
MST-compression: Compressing and Accelerating Binary Neural Networks
with Minimum Spanning Tree

Quang Hieu Vo, Linh-Tam Tran, Sung-Ho Bae, Lok-Won Kim, Choong Seon Hong*

Department of Computer Science and Engineering, Kyung Hee University
{2019310178, tamlt, shbae, lwk, cshong}@khu.ac.kr

Abstract

Binary neural networks (BNNs) have been widely
adopted to reduce the computational cost and memory stor-
age on edge-computing devices by using one-bit represen-
tation for activations and weights. However, as neural net-
works become wider/deeper to improve accuracy and meet
practical requirements, the computational burden remains a
significant challenge even on the binary version. To address
these issues, this paper proposes a novel method called
Minimum Spanning Tree (MST) compression that learns to
compress and accelerate BNNs. The proposed architec-
ture leverages an observation from previous works that an
output channel in a binary convolution can be computed
using another output channel and XNOR operations with
weights that differ from the weights of the reused channel.
We first construct a fully connected graph with vertices cor-
responding to output channels, where the distance between
two vertices is the number of different values between the
weight sets used for these outputs. Then, the MST of the
graph with the minimum depth is proposed to reorder out-
put calculations, aiming to reduce computational cost and
latency. Moreover, we propose a new learning algorithm
to reduce the total MST distance during training. Experi-
mental results on benchmark models demonstrate that our
method achieves significant compression ratios with negli-
gible accuracy drops, making it a promising approach for
resource-constrained edge-computing devices.

1. Introduction
Deep Neural Networks (DNNs) have been widely ap-

plied in many artificial intelligence applications, especially

vision tasks with high accuracy [27, 14]. However, the cost

of computation and massive storage burden is significantly

challenging to deploy DNNs on embedded systems such as

mobile devices and other resource-constrained platforms.

Many approaches have been proposed and demonstrated

*Corresponding Author

X
X

X

X

X

XX

X

X

X0X0

X1X1

X

X

X

X

X

X0X0

i

j

k

a) b)

m

a

b

c

d

e
m

n

p
q

1

Figure 1. Illustration of kernel compression for BNNs with the K-

mean method (a) and the shortest Hamiltonian path (b), in which

adding red connections can further reduce the computational cost

for both of them.

their effectiveness in reducing energy and resources while

maintaining the deep models’ accuracy, including pruning

[12], quantization [7], distillation [15], and efficient hard-

ware implementation [6]. Among these methods, quantiza-

tion with less bit-width for parameter and activation repre-

sentation is widely used due to its great benefits and possi-

bility in most practical applications.

Binarized neural network is a particular form of the

quantization method in which weight values and activations

are converted to 1-bit values. Accordingly, multiplications

and accumulation operations can be replaced by XNOR and

Popcount operations [7], respectively. In addition, batch

normalization is simplified to a threshold comparison [31],

while the pooling can be performed with OR operations

[30]. Consequently, the compression ratio on memory stor-

age and computational cost is significantly improved, lead-

ing to remarkable performance acceleration. Nevertheless,

the accuracy degradation is the trade-off of minimizing the

bit-width as BNN. Thus, most previous works focus on re-

ducing this accuracy gap [25, 4, 33, 22, 20, 33, 23].

Meanwhile, compressing BNNs has not received much

attention, with only a few prominent methods [32, 9, 31,

17], where the kernel compression [9, 31] gives impressive

results with roughly 50% resources reduction. In particu-

lar, given a binary convolution, inspired by an observation

that an output channel can be calculated using another out-

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

6091

put channel and outputs of XNOR operations using weights

that respectively differ from the reused channel’s weights

[9], authors in [31, 9] proposed to construct a fully con-

nected graph, in which each vertex corresponds to an out-

put channel, and distance between two vertices is the num-

ber of different values between two weight sets used for

the two output channels. Then, based on the graph, they

use the K-mean cluster and shortest Hamiltonian path to

reorder the convolution output calculation, aiming to re-

duce the number of XNOR operations. However, these

approaches have yet to fully minimize the computational

cost as output channels can use less computation. Indeed,

Figure 1 (a) illustrates an example of the K-mean method,

where two vertices are considered centers of two groups.

Two output channels corresponding to centers are fully cal-

culated1, while other vertices reuse their centers for calcula-

tion. However, adding a connection between the two centers

would enable one to utilize the rest with less computation

cost. Additionally, in the shortest Hamiltonian path shown

in Figure 1 (b), there may exist a connection to a specific

vertex that is shorter than the connection from the preced-

ing vertex in the path, leading to a lower required number

of operations for this vertex. Furthermore, time complex-

ity poses a challenge in these methods [1, 13], resulting in

longer exploration times.

