The hidden representations pro-
vided by a neural model, on the other hand, a priori do not
have a similar compositional structure. In contextual text
embeddings, in particular, the representation of a string of

Figure 1: Words and concepts in natural language can be com-
posed to generate complex meanings efficiently. Embeddings
from transformer-based models a priori do not have a similar struc-
ture. In this paper, we argue that representations of composite
concepts admit a linear decomposition based on embedding vec-
tors that can be viewed as “ideal words.”

text is jointly affected by all of its tokens simultaneously,
which means that there is no simple relationship between
the representations of the entire text and the words that ap-
pear in it.

In this paper, we investigate the existence of latent com-
positional structures in the embedding space. That is, we
aim to decompose composite concepts as linear combina-
tions of embedding vectors associated with different factors,
as illustrated in Figure 1. If such vectors exist, they can
be treated as ideal words for composing new concepts di-
rectly within the representation space of the model. The first
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application that we envision is for vision-language models
(e.g., CLIP [41]) where embeddings of text labels are often
used for image classification or retrieval. In this setting,
linear compositionality would imply that we could clas-
sify an image with n1 . . . nk composite labels—where ni

indicates the number of options for each factor—by com-
paring each image with only n1 + . . . + nk ideal words,
since by linearity the inner product of an image with a com-
posed label is the sum of the product with the corresponding
ideal words. Moreover, linear decompositions can be used
for “post-hoc” manipulations of pre-trained data represen-
tations (e.g., amplifying or reducing the importance of cer-
tain factors), which can be helpful to control the behavior
of neural models.

In general, the meaning of words in language is always
contextual, in the sense that their interpretation depends on
any text that surrounds them. However, language would be
completely impractical if words did not also have some sta-
bility in their meaning. The main benefit of the usage of
words is, in fact, that meaning can be mostly inferred com-
positionally by combining meanings of words or phrases.
There is, therefore, a natural tension between composition-
ality and contextuality: the former requires some amount
of independence from context, while the latter allows for
general dependencies. In a sense, our goal in this work
is to consider representations of meanings that were orig-
inally learned as contextual, and to later approximate them
as needed with compositional ones based on ideal words.
This combines the flexibility and expressiveness of con-
textuality with the structural efficiency of compositionality.
Our main contributions can be summarized as follows:

• We describe compositional linear structures from a
geometric perspective and explain how these struc-
tures can be approximately recovered from arbitrary
collections of vectors associated with a product of
“factors.” We also relate these structures with pre-
vious definitions of disentangled representations that
were based on mathematical representation theory [26]
(Section 3).

• We consider embeddings arising from visual-language
models (VLMs) and show that the existence of lin-
early factored embeddings is equivalent to the condi-
tional independence of the factors for the probability
defined by the model. We also discuss some relax-
ations of this result that illustrate how linear structures
may emerge even when if true data distribution satis-
fies weaker “disentanglement” conditions (Section 4).

• We empirically show that embeddings of compos-
ite concepts can often be well-approximated as linear
compositional structures, and that this leads to simple
but effective strategies for solving classification and re-

trieval problems in a compositional setting. We also vi-
sualize manipulations of factored embeddings using a
CLIP-guided diffusion model (Stable Diffusion [42]).

2. Related Work

Compositionality has long been recognized to be a fun-
damental principle in cognition [20]. It has been a central in
theme in Gestalt psychology [16], cognitive sciences [19],
and pattern theory [24]. The main benefit of compositional
representations is that they avoid the combinatorial explo-
sion that occurs if all composed concepts are considered to
be completely distinct. This property is of course a char-
acteristic feature of natural languages, which use a fixed
vocabulary for all representions, making “infinite use of fi-
nite means” (von Humboldt) [10]. However, while there is
large body of work in NLP devoted to learning composi-
tional representations of language (e.g.,[37, 12, 5, 22, 13]),
modern text representations based on transformer architec-
tures [47] are a priori not compositional in any way. Some
works have studied whether compositionality is implicitly
present in neural networks, for example by evaluating the
ability of these models to generalize beyond the training
data [27]. More relevant to our purposes, [3] proposed
a framework for evaluating the compositionality of a net-
work’s internal representations, by searching for represen-
tational primitives; however, finding such compositional
primitives requires solving an optimization problem. In a
broad sense, compositionality can be seen as a particular
way of exploiting or imposing structure in the inner repre-
sentations of a network. It has also been argued that data
representations should be concentrated in low-dimensional
linear spaces [34, 9], or even be “disentangled” with re-
spect to factors of variation in the data [26, 8, 1]. Our per-
spective on compositional representations is closely related
to the definition of disentanglement given in [26]. As ar-
gued above, compositionality of text representations is nat-
urally in tension with contextuality. Since their introduc-
tion in NLP around 2018 [40, 15], contextual text embed-
dings have been extremely successful, and are part of mod-
ern transformer-based architectures. The amount of contex-
tuality in these word embeddings has been quantified using
different metrics in [17].

Linear compositionality for embeddings is often asso-
ciated with popular “vector analogies” that are known to
roughly hold for (non-contextual) word embeddings such
as word2vec [36] and GloVe [39]. Several works have pro-
posed theoretical justifications for this property [29, 4, 25, 2,
18, 45]. To our knowledge, however, similar properties for
contextual embeddings of language models have not been
considered, although [46] has evaluated the performance of
transformer-based models on analogy tasks. Various limita-
tions of linear analogies have also been pointed out [31, 7].

