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Figure 1. Our method converts a scene image into a sketch with different types and levels of abstraction by disentangling abstraction into
two axes of control: fidelity and simplicity. The sketches on the left were selected from a complete matrix generated by our method (an
example is shown on the right), encompassing a broad range of possible sketch abstractions for a given image. Our sketches are generated
in vector form, which can be easily used by designers for further editing.

Abstract

In this paper, we present a method for converting a given
scene image into a sketch using different types and mul-
tiple levels of abstraction. We distinguish between two
types of abstraction. The first considers the fidelity of the
sketch, varying its representation from a more precise por-
trayal of the input to a looser depiction. The second is
defined by the visual simplicity of the sketch, moving from
a detailed depiction to a sparse sketch. Using an explicit
disentanglement into two abstraction axes — and multi-
ple levels for each one — provides users additional con-
trol over selecting the desired sketch based on their per-
sonal goals and preferences. To form a sketch at a given
level of fidelity and simplification, we train two MLP net-
works. The first network learns the desired placement of
strokes, while the second network learns to gradually re-
move strokes from the sketch without harming its recogniz-
ability and semantics. Our approach is able to generate
sketches of complex scenes including those with complex
backgrounds (e.g. natural and urban settings) and subjects
(e.g. animals and people) while depicting gradual abstrac-
tions of the input scene in terms of fidelity and simplicity.
https://clipascene.github.io/CLIPascene/

1. Introduction

Several studies have demonstrated that abstract, mini-
mal representations are not only visually pleasing but also
helpful in conveying an idea more effectively by empha-
sizing the essence of the subject [13, 3]. In this paper, we
concentrate on converting photographs of natural scenes to
sketches as a prominent minimal representation.

Converting a photograph to a sketch involves abstraction,
which requires the ability to understand, analyze, and inter-
pret the complexity of the visual scene. A scene consists
of multiple objects of varying complexity, as well as rela-
tionships between the foreground and background (see Fig-
ure 2). Therefore, when sketching a scene, the artist has
many options regarding how to express the various compo-
nents and the relations between them (see Figure 3).

In a similar manner, computational sketching methods
must deal with scene complexity and consider a variety of
abstraction levels. Our work focuses on the challenging task
of scene sketching while doing so using different types and
multiple levels of abstraction. Only a few previous works at-
tempted to produce sketches with multiple levels of abstrac-
tion. However, these works focus specifically on the task of
object sketching [34, 25] or portrait sketching [1], and of-
ten simply use the number of strokes to define the level of
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A B C
Figure 2. Scene complexity. (A) contains a single, central object
with a simple background, (B) contains multiple objects (the cat
and vase) with a slightly more complicated background, and (C)
contains both foreground and background that include many de-
tails. Our work tackles all types of scenes.

Figure 3. Drawings of different scenes by different artists. Notice
the significant differences in style and level of abstraction between
the drawings — moving from more detailed and precise (left) to
more abstract (right). The second row shows how the level of ab-
straction not only varies between drawings, but also within the
same drawing. Where each drawing contains areas that are rel-
atively more detailed (red) and more abstract (blue).

abstraction. We are not aware of any previous work that at-
tempts to separate different types of abstractions. Moreover,
existing works for scene sketching often focus on produc-
ing sketches based on certain styles, without taking into ac-
count the abstraction level, which is an essential concept in
sketching. Lastly, most existing methods for scene sketch-
ing do not produce sketches in vector format. Providing
vector-based sketches is a natural choice for sketches as it
allows further editing by designers (such as in Fig. 6).

We define two axes representing two types of abstrac-
tions and produce sketches by gradually moving along these
axes. The first axis governs the fidelity of the sketch. This
axis moves from more precise sketches, where the sketch
composition follows the geometry and structure of the pho-
tograph to more loose sketches, where the composition re-
lies more on the semantics of the scene. An example is
shown in Figure 4, where the leftmost sketch follows the
contours of the mountains on the horizon, and as we move
right, the mountains and the flowers in the front gradually
deviate from the edges present in the input, but still convey
the correct semantics of the scene. The second axis governs
the level of details of the sketch and moves from detailed to
sparse depictions, which appear more abstract. Hence, we
refer to this axis as the simplicity axis. An example can be
seen in Figure 5, where the same general characteristics of

precise loose

Figure 4. The fidelity axis. From left to right, using the same num-
ber of strokes the sketches gradually depart from the geometry of
the input image, but still convey the semantics of the scene.

detailed sparse

Figure 5. The simplicity axis. On the left, we start with a more
detailed sketch and as we move to the right the sketch is gradually
simplified while still remaining consistent with the overall appear-
ance of the initial sketch.

the scene (e.g. the mountains and flowers) are captured in
all sketches, but with gradually fewer details.