To more effectively minimize the number of XNOR op-

erations with the mentioned observation, in all connections

to a specific vertex, the minimum connection must be se-

lected to minimize the computation cost for this vertex. In

addition, all of these selected connections must be included

in a subgraph that visits all vertices exactly once to ensure

that only one output channel is fully calculated. As a result,

a MST is the only structure that can fulfill these require-

ments. Therefore, this paper leverages the MST to reorder

binary convolution output calculations. Figure 2 shows a

simple example of reordering calculation on a convolution.

In this example, only the output channel 4 is fully calculated

with Cin × M × M bit-weight values. In contrast, other

channels are calculated using output channel 4, following

the MST direction.

On the other hand, to maximize the advantages of the

MST, we further minimize the MST distance of all con-

volution layers with a new learning algorithm right during

the training stage. Besides, we propose a hardware accel-

erator for BNNs applying the MST compression to demon-

strate the feasibility and effectiveness of the method related

to hardware resources. To the best of our knowledge, this

method gives the highest compression ratio with implemen-

tation from learning for compression to acceleration. In

summary, the following are contributions of this paper:

• We introduce and analyze the effectiveness of the MST

1calculated with Cin ×M ×M XNORs, denoted in Figure 2

0 0 1

0 1 1

1 0 1

1 0 0

1 1 1

0 1 1

1 1 1

1 0 0

1 1 1

0 1 0

1 1 0

0 0 1

1 1 0

1 1 0

0 1 1

1

4

2 3

=5=5

5 42

2
5

3

Input window

1x3x3
Weights 4x3x3

Output channels (C) = 4, Input channels (C) = 1, Kernel size (M) = 3

Adjacent matrix Fully connected graph The order of computation

based on the MST

1

4

2
3

2
23

1

4

2 3

2

23

An MST

out in

Figure 2. The process of arranging the order of computation on a

binary convolution layer, in which output channel 4 is fully calcu-

lated first. Then, the output channel 4 is used to calculate channel

1, channel 2 and channel 3.

in reducing the computational cost for the inference on

a binary convolution layer.

• We propose a training algorithm that can reduce the

MST distance and depth right during the training pro-

cess, which consequently maximizes the compression

ratio for inference implementation.

• We provide the corresponding hardware acceleration

for the proposed method with high throughput and

better resource efficiency, compared to related works

[3, 30, 31, 10].

The experiments are performed for BNNs including

VGG-small [5], ResNet-18/20 [14] on CIFAR-10 dataset

[18], and ResNet-18/34 [14] on ImageNet [26]. The results

show that the proposed approach gives a higher compres-

sion ratio than the previous works [32]. Compared to the

baseline [33], our method reduces up to 13.5× the con-

volution parameters and 5.51× bit-wise operations on the

same model with an acceptable accuracy degradation. Re-

garding hardware acceleration, we conduct the experiments

for a BNN with the same structure as the baseline [31] and

apply the proposed approach. Compared to the baseline

[31], hardware deployments demonstrate that BNNs with

our method save 1.8× LUTs, and 1.81× area efficiency

while maintaining the acceleration speed and accuracy.

2. Related Work
Training neural networks with binary weights and acti-

vations were first introduced by Coubariaux et al. [7] and

then rapidly gained attention from the community due to

the high compression ratio. However, accuracy drop is a

critical problem of this direction, while compression is still

highly demanded. Various techniques are proposed to fur-

ther compress and improve accuracy based on the binary

property.

6092

For accuracy improvement, Rastegari et al. [25] pro-

posed adding a scaling factor to the convolution to reduce

the quantization error. To generalize this idea aiming to en-

hance accuracy, the authors in [4] extended this factor di-

mension and enabled its training option as a learnable pa-

rameter. Besides, instead of using the Straight Through

Estimation (STE) method [2], Liu et al. [23], and Lin et
al. [20] proposed using a piece-wise linear and training-

aware approximation function, respectively, to approximate

the sign function gradient better. Meanwhile, some pre-

vious works introduced both new optimization techniques

and corresponding BNN to shrink the accuracy gap entirely

[22, 21, 28, 24]. For example, based on Bi-real Net in

[23], authors in [22] proposed new sign and activation func-

tions to shift and reshape activation distribution with a new

baseline neural network model that can boost the perfor-

mance. Other works look at the binary characteristics from

deeper perspectives to limit information loss [20, 28, 33].