In the context of image generation, compositional ap-
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proaches for controlling the output of diffusion models
have been recently proposed in [32, 48]. In particular,
[48] introduced a “concept agebra” that is formally sim-
ilar to our factored representations; however, their notion
of “concept” is based on score representations (gradient of
log-probabilities), rather than on embedding vectors, which
leads to a different probabilistic characterization of compo-
sitionality. Finally, [11] introduced a method for removing
biases and spurious correlations from pre-trained VLM em-
beddings for both discriminative and generative tasks; since
their proposed approach consists in applying certain linear
projections to textual embeddings (with some calibration
adjustments), it can be seen as conceptually similar to an
application of our ideal word decompositions.

3. Linearly Factored Embeddings

We begin by discussing from a purely geometric per-
spective what we mean by “linear compositionality.” We
consider a finite set Z = Z1 ⇥ . . . ⇥ Zk that we view as
representing a factored set of “concepts.” For example, the
set Z may be a collection of strings of text organized in a
structured way, e.g., according to attribute-object-context.
We often write elements of Z as z = (z1, . . . , zk) with
zi 2 Zi and refer to zi as the components of z. We now
consider an arbitrary embedding map r : Z ! V of Z into
a vector space V .

Definition 1 (Linearly factored embeddings). A collection
of vectors r(Z) = {uz : z 2 Z} ⇢ V parameterized by
Z = Z1⇥ . . .⇥Zk is linearly factored if there exist vectors
uzi 2 V for all zi 2 Zi (i = 1, . . . , k) such that

uz = uz1 + . . .+ uzk , (1)

for all z = (z1, . . . , zk).

This notion is very intuitive and can be seen as a gener-
alization of the additive compositionality that has been con-
sidered for (pairwise) analogies and word embeddings [36].

Lemma 2. 1) A collection of vectors r(Z) is linearly fac-
tored if and only if the vector difference uz � uz0 does not
depend on the components that z, z0 2 Z share in common.
2) If |Zi| = ni, then the dimension of Span(r(Z)) is at
most 1 +

Pk
i=1(ni � 1).

It is easy to realize that if a collection of vectors r(Z)
is linearly factored, then the vectors appearing on the right
of equation 1 are never uniquely determined. In particular,
even though each uzi is associated with a value of a factor
zi 2 Zi, that vector cannot carry any “semantic” content.
However, we can recover uniqueness in the components by
simply turning to a “centered” decomposition.

Lemma 3 (Centered decomposition). If a collection of vec-
tors r(Z) is linearly factored, then there exist unique vec-
tors u0 2 V and uzi 2 V for all zi 2 Zi (i = 1, . . . , k)
such that

P
zi2Zi

uzi = 0 for all i and

uz = u0 + uz1 + . . .+ uzk , (2)

for all z = (z1, . . . , zk).

In the previous decomposition, the vectors uzi are now
uniquely associated with the value of a factor zi 2 Zi, but
are relative to the other values in Zi (since they sum to
zero). Similarly, the vector spaces VZi := Span(uzi : zi 2
Zi) are uniquely associated with each factor Zi. In our
applications, we will refer to ui as the ideal words of the
linear factorization and to each VZi as the semantic space
associated with Zi. Despite its simplicity, we believe that
the decomposition in Lemma 3 paints an interesting intu-
itive picture of linear models of “meaning.” In this setting,
the origin is not a universally meaningful point; for exam-
ple, the origin of text embeddings does not correspond to
the null string. Thus, meanings might be best viewed as an
affine space, where the origin is only chosen as a particular
reference that may depend on context. Ideal words, on the
other hand, provide relative meanings with respect to the
context.

From Lemma 2, it follows that factored representations
must be very low-dimensional and, in particular, “generic”
embeddings will not be factored. However, it is very easy
to recover the nearest factored approximation for any given
set of vectors uz, z 2 Z .

Proposition 4. Let ↵zi zi 2 Zi be arbitrary positive
weights such that

P
zi2Zi

↵zi = 1, and define �z :=Q
i ↵zi for all z = (z1, . . . , zk). Then, for any norm k · k

induced by an inner product on V , we have that

argmin
ũz

X

z2Z
�zkuz � ũzk2,

s.t. {ũz} is linearly factored,
(3)

is given by ũz = u0 + uz1 + . . .+ uzk where

u0 :=
X

z

�zuz, uzi :=
1

↵zi

X

z0=(z0
1,...,z

0
k)

z0
i=zi

�zuz0 � u0.

(4)

This fact shows that computing linearly factored approx-
imations amounts to performing simple weighted averages
of the original vectors. In many cases, we will consider
↵zi =

1
ni

and �z =
Q 1

ni
, however it can be useful to allow

for additional “knobs,” as the following example illustrates.