To deal with scene complexity, we separate the fore-
ground and background elements and sketch each of them
separately. This explicit separation and the disentanglement
into two abstraction axes provide a more flexible framework
for computational sketching, where users can choose the de-
sired sketch from a range of possibilities, according to their
goals and personal taste.

We define a sketch as a set of Bézier curves, and train a
simple multi-layer perceptron (MLP) network to learn the
stroke parameters. Training is performed per image (e.g.
without an external dataset) and is guided by a pre-trained
CLIP-ViT model [29, 7], leveraging its powerful ability to
capture the semantics and global context of the entire scene.

To realize the fidelity axis, we utilize different inter-
mediate layers of CLIP-ViT to guide the training process,
where shallow layers preserve the geometry of the image
and deeper layers encourage the creation of looser sketches
that emphasize the scene’s semantics.

To realize the simplicity axis, we jointly train an addi-
tional MLP network that learns how to best discard strokes
gradually and smoothly, without harming the recognizabil-
ity of the sketch. As shall be discussed, the use of the net-
works over a direct optimization-based approach allows us
to define the level of details implicitly in a learnable fashion,
as opposed to explicitly determining the number of strokes.

The resulting sketches demonstrate our ability to cope
with various scenes and to capture their core characteristics
while providing gradual abstraction along both the fidelity
and simplicity axes, as shown in Figure 1. We compare our
results with existing methods for scene sketching. We addi-
tionally evaluate our results quantitatively and demonstrate
that the generated sketches, although abstract, successfully
preserve the geometry and semantics of the input scene.
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Figure 6. Artistic stylization of the strokes using Adobe Illustrator.

2. Related Work

Free-hand sketch generation differs from edge-map ex-
traction [4, 37] in that it attempts to produce sketches that
are representative of the style of human drawings. Yet,
there are significant differences in drawing styles among in-
dividuals depending on their goals, skill levels, and more
(see Figure 3). As such, computational sketching methods
must consider a wide range of sketch representations.

This ranges from methods aiming to produce sketches
that are grounded in the edge map of the input image [16,
38, 33, 19], to those that aim to produce sketches that are
more abstract [2, 9, 34, 11, 26, 10, 28, 23, 42]. Several
works have attempted to develop a unified algorithm that
can output sketches with a variety of styles [5, 41, 21].
There are, however, only a few works that attempt to pro-
vide various levels of abstraction [1, 25, 34]. In the follow-
ing, we focus on scene-sketching approaches, and we refer
the reader to [39] for a comprehensive survey on computa-
tional sketching techniques.

Photo-Sketch Synthesis Various works formulate this
task as an image-to-image translation task using paired data
of corresponding images and sketches [18, 40, 16, 22]. Oth-
ers approach the translation task via unpaired data, often re-
lying on a cycle consistency constraint [41, 31, 5]. Li et
al. [16] introduce a GAN-based contour generation algo-
rithm and utilize multiple ground truth sketches to guide the
training process. Yi et al. [41] generate portrait drawings
with unpaired data by employing a cycle-consistency ob-
jective and a discriminator trained to learn a specific style.

Recently, Chan et al. [5] propose an unpaired GAN-
based approach. They train a generator to map a given im-
age into a sketch with multiple styles defined explicitly from
four existing sketch datasets with a dedicated model trained
for each desired style. They utilize a CLIP-based loss to
achieve semantically-aware sketches. As these works rely
on curated datasets, they require training a new model for
each desired style while supporting a single level of sketch
abstraction. In contrast, our approach does not rely on any
explicit dataset and is not limited to a pre-defined set of
styles. Instead, we leverage the powerful semantics cap-
tured by a pre-trained CLIP model [29]. Additionally, our
work is the only one among the alternative scene sketch-

ing approaches that provides sketches with multiple levels
of abstraction and in vector form, which allows for a wider
range of editing and manipulation.