For example, KL divergence is employed in [28] to mini-

mize the difference between the distribution of binary and

real-weight counterparts. Xu et al. [33] observed the low

probability of changing large full-precision weight when bi-

narizing and proposed the ReCu function to revive the death

weights, leading to lower quantization error.

Binary model compression has received less attention as

only a few techniques have been proposed so far. Specif-

ically, Lee et al. [19] proposed an encryption algorithm to

compress binary weights with lower than 1-bit per weight,

and XOR-gate networks are used to decrypt the inference

task. Similarly, Sub-bit Neural Networks (SNN) [32] pro-

posed using lower than 9 bits for each 3 × 3 binary kernel

based on the scattered 9-bit kernel distribution. Other pro-

posed compression methods provided only hardware tech-

niques for inference implementation. Authors in [31, 9]

proposed BNN hardware architectures using weight/input

reuse with different calculation orders for convolution to re-

duce hardware overhead. Kim et al. [17] introduces kernel

decomposition that can reduce the computational cost by

sharing one base output for all channels.

3. Background

This section briefly describes how to construct a bi-

nary convolution layer and the related optimization meth-

ods. For a convolution layer with Cin input channels,

Cout output channels, and kernel size M , weights and ac-

tivations are denoted by Wr ∈ R
n and Ar ∈ R

m, where

n = Cout × Cin × M × M and m = Cin × Win × Hin.

Win × Hin represents input feature map size. To sim-

plify the computation and reduce memory storage, in a bi-

nary convolution layer, the binarization of activations Ab ∈
{±1}m and weights Wb ∈ {±1}n is acquired by the fol-

1 1 0 1 0

0 1 1 0 0

1 0 0 1 1

XNOR

1 0 1 1 0

0 0 0 0 0

XNOR

1x3x3 input activations

2x1x3x3 weights

P1 =4

P2 = 2

C = 2, C = 1, M = 3

0 1 0 1

1 0 1 1

0 0 1 1

0 0 0 1

1 0 0 1

=4=4

=3

=1

S = 1

P2 = P12+S = P12 + (P1-P12) = P12 + P1- (d12-P12) = P1+2P12-d12

d12=P12+ P121 = (1 XNOR X) + (0 XNOR X)

out in

Figure 3. Weight-reuse method description. Here, the red line is

counting the number of elements, the green line is summing all

elements. P12 is
∑d12

j=1 XNOR(A2j ,W2j), and Y2 is 2(P1 −
d12 + 2P12)− Cin ×M ×M .

lowing sign function [25],

xb = Sign(x) =

{
+1, if x ≥ 0,

−1, otherwise.
(1)

If −1 is substituted by 0 to represent a negative value for Ab

and Wb, the output convolution operation of the ith channel

now is reformulated as in Eq. (2) [31].

Yi = (2

CinMM∑
j=1

XNOR(Ab
ij ,Wb

ij)−Cin ×M ×M)� α,

(2)

where
∑Cin×M×M

1 XNOR(Ab
ij ,Wb

ij) is the number of

set-bits (Popcount) of the output channel ith, � is the

element-wise multiplication, and Cin×M×M is the num-

ber of bit-wise XNOR operations used to calculate one out-

put channel. The scaling factor α is added as a learnable

parameter to lessen quantization error [25]. For backward

propagation, following [23], the STE [2] method is used

for the approximation gradient on weights, while the piece-

wise polynomial function [23] is used for gradient approxi-

mation on activations.

To further compress the BNN models, in this paper,

we apply the weight reuse method [31] for the inference

task. Accordingly, given the lth binary convolution, as

shown in Figure 3, we denote Pi and Pj as the output of

the Popcount operations of the output channels ith and

jth, respectively. All binary weights of the layer are di-

vided into Cout weight sets wli
b ∈ {±1}Cin×M×M , where

i = 1, 2, ..., Cout and each weight set is used to calculate

for an output channel. dij is the number of weight bits in

the wli
b that differ from the wlj

b , compared one-to-one re-

spectively. Pij is the sum of XNOR operations with the

6093

1 0 0

1 1 1

0 1 1

1 1 1

1 0 0

1 1 1

0 1 0

1 1 0

0 0 1

1 1 0

1 1 0

0 1 1

Output channels (C) = 4, Input channels (C) = 1, Kernel size (M) = 3out inOutput channels (C) = 4, Input channels (C) = 1, Kernel size (M) = 3out in

0 0 1

0 1 1

1 0 1

Conv

 per pixel

*

*

*

*

Element-wise XNOR

4

3

4

2

sum

2P – C xMxM

Kernel-1 Kernel-2 Kernel-3 Kernel-4

-1

-3

-1

-5

in

*

Element-wise XNOR

*

*

*

2

2

2

2

sum

-5

-1

-3

-1

P –2+2P4 41

P –3+2P4 42

P –2+2P4 43

2P – C xMxMin

Kernel-1 Kernel-2 Kernel-3 Kernel-4

2

4

3

4

P4

Total parameters:

C x C x M x M

= 4 x 1 x 3 x 3 = 36

Total XNOR operations:

H x W x C x C x M x M

Total parameters: = 2+3+2+9 = 16

Total XNOR operations:

inout

inoutoutout

Standard BNN:

Our BNN:
Output

activation

Conv

 per pixel

Figure 4. Comparison between the computation process of a stan-

dard binary convolution and our method in BNN acceleration. In-

stead of fully computing all Cin ×M ×M XNOR operations for

each layer, our method provides an optimal order of the calcula-

tion using the MST to minimize the number of XNOR operations

and total parameters.

weights of the channel jth that differ from the ith counter-

part. To calculate the output channel jth from the output

channel ith, we use Eq. (3).

Yj = 2(Pi − dij + 2Pij)− Cin ×M ×M. (3)

4. Methodology
4.1. Minimum Spanning Tree for BNN Acceleration

For a binary convolution layer, we construct a fully con-

nected graph in which each vertex corresponds to an out-

put channel. The distance between two vertices i and j is

dij . As shown in Eq. (3), an output channel j can be cal-

culated via the Popcount of an output channel i and the

Popcount of dij XNOR operations. That means the num-

ber of XNOR operations executed for the output channel

j is the distance dij . Based on this observation, to min-

imize the number of XNOR operations used for all out-

put channels, we need a sub-graph that includes all vertices

with the minimum total edge distances, which is named

an MST [29]. Returning to the example in Figure 2, Fig-

ure 4 illustrates the computation process of this convo-

lution example with the standard and proposed approach.

Specifically, in the standard direction, each output chan-

nel needs 9XNOR operations, while in our direction, only

the 4th output channel is fully computed by 9XNOR op-

erations, and the 1st, 2nd, 3rd output channels reuse the

output channel 4th with 2, 3, 2 XNOR operations, respec-

tively. Accordingly, the compression ratio for this example

is (2+3+2+3×3)/(4×1×3×3) = 0.44. In general, we

can reduce the computational cost for a convolution layer

with the following ratio:

R =

∑Cout

j �=root dij + Cin ×M ×M

Cout × Cin ×M ×M
, (4)

where i is the parent of the vertex j. If j is the root of the

MST, this output uses Cin ×M ×M binary weight values.

Regarding parameters, because the streaming architec-

ture described in Sec. 4.3 is fully implemented with all lay-

ers on the FPGA platform, weights’ locations can be con-

verted to connections from inputs to the correct XNORs

and corresponding weight values at the circuit level. Thus,

our proposed method counts only the parameters we need

for XNOR logic gates, as shown in Figure 4.

Number of bit-wise operations. Compared with the

previous approaches [31, 9], in a binary convolution layer,

the proposed method can better reduce the number of

XNORs and parameters. Firstly, as explained in the pre-

vious section, adding connections among centers leads to

less computation for the K-mean approach [31] as in Eq.

(5).∑
j

dij+Cin×M×M <
∑
j �∈C

dij+R×Cin×M×M, (5)

where C includes all centers, R is the number of centers.

Furthermore, adding connections among centers also cre-

ates a spanning tree, whose computational cost is always

equal to or higher than using an MST. Secondly, in [9], the

authors proposed using the shortest Hamiltonian path to ar-

range the computation order. Because this path visits all

vertices exactly once, the shortest Hamiltonian path is also

a spanning tree. Therefore, the number of XNOR bit-wise

operations using an MST method is equal to or lower than

the shortest Hamiltonian path.

Exploration time. The MST is faster and less complex

for finding the computation order, compared to previous

work [9, 31]. Indeed, the MST is found by Prim’s algorithm

with the complexity of O(V 2) [29], where V is the num-

ber of vertices. In contrast, the K-mean algorithm requires

O(V 2G) [13] time complexity, where G denotes the num-

ber of groups. Since the optimal number of groups varies

6094

X1X1

XX XXX XXX X

X0X0

a)

X

X0X0

c)

X

X X

X0X0

X

X

...

X

X

X

..

Depth =1

Depth = V Depth = N

V: The number of vertices (channels).

1 ≤ N ≤ Vb)

X

a b c d e m n p q

1

2

k

a b

c d e

m n

Figure 5. a) The computation tree’s depth using the K-mean clus-

ter. b) The computation tree’s depth using the shortest Hamiltonian

path. c) The computation tree’s depth using the MST.