Example 5. One of our main motivations to consider lin-
early factored structures is to approximate (pre-trained)
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contextual text embeddings to obtain representations that
are interpretable and compositional. More concretely, as-
sume that each factor Zi represents a finite collection of
strings and that the representation r : Z1⇥ . . .⇥Zk ! V is
defined by concatenating strings and then embedding the re-
sult using a contextual language encoder. For a very simple
example, consider

Z = {a blue, a red, a green}⇥ {bike, house},

which leads to six possible strings and six distinct embed-
ding vectors. Using Proposition 4, we can easily find a
factored approximation u(col,obj) ⇡ u0 + ucol + uobj ,
where ucol and uobj are the ideal words representing a
particular object and color from Z . As we will see, these
vectors can be used for semantic manipulations of embed-
dings. Note that ideal words are not the same as the en-
codings of the original words or substrings. In fact, quite
intuitively, the meaning of ideal word vectors is determined
entirely by the way in which the corresponding string in-
teracts with other factors. For example, we have ugreen =
↵caru(green car) + ↵houseu(green house) � u0 where u0 is
the mean of all six embeddings. In this particular exam-
ple, “green house” has distinct contextual meaning, but this
can be controlled by using appropriate weights, if desired.
See Section 5 and Figure 3 for more discussions on similar
examples.

We conclude this section by pointing out a connection
between linearly factored embeddings and a notion of “dis-
entangled representations” proposed in [26]. We refer to the
Appendix for a short summary of the relevant mathemati-
cal background and for additional discussions. In a broad
sense, we can say that an embedding map r : Z ! V into
a vector space V is “linearly compositional” with respect to
some group of transformations G if 1) G acts on the set Z
2) G acts on V as invertible linear transformations, and 3) r
is a G-morphism, that is, if r(g ·z) = g ·r(z). In our case of
interest, the set Z = Z1⇥ . . .⇥Zk is a finite set of compos-
ite concepts (e.g., {rainy, sunny} ⇥ {morning, evening})
and G = Sn1 ⇥ . . .⇥Snk is a product of symmetric groups
that acts on Z by varying each component separately (e.g.,
swapping “rainy” $ “sunny” and “morning” $ “evening,”
independently). Following [26], we say that the action of G
on V is “linearly disentangled” if there exists a decompo-
sition V = V1 � . . . � Vk such that g = (g1v1, . . . , gkvk)
for all v = (v1, . . . , vk) 2 V and g = (g1, . . . , gk) 2 G.
Intuitively, this means that we can permute the different fac-
tors independently by acting with linear transformations on
the embedding space. With these definitions in place we
have that linear factorizations of embeddings are intimately
related to disentangled compositional representations.

Proposition 6. Let r(Z) be a set of linearly factored vec-
tors of maximal dimension. Then r is compositional for

some disentangled action of G = Sn1 ⇥ . . . ⇥Snk on V .
Conversely, if r is compositional for a disentangled action
of G, then the vectors r(Z) are linearly factored.

4. Linearly Factored Embeddings in Visual

Language Models

In this section, we discuss linear factorizations from a
probabilistic viewpoint in the context of vision-language
models (VLMs). A priori, it may not be clear why the ge-
ometric notion of factored embeddings should be relevant
in practice—for example, in the case of CLIP’s normalized
embeddings, it may seem that non-linear spherical geom-
etry should come into play. In this section, however, we
argue that vector factorizations have simple probabilistic in-
tepretations, and in particular, we should expect these struc-
tures to be present in real data embeddings.

In the following, we write X for a set of texts and Y for
a set of images (for simplicity, we consider a finite set of
text and images, which will always be the case in practice).
We consider a VLM that uses parametric encoders of texts
x 7! ux and of images y 7! vy into V = Rd to model the
conditional log-probabilities of x given y and y given x in a
bilinear fashion:

p(x | y) = expu>
x vyP

x0 expu>
x0vy

, p(y |x) = expu>
x vyP

y0 expu>
x vy0

.

(5)
For example, CLIP [41] uses both expressions in equation 5
to optimize a symmetric cross-entropy. This setup is similar
to the one used in NLP for context-based embeddings [36]
and also in transformer-based language modeling [47], the
main difference being that in those cases only one of the two
expressions in equation 5 is used (to model words based on
context). Much of the discussion that follows can be applied
to these cases as well, but we focus on VLMs for clarity.

For any given pair of embeddings ux,uy there exists a
unique probability p(x, y) on X ⇥ Y compatible with these
embeddings which satisfies

log p(x, y) = u>
x vy + c, c 2 R. (6)

In the following, we consider the distribution on X ⇥Y ex-
pressed by a model and defined by equation 6. After the
learning stage, this distribution should reflect a “true” dis-
tribution on the same space. We remark, however, that the
embedding dimension d is in practice much smaller than the
number of images or texts used in training, which means
that we are actually imposing a low-rank constraint on the
joint probability distribution. In NLP, this effect has been
referred to as the “softmax bottleneck” [49].

We now consider a set of factors Z = Z1⇥ . . .⇥Zk and
assume that each z 2 Z is represented by a string x(z) 2 X .
Note that formally we could have associated factors with
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images rather than texts, however it is more natural to ex-
press discrete concepts as text. The factors can correspond
to combinations of particular tokens (e.g., attributes and ob-
jects) but the association with strings could potentially be
more complex (e.g., (“royal”, “man”) 7! “king”). The VLM
model now provides an embedding of Z via z 7! ux(z).

Proposition 7. In the setting described above, and assum-
ing that Span(vy, y 2 Y) = Rd, the embedding z 7! ux(z)

of Z is linearly factored in the sense of Definition 1 if and
only if there exists functions q0, . . . , qk such that

p(x(z), y) = q0(y)q1(z1, y) . . . qk(zk, y), (7)

for all z = (z1, . . . , zk) 2 Z and y 2 Y .