Sketch Abstraction While abstractions are fundamental
to sketches, only a few works have attempted to create
sketches at multiple levels of abstraction, while no previ-
ous works have done so over an entire scene. Berger et
al. [1] collected portrait sketches at different levels of ab-
straction from seven artists to learn a mapping from a face
photograph to a portrait sketch. Their method is limited to
faces only and requires a new dataset for each desired level
of abstraction. Muhammad et al. [25] train a reinforcement
learning agent to remove strokes from a given sketch with-
out harming the sketch’s recognizability. The recognition
signal is given by a sketch classifier trained on nine classes
from the QuickDraw dataset [11]. Their method is therefore
limited only to objects from the classes seen during training
and requires extensive training.

CLIPasso Most similar to our work is CLIPasso [34]
which was designed for object sketching at multiple lev-
els of abstraction. They define a sketch as a set of Bézier
curves and optimize the stroke parameters with respect to
a CLIP-based [29] similarity loss between the input image
and generated sketch. Multiple levels of abstraction are re-
alized by reducing the number of strokes used to compose
the sketch. In contrast to CLIPasso, our method is not re-
stricted to objects and can handle the challenging task of
scene sketching. Additionally, while Vinker et al. examine
only a single form of abstraction, we disentangle abstraction
into two distinct axes controlling both the simplicity and the
fidelity of the sketch. Moreover, in CLIPasso, the user is re-
quired to explicitly define the number of strokes needed to
obtain the desired abstraction. However, different images
require a different number of strokes, which is difficult to
determine in advance. In contrast, we implicitly learn the
desired number of strokes by training two MLP networks to
achieve a desired trade-off between simplicity and fidelity
with respect to the input image.

3. Method
Given an input image I of a scene, our goal is to pro-

duce a set of corresponding sketches at n levels of fidelity
and m levels of simplicity, forming a sketch abstraction ma-
trix of size m× n. We begin by producing a set of sketches
along the fidelity axis (Sections 3.1 and 3.2) with no simpli-
fication, thus forming the top row in the abstraction matrix.
Next, for each sketch at a given level of fidelity, we per-
form an iterative visual simplification by learning how to
best remove select strokes and adjust the locations of the re-
maining strokes (Section 3.3). For clarity, in the following
we describe our method taking into account the entire scene
as a whole. However, to allow for greater control over the
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appearance of the output sketches, and to tackle the high
complexity presented in a whole scene, our final scheme
splits the image into two regions – the salient foreground
object(s), and the background. We apply our 2-axes abstrac-
tion method to each region separately, and then combine
them to form the matrix of sketches (details in Section 3.4).

3.1. Training Scheme

We define a sketch as a set of n strokes placed over a
white background, where each stroke is a two-dimensional
Bézier curve with four control points. We mark the i-th
stroke by its set of control points zi = {(xi, yi)

j}4j=1, and
denote the set of the n strokes by Z = {zi}ni=1. Our goal
is to find the set of stroke parameters that produces a sketch
adequately depicting the input scene image.

An overview of our training scheme used to produce a
single sketch image is presented in the gray area of Fig-
ure 7. We train an MLP network, denoted by MLPloc,
that receives an initial set of control points Zinit ∈
Rn×4×2 (marked in blue) and returns a vector of offsets
MLPloc(Zinit) = ∆Z ∈ Rn×4×2 with respect to the ini-
tial stroke locations. The final set of control points are then
given by Z = Zinit+∆Z, which are then passed to a differ-
entiable rasterizer R [17] that outputs the rasterized sketch,

S = R(Zinit +∆Z). (1)

For initializing the locations of the n strokes, we fol-
low the saliency-based initialization introduced in Vinker et
al. [34], in which, strokes are initialized in salient regions
based on a relevancy map extracted automatically [6].

To guide the training process, we leverage a pre-trained
CLIP model due to its capabilities of encoding shared in-
formation from both sketches and natural images. As op-
posed to Vinker et al. [34] that use the ResNet-based [12]
CLIP model for the sketching process (and struggles with
depicting a scene image), we find that the ViT-based [7]
CLIP model is able to capture the global context required
for generating a coherent sketch of a whole scene, includ-
ing both foreground and background. This also follows
the observation of Raghu et al. [30] that ViT models better
capture more global information at lower layers compared
to ResNet-based models. We further analyze this design
choice in the supplementary material.