L Hamiltonian K-mean MST
Bit-Ops Time Bit-Ops Time Bit-Ops Time

1 1.08 M 31.3 s 1.33 M 0.090 s 1.07 M 0.021 s

2 1.09 M 32.9 s 1.30 M 0.075 s 1.06 M 0.021 s

3 1.07 M 32.6 s 1.30 M 0.085 s 1.05 M 0.023 s

4 1.10 M 32.7 s 1.33 M 0.076 s 1.08 M 0.021 s

5 1.11 M 32.5 s 1.32 M 0.115 s 1.09 M 0.020 s

6 1.09 M 32.5 s 1.33 M 0.086 s 1.08 M 0.021 s

Table 1. Bit-Ops and running time w.r.t. different approaches for

reordering calculation on the first 6 convolution layers of ResNet-

20 with 16 output channels.

across convolutions, extra time is needed to determine this

number for each case. Meanwhile, the shortest Hamilto-

nian path has a much higher time complexity of O(V 22V)
[1], making it challenging to apply in practical settings. To

estimate these approaches for practical operation, we per-

form experiments for the first 6 binary convolution layers

of ResNet-20 [14] with the weight data trained by [33],

while experiments on deeper layers with a larger number

of output channels are infeasible even uncompleted for the

K-mean and the shortest Hamiltonian path approach due to

their longer running times. According to Table 1, the MST

approach gives the lowest bit-Ops and exploration time.

Computation latency. This is one of the factors affect-

ing the resource overhead. This paper focuses on improving

the architecture in [31], a streaming acceleration for BNNs.

In doing so, the deeper the computation tree, the longer la-

tency between the time output of the first and the last chan-

nel comes out. Consequently, the number of added regis-

ters (Flip-flops) for synchronization tends to be equal or

more for the deeper tree because all output channels must

be available at the same clock for the next convolution op-

eration. The exact number of added registers depends on

the number of adders executed in a clock period, which is

affected by the required frequency, design complexity, and

hardware platform. Thus, to evaluate the comprehensive

effects of the depth with practical implementations, the ex-

periments related to this comparison are provided in Sec. 5.

Figure 5 visually describes the depth of the MST, K-mean

cluster, and the shortest Hamiltonian path approach. Ac-

cordingly, the depths of the K-mean method and the shortest

Hamiltonian path are always 1 and V , respectively. Mean-

while, the MST’s depth can range from 1 to V , depending

on the graph structure. Therefore, the proposed method is

always better than the shortest Hamiltonian path in all as-

pects (number of operations, latency, running time). Mean-

while, the K-mean method gives a better latency but much

worse for the rest. After exploring an MST for the post-

training stage to limit the impact of the tree depth on la-

tency and resources, we continue finding a new root that

makes the depth of the new tree minimum.

4.2. Learning Optimization

According to the observation mentioned earlier, to en-

hance the benefits of the MST approach, we propose a sim-

ple learning method that can further reduce the MST depth

and total MST distance over a BNN model. Specifically, to

make the training converged, instead of directly optimizing

the MST, we cluster weight sets (wli
b) to different groups

and try to reduce the distance among weight sets in each

group by optimizing the distances from all weight sets to

fixed centers. In doing so, given the lth binary convolution

layer of a BNN model, we first randomly sample a binary

center subset Cl ⊂ {±1}Cin×M×M and |Cl| = Nl. Then,

we explore the nearest center in Cl for every wli
b and save it

into a dictionary C using Eq. (6).

C(wli
b) = argmin

x

(
Cin×M×M∑

i=1

‖x− wli
b ‖

)
;x ∈ Cl. (6)

On the other hand, the total distance from every weight

sets to its center is added to the loss function and compels

the training to minimize both the cross-entropy loss and the

distance among weight sets in a group (distance loss). To

strike a balance between optimizing the original and dis-

tance loss, we adjust a hyper-parameter λ to achieve an op-

timal ratio for different BNN models. Besides, a γ parame-

ter serves as a hyper-parameter to control the priority of the

original and additional loss during the training. This param-

eter varies following a specific scheduler during the training

process. Particularly, the algorithm prioritizes reducing the

MST distance and depth during the initial training phase

and gradually shifting its focus toward accuracy at the end

of the process. The new loss function is shown in Eq. (7),

where L0(input,w) is the original loss function. Forward

processes are summarized in Algorithm 1.

L(input,w) = L0(input,w)+λγ
∑
i

‖C(wi
b)−wi

b‖2, (7)

It is noticeable that we use pre-trained BNN models for

the learning process to avoid diverging during distance op-

6095

Algorithm 1 Forward propagation for the training process.