Corollary 8. Under the assumptions of Proposition 7, an
embedding z 7! ux(z) of Z is linearly factored if only if the
factors zi are conditionally independent given any image y.

It is perhaps not surprising that the log-linear form of
the model translates multiplicative decompositions into ad-
ditive ones. It may be counterintuitive, however, that the
conditional probabilities p(zi|y) as y varies actually depend
on all of the ideal word vectors uzi , since normalizing con-
stants can change with y. Indeed we have that

p(zi | y) = exp(u>
zivy)h(Zj 6=i, y), (8)

where h(Zj 6=i, y) is a function that depends on y and all
vectors corresponding to Zj with j 6= i. In this sense, the
geometric perspective of factorization is simpler since it dis-
regards this dependence as y varies.

The conditional independence from Proposition 7 may
seem like a strict requirement and may not be obviously
true in the real world. For this reason, we discuss some
relaxed conditions and explain what they imply in terms of
linearly factored structures. First, given an image y 2 Y ,
we say that the probability p(x(z), y) is mode-disentangled
(for the factor Zi) if

argmax
zi2Zi

p(x(zi, z�i), y) = arg max
zi2Zi

p(x(zi, z
0
�i), y),

(9)
for all z�i := (z1, . . . , zi�1, zi+1, . . . , zk) and z

0
�i :=

(z01, . . . , z
0
i�1, z

0
i+1, . . . , z

0
k). Intuitively, this simply means

means that it is possible to determine the most likely value
of the factor Zi by disregarding all of the remaining factors.
Similarly, we say that p(x(z), y) is order-disentangled (for
the factor Zi) if

p(x(zi, z�i), y) � p(x(z0i, z�i), y)

() p(x(zi, z
0
�i), y) � p(x(z0i, z

0
�i), y).

(10)

for all z�i and z
0
�i. This now means that it is possible

to rank the values of the factor Zi by disregarding all of

the remaining factors. It is easy to see that conditional
independence implies order-disentanglement which in turn
implies mode-disentanglement. If |Zi|  2, then mode-
disentanglement and order-disentanglement are equivalent.

Proposition 9 (Relaxed feasibility of linear factorizations).
1) If y 2 Y is such that p(x(z), y) is mode-disentangled,
then one can replace the embedding vectors ux(z) with their
linearly factored approximations ũx(z) from Proposition 4
(for any choice of weights) and obtain the same prediction
for z given y; 2) If p(x(z), y) is order-disentangled for all
images y sampled from a distribution with full support over
the unit sphere, then the vectors ux(z) are necessarily lin-
early factored.

The second part of this statement means that,
roughly speaking, we should espect that imposing order-
disentanglement for an increasing number of images would
gradually lead to linearly factored embeddings.

Example 10. Let Z be of the form {o1, o2}⇥ {c1, c2} (ob-
jects, contexts) and let x(z) be the corresponding collection
of strings (e.g., x(oi, cj) =“a photo of a [oi] in [cj]”). Then
mode and order disentanglement are equivalent and mean
that

p(x(o1, c1)|y) > p(x(o2, c1)|y)

, p(x(o1, c2)|y) > p(x(o2, c2)|y),

p(x(o1, c1)|y) > p(x(o1, c2)|y)

, p(x(o2, c1)|y) > p(x(o2, c2)|y).

(11)

These are reasonable conditions on the probability
p(x(z), y) since it is normally possible to discriminate ob-
ject and context in an image independently. If p(x(z), y)
and y satisfy equation 11, then the first part of Proposition 9
means that we can use two (approximate) “ideal word” vec-
tors uo1 = �uo2 and uc1 = �uc2 instead of the four origi-
nal vectors ux(oi,cj) to assign the correct label to y. The sec-
ond part of Proposition 9 means that if equation 11 holds for
“all” images y (i.e., vectors covering the unit sphere), then
the original vectors ux(oi,cj) are actually linearly factored.

5. Experiments

We now empirically investigate the presence and use-
fulness of linearly factored structures in real VLM embed-
dings. In all of our experiments, we use a pre-trained CLIP
encoder [41]1. Unless stated otherwise, we compute lin-
early factored approximations of embeddings using Propo-
sition 4 with ↵zi = 1

ni
and �z =

Q 1
ni

. We use different
datasets that have a compositional nature: MIT-states [28]

1We use the HuggingFace implementation of CLIP with the publicly
available checkpoint based on a ViT-L/14 vision transformer. See https:
//huggingface.co/openai/clip-vit-large-patch14
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Figure 2: Visualization of embeddings. Top: projected
embeddings of manually constructed strings associated with
factored concepts. Bottom: projected embeddings for
strings of the type “an image of a [a] [o]” for randomly cho-
sen attributes and objects from MIT-states [28] and UTZap-
pos [50]. Symmetric structures indicate that embeddings
are approximately linearly factored. See text for details.

and UTZappos [50], that are image classification datasets
where labels are pairs attribute–object; CelebA [33] and
Waterbirds [44] in which images have a label and a spu-
rious attribute; and DeepFashion2 [23] with PerVL anno-
tations from [14], where the goal is to retrieve object in-
stances from different contexts. We also include a visual-
ization of ideal words using a CLIP-guided diffusion model
(Stable Diffusion 2.12) [43]. We emphasize that our goal is
not to achieve state-of-the-art results, although we will see
that linear manipulations can be surprisingly effective and
sometimes outperform significantly more complex meth-
ods. Rather, we aim to show that linear factored structures
in embedding spaces provide a useful conceptual and prac-
tical framework for understanding and controlling the be-
havior of pre-trained VLMs.