The loss function is then defined as the L2 distance be-
tween the activations of CLIP on the image I and sketch S
at a layer ℓk:

LCLIP (S, I, ℓk) =
∥∥ CLIPℓk(S)− CLIPℓk(I)

∥∥2
2
. (2)

At each step during training, we back-propagate the loss
through the CLIP model and the differentiable rasterizer R
whose weights are frozen, and only update the weights of
MLPloc. This process is repeated iteratively until conver-
gence. Observe that no external dataset is needed for guid-

I

S

MLPloc ℛ

zinit ΔZ

. . . . .  

ℓ𝒾ℓ"

. . . . .  

ℓ𝒾ℓ"
MLPsimp

𝑃

CLIP-ViT

LCLIP(𝒮,I,ℓ𝒾) 

Lsparse 

Figure 7. Single sketch generation scheme. In gray, we show our
training scheme for producing a single sketch image at a single
level of fidelity. In the bottom left we show the additional compo-
nents used to generate a single sketch at a single level of simplicity.

ing the training process, as we rely solely on the expressive-
ness and semantics captured by the pre-trained CLIP model.
This training scheme produces a single sketch image at a
single level of fidelity and simplicity. Below, we describe
how to control these two axes of abstraction.

3.2. Fidelity Axis

To achieve different levels of fidelity, as illustrated by
a single row in our abstraction matrix, we select different
activation layers of the CLIP-ViT model for computing the
loss defined in Equation (2). Optimizing via deeper layers
leads to sketches that are more semantic in nature and do
not necessarily confine to the precise geometry of the in-
put. Specifically, in all our examples we train a separate
MLPloc using layers {ℓ2, ℓ7, ℓ8, ℓ11} of CLIP-ViT and set
the number of strokes to n = 64. Note that it is possible to
use the remaining layers to achieve additional fidelity levels
(see the supplementary material).

3.3. Simplicity Axis

Given a sketch Sk at fidelity level k, our goal is to find
a set of sketches {S1

k , ...,Sm
k } that are visually and concep-

tually similar to Sk but have a gradually simplified appear-
ance. In practice, we would like to learn how to best remove
select strokes from a given sketch and refine the locations of
the remaining strokes without harming the overall recogniz-
ability of the sketch.

We illustrate our sketch simplification scheme for gen-
erating a single simplified sketch Sj

k in the bottom left re-
gion of Figure 7. We train an additional network, denoted
as MLPsimp (marked in orange), that receives a random-
valued vector and is tasked with learning an n-dimensional
vector P = {pi}ni=1, where pi ∈ [0, 1] represents the prob-
ability of the i-th stroke appearing in the rendered sketch.
P is passed as an additional input to R which outputs the
simplified sketch Sj

k in accordance.
To implement the probabilistic-based removal or addi-

tion of strokes (which are discrete operations) into our
learning framework, we multiply the width of each stroke
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Lsparse↑, LCLIP↓ Lsparse↓, LCLIP↑ 

Figure 8. Trade-off between Lsparse and LCLIP . As the sketch
becomes sparser, Lsparse obtains lower score. However, the
sketch also becomes less recognizable with respect to the input
image, resulting in a higher penalty for LCLIP .

zi by pi. When rendering the sketch, strokes with a very
low probability will be “hidden” due to their small width.

Similar to Mo et al. [24], to encourage a sparse repre-
sentation of the sketch (i.e. one with fewer strokes) we min-
imize the normalized L1 norm of P :

Lsparse(P ) =
∥P∥1
n

. (3)

To ensure that the resulting sketch still resembles the
original input image, we additionally minimize the LCLIP

loss presented in Equation (2), and continue to fine-tune
MLPloc during the training of MLPsimp. Formally, we
minimize the sum:

LCLIP (Sj
k, I, ℓk) + Lsparse(P ). (4)

We back-propagate the gradients from LCLIP to both
MLPloc and MLPsimp while Lsparse is used only for
training MLPsimp (as indicated by the red and purple
dashed arrows in Figure 7).

Note that using the MLP network rather than performing
a direct optimization over the stroke parameters (as is done
in Vinker et al.) is crucial as it allows the optimization to
restore strokes that may have been previously removed. If
we were to use direct optimization, the gradients of deleted
strokes would remain removed since they were multiplied
by a probability of 0.

Here, both MLP networks are simple 3-layer networks
with SeLU [14] activations. For MLPsimp we append a
Sigmoid activation to convert the outputs to probabilities.