Require: Input data, pre-train full-precision weight (w), threshold (θ),

learning rate (η), MST scaling factor (λ).

1: Load pre-train weight (w)

2: for epoch = 1 → E do
3: Lmst = 0

4: for l = 1 to L do
5: wl

b = Sign(wl) [33]

6: al−1
b = Sign(al−1)

7: for i = 1 to Cout do
8: Update centers for wl

b:

9: C(wli
b) = argmin

x
(
∑Cin×M×M

i=1 ‖x− wli
b ‖) ;x ∈ Cl

10: LMST = LMST +
∑‖C(wli

b)− wli
b ‖2

11: end for
12: al = (wl

b � al−1
b)� αl

13: end for
14: Compute total loss: L = L0 + λ ∗ γ ∗ LMST

15: end for

timization time. In this paper, results from ReCu [33] are

used and considered the baseline for comparison.

4.3. Streaming Acceleration

Inspired by the streaming architecture in [31], this paper

proposes an entire BNN high-speed architecture for BNN

models applying our compression method. Specifically,

the hardware architecture of a binary convolution layer is

shown in Figure 6, in which the process is divided into two

steps: 1) loading the input feature map to a line buffer and

2) executing XNOR+Popcount operation.

Loading input. Given a binary convolution layer with

M = 3, padding size = 1, firstly, Cin input feature maps

are gradually loaded into Cin line buffers with the size

2 × Win + 3. When Win + 2 registers in each line buffer

are filled, Cin × 3 × 3 input pixels are selected from the

line buffers for the convolution (XNOR+Popcount) op-

eration. In standard calculation approach, the number of

XNOR operations used for a binary convolution is Cout ×
Cin×M×M . These operations can be separated into Cout

sub-operations corresponding to Cout output channels; each

sub-operation includes Cin×M×M XNOR bit-operations

and requires Cin ×M ×M corresponding input pixels and

weight values. In this proposed architecture, the difference

is that the number of inputs for a particular sub-operation is

lower than Cin×M×M and equal to the distance between

the corresponding vertex and parent vertex as in the con-

structed graph, except the sub-operation for the root vertex

requiring full calculation with Cin ×M ×M XNORs.

Perform convolution. This step executes the convolu-

tion operation with the order of calculation following the

MST. As shown in Figure 6, the output of a specific PE

(red arrow) is reused for the next PE to reduce computa-

tional cost. The PE for the output channel ith needs dij
weight values and executes dij XNOR operations with the

corresponding Popcount operation, where j is the parent

PE
PE
PE

PE
PE
PE

PE
PE
PE

PE

...

++

…
...

++

++

... << 1
+

-

...

Pop-count

K

XNOR

Flip-flop

PE

=

K

dij

++

Pi

PE

Line Buffer

Processing Element: input activations

Processing Element: input activations

Data before PE

Data after PE

Activation input data for PE

w = 0: NOT gate

w = 1: straight connection
w
in in

Line Buffer

-- ifmap

-- ofmap

Figure 6. High-speed hardware accelerator for a binary convolu-

tion layer, where the XNORs are simplified with NOT or simple

straight connection, while computation on each PE corresponding

to each output channel is executed gradually with the MST.

vertex of the vertex ith. Besides, to eliminate memory for

convolution weight storage, XNOR operations are simpli-

fied to NOT gate or straight connection. In terms of timing

violations, we pipeline the Popcount operation by adding

register lines among the adder tree to reduce computation

complexity in a clock cycle. The exact number of register

lines depends on the MST depth, frequency and hardware

platform. Thus, depending on practical implementations,

we adjust this number to meet the timing requirements.

5. Experiments

In this section, we conduct experiments including soft-

ware and hardware implementation to show the effective-

ness of the proposed method for BNN compression. Train-

ing experiments are executed with the popular datasets

CIFAR-10 and ImageNet via Pytorch, while hardware im-

plementation is performed on the Xilinx FPGA platforms.

5.1. Learning and hardware implementation

Training implementation: Because our proposed

method is independent of other BNN accuracy optimiza-

tion methods, in this paper, we select training results from

the ReCU approach in [33] as a case study for further com-

pressing. In doing so, VGG-small, ResNet-18/20 models

are used to evaluate on CIFAR-10 dataset, while ResNet-

18/34 are used for ImageNet. Regarding training in detail,

we keep the configuration as in [33], except for the learning

rate of 0.1. In addition, the λ value is adjusted depend-

ing on the training models, datasets, and focused objec-

tives. Meanwhile, the γ parameter is scheduled following

the learning rate. In this paper, when training with CIFAR-

10, we select 1e-6 for ResNet-18, 5e-6 for ResNet-20, and

4e-6 for VGG-small. Meanwhile, for ImageNet, we select

1e-6 for ResNet-18 and 1e3 for ResNet-34.