Visualization of embeddings. Figure 2 shows some ex-
amples of embeddings of composite strings, visualized in
3D using PCA. In the top row, we show examples of man-
ually constructed strings. In order: “a photo of a {red,
blue, pink} ⇥ {car, house}”; “a photo of a {big, small}
⇥ {cat, dog} ⇥ {eating, drinking}”; “{a photo of a, a pic-
ture of a} ⇥ {place, object, person}”; “king, queen, man,
woman, boy, girl” (where one factor would correspond to
male-female and the other to a generic context). In the bot-
tom row, we present strings of the type “an image of a [a]
[o]” for randomly chosen attributes and objects from MIT-
states [28] and UTZappos [50] (first using two attributes
and three objects, and then using three attributes and two
objects). Here we always use either 2⇥ 3 or 2⇥ 2⇥ 2 con-
cepts since these factored structures have expected affine di-
mension 4, or linear dimension 3. The presence of roughly

2https://huggingface.co/stabilityai/
stable-diffusion-2-1

parallel edges and faces in these figures indicate that em-
beddings are approximately linearly factored. We note that
in many of these examples the factorization of the con-
cepts is already reflected in the syntax of the strings, i.e., in
the presence of repeated substrings in prompts with similar
meaning. However, factorized vectors also encode seman-
tic aspects, as can be seen in the last two examples from
the first row. In the fourth example, the encoded strings
have no repeated substrings, so the structure is “emergent”;
in the third example, the factor corresponding to {a photo
of a, a picture of a} results in an ideal word vector with
a smaller norm compared to the to other directions (result-
ing in a “squashed” triangular prism), as one might expect
since this factor is not semantically significant. We refer to
the Appendix for a more in-depth discussion.

Compositional classification. We evaluate the usefulness
of linear factored approximations for object-attribute labels
of the MIT-states [28] and UTZappos [50] datasets. The de-
fault strategy for applying CLIP in a zero-shot fashion on
these datasets is to use text captions such as x(a, o)=“an
image of a [a] [o].” This results in nobj ⇥ nattr captions
that each image must be compared with. We want to ex-
plore whether the embedding vectors ux(a,o) can be approx-
imated with a linearly factored set ũx(a,o) = u0+ua+uo,
so that inference can be performed using only nobj + nattr

embedding vectors. The intuitive choice for such vectors
would be to use the representations of captions such as “im-
age of a [a] object” and “image of a [o].” We compare
this choice with using the “ideal words” associated with the
original captions, where the representation of an object o
is simply given by uo := 1

nattr

P
a ux(a,o), and similarly

for attributes, as in Proposition 4 (in this setting, there is
no need to remove the mean vector u0 since it is multiplied
with every image vector). The resulting disjoint represen-
tations for objects and attributes (uo and ua) are “contex-
tualized,” in the sense that they optimally approximate the
original pairwise embeddings. In Table 1, “pair” refers to
using the original pairwise labels, “real words” uses the em-
beddings of words corresponding to objects and attributes
using “image of a [a] object” and “image of a [o].”, while
“ideal words” computes the vector ideal words for the fac-
torization. We see that ideal words clearly outperform the
real words baseline, and often even surpass the accuracy of
pair. For MIT-States, using factored labels translates into
using 360 vs. 28175 class vectors.

Debiasing. We can apply the decomposition into ideal
words as a baseline strategy to remove contexts or biases
from embeddings. The debiasing task can be formalized
using the group robustness framework proposed in [44].
In this setting, we are given a collection of labels Y and
spurious attributes A, and we define a “group” as a pair
g 2 Y ⇥ A. Assuming that each group corresponds to a
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Method Pair Acc Attr Acc Obj Acc

MIT-states [28]
pair 7.7% 16.2% 47.8%

real words 10.0% 19.3% 49.3%
ideal words 11.5% 21.4% 50.8%

UT Zappos [50]
pair 12.4% 17.1% 55.7%

real words 8.4% 10.3% 51.0%
ideal words 10.8% 19.2% 55.3%

Table 1: Zero-shot image classification results on compo-

sitional datasets. Here “pair” refers to using all attribute-
object pairs as candidate labels; “real words” refers to using
labels corresponding to real words (i.e., separate attribute
and object labels); “ideal words” refers to using composi-
tional labels based on ideal words. Ideal words always lead
to better accuracy than real words and often even outper-
form pairwise labels.

probability Pg on an input space X , the goal is to find a
classifier f : X ! Y that leads to a small gap between
worst-group error and average error:

max
g

Ex⇠Pg`(f(x), y)� Ex⇠P `(f(x), y)). (12)