Balancing the Losses. Naturally, there is a trade-off be-
tween LCLIP and Lsparse, which affects the appearance of
the simplified sketch (see Figure 8). We utilize this trade-
off to gradually alter the level of simplicity.

Finding a balance between Lsparse and LCLIP is essen-
tial for achieving recognizable sketches with varying de-
grees of abstraction. Thus, we define the following loss:

Lratio =
∥∥ Lsparse

LCLIP
− r

∥∥2
2
, (5)

where the scalar factor r (denoting the ratio of the two
losses) controls the strength of simplification. As we de-
crease r, we encourage the network to output a sparser
sketch and vice-versa. The final objective for generating
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Figure 9. Smooth v.s. non-smooth simplification. In the first row,
the simplification appears perceptually smooth, where a consis-
tent change in the degree of abstraction is performed. The second
row demonstrates a non-smooth simplification, as there is a visi-
ble “jump” between the second and third sketches. These visual
patterns are illustrated quantitatively in the corresponding graphs,
where each dot in the graph represents a single sketch.

a single simplified sketch Sj
k, is then given by:

Lsimp = LCLIP + Lsparse + Lratio. (6)

To achieve the set of gradually simplified sketches
{S1

k , ...,Sm
k }, we define a set of corresponding factors

{r1k, ..., rmk } to be applied in Equation (5). The first factor
r1k, is derived directly from Equation (5), aiming to repro-
duce the strength of simplification present in Sk:

r1k =
1

LCLIP (Sk, I, ℓk)
, (7)

where Lsparse equal to 1 means that no simplification is
performed. The derivation of the remaining factors rjk is
described next.

Perceptually Smooth Simplification As introduced
above, the set of factors determines the strength of the
visual simplification. When defining the set of factors rjk,
we aim to achieve a smooth simplification. By smooth we
mean that there is no large change perceptually between
two consecutive steps. This is illustrated in Figure 9, where
the first row provides an example of smooth transitions,
and the second row demonstrates a non-smooth transition,
where there is a large perceptual “jump” in the abstraction
level between the second and third sketches, and almost no
perceptual change in the following levels.

We find that the simplification appears more smooth
when Lsparse is exponential with respect to LCLIP . The
two graphs at the bottom of Figure 9 describe this ob-
servation quantitatively, illustrating the trade-off between
Lsparse and LCLIP for each sketch. The smooth transi-
tion in the first row forms an exponential relation between
Lsparse and LCLIP , while the large “jump” in the second
row is clearly shown in the right graph.

Given this, we define an exponential function recursively
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Figure 10. Iterative simplification of the sketch Sk. To produce a
simplified sketch Sj

k we iteratively fine-tune MLPloc (blue) and
MLPsimp (orange) w.r.t Lratio loss defined by each rjk.

by f(j) = f(j − 1)/2. The initial value of the function is
defined differently for each fidelity level k as fk(1) = r1k.
To define the following set of factors {r2k, ..rmk } we sam-
ple the function fk, where for each k, the sampling step
size is set proportional to the strength of the LCLIP loss at
level k. Hence, layers that incur a large LCLIP value are
sampled with a larger step size. We found this procedure
achieves simplifications that are perceptually smooth. This
observation aligns well with the Weber-Fechner law [36, 8]
which states that human perception is linear with respect to
an exponentially-changing signal. An analysis of the fac-
tors and additional details regarding our design choices are
provided in the supplementary material.

Generating the Simplified Sketches To generate the set
of simplified sketches {S1

k ...Sm
k }, we apply the training

procedure iteratively, as illustrated in Figure 10. We be-
gin with generating S1

k w.r.t r1k, by fine-tuning MLPloc and
training MLPsimp from scratch. After generating S1

k , we
sequentially generate each Sj

k for 2 ≤ j ≤ m by continuing
training both networks for 500 steps and applying Lratio

with the corresponding factor rjk.

3.4. Decomposing the Scene

The process described above takes the entire scene as
a whole. However, in practice, we separate the scene’s
foreground subject from the background and sketch each
of them independently. We use a pretrained U2-Net [27]
to extract the salient object(s), and then apply a pretrained
LaMa [32] inpainting model to recover the missing regions
(see Figure 11, top right).