6096

0 200 400 600

0.5

1.5

2.5

3.5

·105

a) MST distances of each layer (L).

M
S

T
d

is
ta

n
ce

L1 L2 L3

L4 L5

0 200 400 600
0

20

40

60

80

100

b) Accuracy curves.
A

cc
u

ra
cy

Training

Validation

Figure 7. MST distance and top-1 % accuracy during the train-

ing process, where the Binary VGG-small model and CIFAR-10

dataset is used for the training experiment with 600 epochs.

λ MST-depth
#Params

(Mbit)

#Bit-Ops

(GOps)

Top-1 Acc.

mean ± std (%)

1e-7 97.3 1.391 0.217 92.17± 0.07
5e-7 58.3 0.998 0.184 92.09± 0.06
1e-6 54.0 0.864 0.165 91.99± 0.07
5e-6 44.0 0.532 0.115 91.14± 0.08
1e-5 42.3 0.422 0.098 90.17± 0.14

Table 2. MST depth, number of parameters, bit-Ops, and accuracy

w.r.t. different values of λ on CIFAR-10 VGG-small model.

Hardware implementation: The inference hardware

architecture is implemented on a Xilinx FPGA platform

called xczu3eg-sbva484 part. Before programming to

FPGA, the design is run with the corresponding C/C++

model and simulated via Synopsys VCS. Finally, Vivado

2018.3 is used for the design synthesis and implementation.

5.2. Ablation Studies

In this section, experimental results and discussion re-

lated to hyper-parameter λ, and γ are described.

Effect of hyper-parameter γ: As explained in Sec. 4.1,

an additional loss related to MST distance is added for the

learning. The effect of the loss depends on the γ, while the

γ changes following the epoch. To facilitate the evaluation,

Figure 7 provides MST distance curves for all binary convo-

lution layers and training-validation accuracy curves in the

entire learning process. In the first half-time, the γ is still

significant, and the training focuses on MST distance op-

timization, while the accuracy optimization is temporarily

less affected. Consequently, the MST distance of all binary

convolutions is significantly down, especially for the deeper

layers with more channels, while the training accuracy sud-

denly decreases and the validation accuracy goes down and

strongly fluctuates at this time. In the second half-time, the

training focuses on accuracy optimization with the lower γ
value. Thus, the training accuracy tends to increase, while

the validation accuracy rises, too, with a lower fluctuation.

Although the MST distance also escalates again on all lay-

ers, these values are lower than at the initial time, especially

on deeper layers. This is the reason why we can save com-

putational costs by using this approach.

Effect of hyper-parameter λ: The hyper-parameter λ

1 2 3 4 5

0

2

4

·105

P
ar

am
s

(M
b

it
s)

1 2 3 4 5

10

20

30

Binary Convolution Layer

M
S

T
d

ep
th

1e-5 5e-6 1e-6 5e-7 1e-7

Figure 8. Number of parameters and MST depth on each convolu-

tion layer w.r.t. different λ values.

helps scale down the effect of the total MST distance to the

new loss function. Each model has a different number of

layers and channels that directly affects the total MST dis-

tance. Therefore, depending on the model, we adjust this

hyper-parameter to balance the loss for accuracy and MST

distance. In this section, the VGG-small model and CIFAR-

10 dataset are used to estimate how the λ impacts the num-

ber of parameters, bit-operations, MST-depth, and accuracy

with the range of λ from 1e-7 to 1e-5. Table 2 and Figure

8 provide the number of parameters, bit-operations, MST-

depth, accuracy, and the number parameters for each binary

convolution layer w.r.t different λ values. Accordingly, the

number of parameters, bit-operations, and accuracy tend to

be lower with higher λ values. However, the number of

parameters/bit-ops is considerably reduced at 3.3×, while

the accuracy degradation is acceptable with 2% when in-

creasing the λ from 1e-7 to 1e-5. Besides, the MST depth

also decreases when the λ value increases. Especially, when

increasing λ from 1e-7 to 5e-7, the depth reduce 1.67×.