In a zero-shot setting with CLIP, classifiers are prompts that
inherit biases from the dataset used in pre-training, so group
robustness is not guaranteed. To address this problem, the
authors of [11] propose a method for debiasing prompts that
finds a projection map that makes spurious prompts irrele-
vant (following [6]) and then additionally regularizes the
projection map to ensure that certain prompts are mapped
near each other in embedding space. Here we note that
a much simpler baseline would be to use ideal words to
leverage the joint label-attribute representation provided by
the pre-trained VL model and “average out” spurious at-
tributes. More precisely, starting from a set of embeddings
u(y,a) corresponding to prompts representing each group
g = (y, a), ideal words suggest to define the encoding of
each label y to be uy := 1

|A|
P

a2A u(y,a). Once again,
this is the same as the (shifted) ideal word corresponding
to y, obtained by approximating pairwise embeddings of
labels and attributes in a linearly factored way. Follow-
ing [11], we evaluate group robustness of unbiased prompts
on the Waterbird [44] and CelebA [33] datasets. For the
Waterbird dataset, the labels are “landbird” and “water-
bird,” and the confounding factor is water/land background.
For the CelebA dataset, the labels are “blond” and “dark”
hair and the confounding factor is the binary gender. For
our simple unbiasing method, we prepend prompts asso-
ciated with labels with prompts associated with spurious
attributes, and then average over all the spurious prompts.
In both datasets, we consider exactly the same prompts for
spurious attributes and labels used in [11] (see the Appendix
for a description). Our results are shown in Table 2. On the
CelebA dataset, our simple averaging strategy achieves a

Waterbird [44] CelebA [33]
WG Avg Gap WG Avg Gap

Zero-shot 45.3 84.4 39.1 72.8 87.6 14.9
Orth-Proj [11] 61.4 86.4 25.0 71.1 87.0 15.9
Orth-Cali [11] 68.8 84.5 15.7 76.1 86.2 10.1
Ideal Words 64.6 88.0 23.3 83.9 85.5 1.6

Table 2: Group robustness results. Ideal words can be
used as a simple yet performant baseline for debiasing ap-
plications.

Text Only AvgImg+Text PALAVRA [14] IW

DeepFashion2 [23] 17.6 ± 0.0 21.7 ± 2.4 28.4 ± 0.7⇤ 37.0 ± 1.1

IW w.o. mean removal IW with Norm on mean IW

DeepFashion2 [23] 22.1 ± 2.4 36.5 ± 1.4 37.0 ± 1.1

Table 3: Concept retrieval results. Mean Reciprocal Rank
retrieval metric on the DeepFashion2 [23] with annotations
from PerVL [14]. Numbers with ⇤ are taken from [14].

much smaller gap between average and worst group accu-
racy than the method proposed in [11] (1.6 vs 10.1). For
Waterbird datsets, the gap is larger but comparable, and av-
erage accuracy is higher.

Composing concepts and contexts. We perform exper-
iments using the DeepFashion2 dataset [23] with the cap-
tions provided in PerVL [14]. This dataset contains im-
ages of 100 unique fashion items (“concepts”) with tex-
tual descriptions. The task is to retrieve an image given
a text query that includes a personalized concept that is
specified using a small number of examples (5 samples).
An example of a text query is “The [CONCEPT] is fac-
ing a glass store display.” In [14], the authors propose a
method called PALAVRA that trains new CLIP tokens to
be associated with the custom concept; the learned tokens
can then be used within natural language for retrieving im-
ages. The authors compare their method with a baseline
approach dubbed “AvgIm+Text” which consists in averag-
ing the CLIP embedding of the concept support images and
of the embedded text query. This strategy is presented as
the second best approach after PALAVRA. Inspired by our
linear factorization of concepts and contexts, we propose to
use a modification of AvgIm+Text where instead of aver-
aging text and image embeddings, we add to the text em-
bedding the difference between mean image embeddings of
the specialized concept (“my shirt”) and the mean embed-
dings of the general (coarse-grained) concept images (all
images of shirts in the dataset). For a concrete example,
if [CONCEPT] is a particular instance of a shirt, then the
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AvgIm+Text approach would be as follows:

AvgIm+Text :

u(“A person wearing [CONCEPT] sitting on a couch)
⇡ u(“A person wearing a shirt stting on a couch)
+ Norm(Mean{v(CONCEPT)}),

where u is the text embedding and v is the image embed-
ding, Mean means the mean over supporting samples, and
Norm means normalization. In contrast, we propose to use
the following strategy:

Ideal Words :

u(“A person wearing [CONCEPT] sitting on a couch)
⇡ u(“A person wearing a shirt stting on a couch)
�Mean{v(shirt)}+Mean{v(CONCEPT)}.

Our results are shown in Table 3. Remarkably, this simple
strategy that uses CLIP embeddings and does not require
any training outperforms PALAVRA by a large margin (in
our experiments, we used the implementation and evalua-
tion code provided in [14] with only minimal changes). This
modified approach can be interpreted from the perspective
of linearly factored embeddings, since we are assuming that
u(context,CONCEPT)� u(context, shirt) does not signif-
icantly depend on the context and can be approximated as
the difference mean vectors representing the specific CON-
CEPT and the generic shirt. Table 3 also includes ablations
for the two modifications we made w.r.t. to AvgIm+Text
proposed in [14] (i.e. skipping the normalization step and
removing the mean of the coarse-grained concept).