We find that this separation helps in producing more vi-
sually pleasing and stable results. When performing object
sketching, we additionally compute LCLIP over layer l4.
This helps in preserving the object’s geometry and finer de-
tails. On the left part of Figure 11 we demonstrate the arti-
facts that may occur when scene separation is not applied.
For example, over-exaggeration of features of the subject at
a low fidelity level, such as the panda’s face, or, the object

Editing

w/o Split w/ Split Foreground

Background

Input

Figure 11. Scene decomposition. Top right – an example of the
separation technique. Left – scene sketching results obtained with
and without decomposing the scene. Bottom – examples of sketch
editing by modifying the style of strokes.

Simplicity

Fidelity

Figure 12. Sketches along the two abstraction axes.

might “blend” into the background. Additionally, this ex-
plicit separation provides users with more control over the
appearance of the final sketches (Figure 11, bottom right).
For example, users can easily edit the vector file by modi-
fying the brush’s style or combine the foreground and back-
ground sketches at different levels of abstraction.

4. Results
In the following, we demonstrate the performances of

our scene sketching technique qualitatively and quantita-
tively, and provide comparisons to state-of-the-art sketch-
ing methods. Further analysis, results, and a user study are
provided in the supplementary material.

4.1. Qualitative Evaluation

In Figures 1 and 13 we show sketches at different levels
of abstraction on various scenes generated by our method.
Notice how it is easy to recognize that the sketches are de-
picting the same scene even though they vary significantly
in their abstraction level.

In Figures 1, 4 and 12 (top) we show sketch abstractions
along the fidelity axis, where the sketches become less pre-
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cise as we move from left to right, while still conveying
the semantics of the images (for example the mountains in
the background in Figure 1 and the tree and giraffe’s body
in Figure 12). In Figures 1, 5 and 12 (bottom) we show
sketch abstractions along the simplicity axis. Our method
successfully simplifies the sketches in a smooth manner,
while still capturing the core characteristics of the scene.
For example, notice how the shape of the Buddha sculpture
is preserved across all levels. Observe that these simpli-
fications are achieved implicitly using our iterative sketch
simplification technique. Please refer to the supplemental
file for many more results.

4.2. Comparison with Existing Methods

In Figure 13 we present a comparison to CLIPasso [34].
For a fair comparison, we use our scene decomposition
technique to separate the input images into foreground and
background and use CLIPasso to sketch each part separately
before combining them. Also, since CLIPasso requires a
predefined number of strokes as input, we set the number of
strokes in CLIPasso to be the same as that learned implicitly
by our method. For each image we show two sketches with
two different levels of abstraction. As expected, CLIPasso
is able to portray objects accurately, as it was designed for
this purpose. However, in some cases, such as the sofa,
CLIPasso fails to depict the object at a higher abstraction
level. This drawback may result from the abstraction being
learned from scratch per a given number of strokes, rather
than gradually. Additionally, in most cases CLIPasso com-
pletely fails to capture the background, even when using
many strokes (e.g. in the first and fourth rows). Our method
captures both the foreground and the background in a vi-
sually pleasing manner, thanks to our learned simplifica-
tion approach. For example, our method is able to convey
the notion of the buildings in the first row or mountains in
the second row with only a small number of simple scrib-
bles. Similarly, our approach successfully depicts the sub-
jects across all scenes.

Note that the main advantage over CLIPasso does not
stem only from using the CLIP-ViT architecture, but is
rooted in our neural simplification approach that gradually
removes strokes by considering the complexity of each im-
age, as well as the tradeoff between fidelity and simplicity
in the abstraction process. In Figures 6 and 8 of the sup-
plementary, we show simplifications obtained when using
CLIP-ViT with a pre-defined number of strokes on back-
ground images (which is equivalent to applying CLIPasso
with ViT instead of ResNet). The simplification using CLI-
Passo does not succeed in the more abstract levels of 16 or
fewer strokes. We provide additional sketch results compar-
ing our method and CLIPasso at different abstraction levels
in the supplementary.

In Figure 14 we present a comparison with three state-

Input Ours CLIPasso (with separation)

Figure 13. Comparison to CLIPasso [34]. Note how CLIPasso
fails to capture the background in most cases, especially at higher
abstraction levels, despite having the same stroke budget.

of-the-art methods for scene sketching [41, 16, 5]. On the
left, as a simple baseline, we present the edge maps of the
input images obtained using XDoG [37]. On the right, we
present three sketches produced by our method depicting
three representative levels of abstraction.

The sketches produced by UPDG [41] and Chan et al. [5]
are detailed, closely following the edge maps of the input
images (such as the buildings in row 2). These sketches are
most similar to the sketches shown in the leftmost column of
our set of results, which also align well with the input scene
structure. The sketches produced by Photo-Sketching [16]
are less detailed and may lack the semantic meaning of the
input scene. For example, in the first row, it is difficult to
identify the sketch as being that of a person. Importantly,
none of the alternative scene sketching approaches can pro-
duce sketches with varying abstraction levels, nor can they
produce sketches in vector format. We note that in contrast
to the methods considered in Figure 14, our method oper-
ates per image and requires no training data. However, this
comes with the disadvantage of longer running time, taking
6 minutes to produce one sketch on a commercial GPU.

4.3. Quantitative Evaluation

In this section, we provide a quantitative evaluation of
our method’s ability to produce sketch abstractions along
both the simplicity and fidelity axes. To this end, we col-
lected a variety of images spanning five classes of scene
imagery: people, urban, nature, indoor, and animals, with
seven images for each class. For each image, we created the
4× 4 sketch abstraction matrix – resulting in a total of 560
sketches, and created sketches using the different methods
presented in Section 4.2. To make a fair comparison with
CLIPasso we generated sketches with four levels of abstrac-
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Input XDoG UPDG Photo-Sketching Chan et al. Ours

Figure 14. Scene sketching results and comparisons. From left to right are the sketches obtained using XDoG [37], UPDG [41], Photo-
Sketching [16], and Chan et al. [5]. On the right, are three representative sketches produced by our method depicting three levels of
abstraction. Note that UPDG and Chan et al. can produce sketches with three different styles, however all the sketches represent a similar
level of abstraction. We choose one representative style but provide more style comparisons in the supplementary material.

tion, using the average number of strokes obtained by our
method at the four simplicity levels. For UPDG and Chan et
al., we obtained sketches with three different styles, and av-
eraged the quantitative scores across the three styles, as they
represent the same abstraction level. For Photo-Sketching
only one level of abstraction and one style is supported.

Fidelity Changes To measure the fidelity level of the gen-
erated sketches, we compute the MS-SSIM [35] score be-
tween the edge map of each input image (extracted using
XDoG) and the corresponding sketch. In Table 1 we show
the average resulting scores among all categories, where a
higher score indicates a higher similarity. Examining the
results matrix of our method, as we move right along the
fidelity axis, the scores gradually decrease. This indicates
that the sketches become “looser” with respect to the input
geometry, as desired. The sketches by UPDG and Chan et
al. obtained high scores, which is consistent with our obser-
vation that their method produces sketches that follow the
edges of the input image. The scores for CLIPasso show
that the fidelity level of their sketches does not change much
across simplification levels and is similar to the fidelity of
sketches of our method at the last two levels (the two right-
most columns). This suggests that CLIPasso is not capable
of producing large variations of fidelity abstractions.

Sketch Recognizability A key requirement for success-
ful abstraction is that the input scene will remain recogniz-
able in the sketches across different levels of abstraction.
To evaluate this, we devise the following recognition ex-
periment on the set of images described above. Using a
pre-trained ViT-B/16 CLIP model (different than the one
used for training), we performed zero-shot image classifica-
tion over each input image and the corresponding resulting

Table 1. Comparison of the average MS-SSIM score, computed
between the edge map of the input images and generated sketches.

Ours
CLIPasso UPDG

Chan
et al.

Photo-
SketchFidelity

Si
m

pl
ic

ity 0.39 0.23 0.22 0.17 0.21

0.57 0.55 0.27
0.37 0.23 0.21 0.19 0.21
0.36 0.22 0.20 0.18 0.15
0.34 0.22 0.18 0.14 0.13

sketches from the different methods. We use a set of 200
class names taken from commonly used image classifica-
tion and object detection datasets [20, 15] and compute the
percent of sketches where at least 2 of the top 5 classes pre-
dicted for the input image were also present in the sketch’s
top 5 classes. We consider the top 5 predicted classes since
a scene image naturally contains multiple objects.

Table 2 shows the average recognition rates across all
images for each of the described methods. The recogniz-
ability of the sketches produced by our method remains
relatively consistent across different simplicity and fidelity
levels, with a naturally slight decrease as we increase the
simplicity level. We do observe a large decrease in the
recognition score in the first column. This discrepancy can
be attributed to the first fidelity level following the image
structure closely, which makes it more difficult to depict the
scene with fewer strokes. CLIPasso’s fidelity level is most
similar to our two rightmost columns (as shown in Table 1).
When comparing our recognition rates along these columns
to the results of CLIPasso, one can observe that at higher
simplicity levels, their method looses the scene’s semantics.
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Table 2. Recognizability scores, using a CLIP ViT-B/16 model for
zero-shot classification on the input image and generated sketches.