Visualizing ideal words. We propose to visualize the ef-
fect of linear-algebraic operations with ideal words using a
CLIP-guided diffusion model (Stable Diffusion 2.1). In this
setting, we compute ideal words of factored strings in the
same way as before (as in Proposition 4 and Example 5),
with the only difference that we now consider the encoded
representation of the entire string before the final projec-
tion layer of the text encoder (treating the concatenated to-
ken representations as a long vector), since this is required
for conditioning the diffusion model. An illustrative exam-
ple is shown Figure 3. We mention that [48, 32] have also
proposed algebraic manipulations to control visual genera-
tion in a compositional way; however both of those works
perform operations on score functions rather than on em-
bedding vectors, which means that their approach requires
modifying the diffusion process. In contrast, similar to the
prompt debiasing method from [11], we simply modify the
prompt embeddings that condition the generation. In this
paper, we use generative models as a qualitative proof of the
validity of ideal words as approximations for embeddings;
we leave a detailed exploration of applying these decompo-
sitions for controlling image generation to future work.

Figure 3: Visualization of ideal words. First row: images
generated by Stable Diffusion with the prompt “a photo of
a green house.” Because of the contextual encoder, “house”
influences the meaning “green.” Following rows: we com-
pute ideal words approximations for strings of the form “a
photo of a [color] ⇥ [object],” using five colors and four
objects. In the second row, we generate images using the
vector u0 + ugreen + uhouse. Now ugreen means green-
colored because of how the string “green” composes with
most objects. In the third row, we generate images using
u0+u[color]+uhouse for different colors; in the fourth row,
we use u0 + u[color] + ubike. The images were not cherry-
picked or manipulated in any way. This example shows that
we can generate embeddings of composite concepts by sim-
ply adding vectors in the representation space.

6. Conclusion

We have investigated compositional structures in VLM
embeddings and argued that contextual text embeddings are
often well-approximated by linear combinations of smaller
sets of vectors. Optimal choices for these vectors are not
embeddings of actual words, but rather “ideal words” that
can be easily obtained as weighted averages of embed-
dings of longer strings of text. We showed that this sim-
ple idea can be used to design effective baseline methods
for different visual language tasks (compositional classi-
fication/retrieval, debiasing, and image generation) and to
control the behavior of VLMs.

In the future, we will focus on practical applications of
ideal word decompositions such as compositional image
generation. Furthermore, we would like to find ways of cus-
tomizing ideal words using training data, for example by in-
corporating linear factorizations in fine-tuning strategies, or
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by introducing kernelized versions of these decompositions
that have learnable parameters.

Finally, we remark that our discussion in Section 4 was
mainly focused on embedding vectors from a single modal-
ity (text), however the strategy we used for concept re-
trieval in Section 5 suggests that it is possible to perform
linear algebraic operations using vectors from both modal-
ities (text/vision). Although it is generally known that vi-
sual and text embeddings in CLIP are not well-aligned [30],
our linear manipulations actually only require for the dif-
ferences between embedding vectors of the same modality
to be aligned. Interestingly, this sort of weak alignment im-
plies that vector representations of a concept c in any modal-
ity can be (approximately) written as

wc = w0 ±wmodality + . . . (13)

where wmodality may be seen as the ideal word vector cor-
responding to the modality factor for vision/text.
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Farinella, and Tal Hassner, editors, Computer Vision –
ECCV 2022, volume 13680, pages 558–577. Springer Na-
ture Switzerland, Cham, 2022. Series Title: Lecture Notes
in Computer Science. 6, 7, 8, 5

[15] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. BERT: Pre-training of Deep Bidirectional Trans-
formers for Language Understanding. arXiv:1810.04805
[cs], May 2019. arXiv: 1810.04805. 2

[16] Willis D Ellis. A source book of Gestalt psychology. Rout-
ledge, 2013. 2

[17] Kawin Ethayarajh. How Contextual are Contextualized
Word Representations? Comparing the Geometry of BERT,
ELMo, and GPT-2 Embeddings, Sept. 2019. 2

[18] Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. To-
wards Understanding Linear Word Analogies, Aug. 2019.
arXiv:1810.04882 [cs]. 2

[19] Jacob Feldman. Regularity-based perceptual grouping. Com-
putational Intelligence, 13(4):582–623, 1997. 2

[20] Jerry A Fodor and Ernest Lepore. The compositionality pa-
pers. Oxford University Press, 2002. 2

[21] William Fulton and Joe Harris. Representation Theory, vol-
ume 129 of Graduate Texts in Mathematics. Springer New
York, New York, NY, 2004. 4

[22] Alona Fyshe, Leila Wehbe, Partha P. Talukdar, Brian Mur-
phy, and Tom M. Mitchell. A Compositional and Inter-
pretable Semantic Space. In Proceedings of the 2015 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technolo-
gies, pages 32–41, Denver, Colorado, 2015. Association for
Computational Linguistics. 2

[23] Yuying Ge, Ruimao Zhang, Lingyun Wu, Xiaogang Wang,
Xiaoou Tang, and Ping Luo. A versatile benchmark for de-
tection, pose estimation, segmentation and re-identification
of clothing images. CVPR, 2019. 6, 7, 5

[24] Stuart Geman, Daniel F Potter, and Zhiyi Chi. Composition
systems. Quarterly of Applied Mathematics, 60(4):707–736,
2002. 2

[25] Alex Gittens, Dimitris Achlioptas, and Michael W. Mahoney.
Skip-Gram - Zipf + Uniform = Vector Additivity. In Pro-
ceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages
69–76, Vancouver, Canada, 2017. Association for Computa-
tional Linguistics. 2

[26] Irina Higgins, David Amos, David Pfau, Sebastien
Racaniere, Loic Matthey, Danilo Rezende, and Alexander
Lerchner. Towards a Definition of Disentangled Represen-
tations, Dec. 2018. 2, 4