Ours
CLIPasso UPDG

Chan
et al.

Photo-
SketchFidelity

Si
m

pl
ic

ity 0.92 1.00 0.95 0.97 0.92

0.87 0.91 0.62
0.54 0.97 1.00 0.91 0.83
0.54 0.93 0.94 0.89 0.70
0.44 0.79 0.91 0.85 0.43

Table 3. Results of our user study. We compare 30 sketches pro-
duced by our method to three alternative methods: CLIPasso [34],
Chan et al. [5], and Photo-Sketching [16]. For each method, we
specify the percent of responses that preferred our sketch, the
sketch of the alternative method, or found the sketches to be simi-
lar in their ability to capture the scene semantics.

Ours v.s.
CLIPasso

Ours v.s.
Chan et al.

Ours v.s.
Photo-Sketching

Ours 84.8% Ours 52.5% Ours 75.6%

CLIPasso 7.0% Chan et al. 27.3%
Photo-

Sketching
15.8%

Equal 8.2% Equal 20.2% Equal 8.6%

User Study As opposed to the fidelity measure, which
can be determined by measuring the distance from the edge
map of the input scene, validating the recognizability is
more challenging. To this end, we also conducted a user
study to further validate the findings presented by the CLIP
zero-shot classification approach.

The user study examines how well the sketches depict
the input scene, considering both the foreground and back-
ground. Using 30 images from the set described in Sec-
tion 4.3, we compared our sketches with three alterna-
tive methods: CLIPasso [34], Chan et al. [5], and Photo-
Sketching [16]. The participants were presented with the
input image along with two sketches, one produced by our
method and the other by the alternative method (with the
sketches presented in random order). An example is pro-
vided in Figure 15. The following question was posed to
participants: Which sketch better depicts the image con-
tent? In your answer, please relate to: (1) Preservation
of both foreground and background. (2) Semantic preser-
vation - i.e., reflecting the meaning of the elements. Partic-
ipants could choose between three options: “A”, “B”, and
“A and B at a similar level“.

To make a fair comparison, we compared the methods
which produce abstract sketches (CLIPasso [34] and Photo-
Sketching [16]) with our more abstract sketches (highest
abstraction level of our abstraction matrix). Conversely,
we compared the sketches of Chan et al. [5], which are

Figure 15. Example of how images were presented to participants
in the user study.

more detailed and have greater fidelity, to our most de-
tailed results (top left corner of our matrix). We applied
CLIPasso using our scene decomposition technique, and the
same number of strokes as learned by our method, and for
Chan et al. we used the contour style sketches. We col-
lected responses from 25 participants for the survey, which
contained a total of 90 questions (2, 250 responses in total).

The average resulting scores among all participants and
images are shown in Section 4.3. In the first, second,
and third columns, we show the scores obtained when
comparing to CLIPasso [34], Chan et al. [5], and Photo-
Sketching [16] respectively. Compared to CLIPasso and
Photo-Sketching, our method achieved significantly higher
rates (84.8% and 75.6% of responses favored our method
over the respective alternatives). Conversely, only 7%
and 15.8% of responses preferred the results of the alter-
native method, respectively. Although sketches produced
by Chan et al. [5] are highly detailed, 52.5% of the re-
sponses preferred our sketches, while only 20% considered
our sketches and Chan et al.’s sketches to be similar.

The results of the user study demonstrate that sketches
produced by our method faithfully capture both the fore-
ground and background elements in the scene among vary-
ing abstraction levels.

5. Conclusions
We presented a method for performing scene sketch-

ing with different types and multiple levels of abstraction.
We disentangled the concept of sketch abstraction into two
axes: fidelity and simplicity. We demonstrated the ability to
cover a wide range of abstractions across various challeng-
ing scene images and the advantage of using vector repre-
sentation and scene decomposition to allow for greater artis-
tic control. It is our hope that our work will open the door
for further research in the emerging area of computational
generation of visual abstractions. Future research could fo-
cus on further extending these axes and formulate innova-
tive ideas for controlling visual abstractions.
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