15403



[27] Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia
Bruni. Compositionality decomposed: How do neural net-
works generalise?, Feb. 2020. 2

[28] Phillip Isola, Joseph J. Lim, and Edward H. Adelson. Dis-
covering states and transformations in image collections.
In 2015 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1383–1391, Boston, MA, USA,
June 2015. IEEE. 5, 6, 7

[29] Omer Levy and Yoav Goldberg. Neural word embedding as
implicit matrix factorization. In Advances in Neural Infor-
mation Processing Systems, pages 2177–2185, 2014. 2

[30] Weixin Liang, Yuhui Zhang, Yongchan Kwon, Serena Ye-
ung, and James Zou. Mind the Gap: Understanding the
Modality Gap in Multi-modal Contrastive Representation
Learning, Oct. 2022. arXiv:2203.02053 [cs]. 9

[31] Tal Linzen. Issues in evaluating semantic spaces using word
analogies. In Proceedings of the 1st Workshop on Evaluating
Vector-Space Representations for NLP, pages 13–18, Berlin,
Germany, 2016. Association for Computational Linguistics.
2

[32] Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and
Joshua B. Tenenbaum. Compositional Visual Gener-
ation with Composable Diffusion Models, Jan. 2023.
arXiv:2206.01714 [cs]. 3, 8

[33] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang.
Deep Learning Face Attributes in the Wild, Sept. 2015.
arXiv:1411.7766 [cs]. 6, 7, 5

[34] Yi Ma, Doris Tsao, and Heung-Yeung Shum. On the Prin-
ciples of Parsimony and Self-Consistency for the Emergence
of Intelligence, July 2022. 2

[35] Massimiliano Mancini, Muhammad Ferjad Naeem, Yongqin
Xian, and Zeynep Akata. Learning Graph Embeddings for
Open World Compositional Zero-Shot Learning, Apr. 2022.
5

[36] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean.
Efficient estimation of word representations in vector space.
arXiv preprint arXiv:1301.3781, 2013. 2, 3, 4

[37] Jeff Mitchell and Mirella Lapata. Vector-based Models of
Semantic Composition. page 9. 2

[38] Nihal V. Nayak, Peilin Yu, and Stephen H. Bach. Learn-
ing to Compose Soft Prompts for Compositional Zero-Shot
Learning, Apr. 2022. 5

[39] Jeffrey Pennington, Richard Socher, and Christopher Man-
ning. Glove: Global vectors for word representation. In Pro-
ceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP), pages 1532–1543,
2014. 2

[40] Matthew Peters, Mark Neumann, Mohit Iyyer, Matt Gard-
ner, Christopher Clark, Kenton Lee, and Luke Zettlemoyer.
Deep Contextualized Word Representations. In Proceedings
of the 2018 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages 2227–
2237, New Orleans, Louisiana, 2018. Association for Com-
putational Linguistics. 2

[41] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,

Gretchen Krueger, and Ilya Sutskever. Learning Transfer-
able Visual Models From Natural Language Supervision.
arXiv:2103.00020 [cs], Feb. 2021. 2, 4, 5

[42] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image
synthesis with latent diffusion models. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 10684–10695, June 2022. 2

[43] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-Resolution Im-
age Synthesis with Latent Diffusion Models, Apr. 2022.
arXiv:2112.10752 [cs]. 6

[44] Shiori Sagawa, Pang Wei Koh, Tatsunori B. Hashimoto,
and Percy Liang. Distributionally Robust Neural Networks
for Group Shifts: On the Importance of Regularization for
Worst-Case Generalization, Apr. 2020. arXiv:1911.08731
[cs, stat]. 6, 7, 5

[45] Yeon Seonwoo, Sungjoon Park, Dongkwan Kim, and Alice
Oh. Additive Compositionality of Word Vectors. In Pro-
ceedings of the 5th Workshop on Noisy User-generated Text
(W-NUT 2019), pages 387–396, Hong Kong, China, 2019.
Association for Computational Linguistics. 2

[46] Asahi Ushio, Luis Espinosa Anke, Steven Schockaert, and
Jose Camacho-Collados. BERT is to NLP what AlexNet is
to CV: Can Pre-Trained Language Models Identify Analo-
gies? In Proceedings of the 59th Annual Meeting of the As-
sociation for Computational Linguistics and the 11th Inter-
national Joint Conference on Natural Language Processing
(Volume 1: Long Papers), pages 3609–3624, Online, 2021.
Association for Computational Linguistics. 2

[47] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention Is All You Need. arXiv:1706.03762
[cs], Dec. 2017. arXiv: 1706.03762. 2, 4

[48] Zihao Wang, Lin Gui, Jeffrey Negrea, and Victor Veitch.
Concept Algebra for Text-Controlled Vision Models, Feb.
2023. arXiv:2302.03693 [cs, stat]. 3, 8, 6

[49] Zhilin Yang, Zihang Dai, Ruslan Salakhutdinov, and
William W. Cohen. Breaking the Softmax Bottleneck: A
High-Rank RNN Language Model, Mar. 2018. 4

[50] Aron Yu and Kristen Grauman. Fine-Grained Visual Com-
parisons with Local Learning. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition, pages 192–199,
Columbus, OH, USA, June 2014. IEEE. 6, 7, 5

15404