5.3. Comparison with SOTA methods

To demonstrate the effectiveness of the proposed

method, we perform a series of training experiments with

various NN models on CIFAR-10, and ImageNet, then com-

pare them with state-of-the-art methods. Specifically, for

each NN model, we provide two experimental results corre-

sponding to two cases 1) apply both the learning optimiza-

tion in Sec. 4.2 and the MST reordering to the final training

result (Ours 1); 2) directly apply the MST reordering to pre-

trained BNN models (Ours 2). In this paper, the pre-trained

BNN models we use for fine-tuning and exploring the MST

are provided by Xu et al. [33]. In terms of acceleration, a

neural network model is fully trained on CIFAR-10 and im-

plemented on an FPGA hardware platform to compare with

recent hardware architectures.

Software training comparison: For CIFAR-10, we

6097

N-work Method
#Params

(Mbit)

#Bit-Ops

(GOps)

Top-1 Acc.

(%)

VGG

small

RAD[8] 4.571 0.603 90.0

IR-Net[24] 4.571 0.603 90.4

RBNN[20] 4.571 0.603 91.3

Adabin[28] 4.571 0.603 92.3

ReCU[33] 4.571 0.603 92.4

SNN[32] 3.047 0.194 91.0

Ours 1|2 0.556|1.611 0.122|0.232 91.5|93.3*

ResNet

18

RAD[8] 10.99 0.547 90.5

IR-Net[24] 10.99 0.547 91.5

RBNN[20] 10.99 0.547 92.2

ReCU[33] 10.99 0.547 92.8

Adabin[28] 10.99 0.547 93.1

SNN[33] 7.324 0.289 91.0

Ours 1|2 0.814|4.293 0.104|0.216 91.6|93.2*

ResNet

20

DSQ[11] 0.267 0.040 84.1

IR-Net[24] 0.267 0.040 86.5

RBNN[20] 0.267 0.040 86.5

ReCU[33] 0.267 0.040 87.4

Adabin[28] 0.267 0.040 88.2

SNN[32] 0.178 0.040 85.1

Ours 1|2 0.096|0.116 0.015|0.017 86.5|88.0*

* Accuracy after fine-tuning is at https://github.com/z-hXu/ReCU [33].

Table 3. Comparison with the state-of-the-art methods on CIFAR-

10. The bit-width is 1 for both activation and weight.

conduct experiments on three neural BNN models:

RestNet-18/20 and VGG-small. we compare our results

with RAD [8], IR-Net [24], Adabin [28], ReCU [33], DSQ

[11], and SNN [32]. Specifically, as shown in Table 3, when

comparing Ours 1 with the highest-accuracy methods on

all models, our proposed method reduces 8.2× parameters

and 4.9× bit-Ops with a 0.97% accuracy drop on VGG-

small. Meanwhile, when directly exploring the MST on

the pre-trained models, Ours 2 gets 2.8× parameters and

2.6× bit-Ops reduction without accuracy degradation. On

ResNet-18, Ours 1 gives 13.50× parameters, 5.26× bit-

Ops reduction with a 1.29% accuracy drop, while Ours 2
reduces 2.6× parameters and 2.5× bit-Ops without com-

promising accuracy. Additionally, we have 2.78× parame-

ters, 2.67× bit-Ops reduction, and a 1% accuracy drop with

Ours 1; 2.3× parameters, 2.35× bit-Ops reduction and 0%
accuracy drop on ResNet-20.

Compared Ours 1 with the compression method SNN

[32] on all models, the proposed method obtains a bet-

ter compression ratio with a maximum reduction of 9.0×
parameters, 2.78× bit-Ops on ResNet-18 while yielding

higher accuracy and up to maximum 1.4% on ResNet-

20. Meanwhile, with Our 2, we reduce maximum 1.89×
parameters on VGG-small, 2.35× bit-Ops on ResNet-20,

while achieving higher accuracy up to maximum 2.9% on

ResNet-20.

For ImageNet, experiments are implemented on ResNet-

18/34 and comparison is performed with BNN+ [16], Bi-

Real [23], XNOR++ [4], IR-Net [24], Adabin [28], ReCU

[33], SNN [32]. According to Table 4, Ours 1 reduces 3.2×

N-work Method
#Params

(Mbit)

#Bit-Ops

(GOps)

Top-1 Acc.

(%)

ResNet

18

BNN+[16] 10.99 1.677 53.0

Bi-Real[23] 10.99 1.677 56.4

XNOR++[4] 10.99 1.677 57.1

IR-Net[24] 10.99 1.677 58.1

Adabin[28] 10.99 1.677 63.1

ReCU[33] 10.99 1.677 61.0

SNN[32] 7.32 0.883 56.3

Ours 1|2 3.43|4.84 0.636|0.716 57.0|61.2*

ResNet

34

Bi-Real[23] 21.09 3.526 62.2

IR-Net[24] 21.09 3.526 62.9

Adabin[28] 21.09 3.526 66.4

ReCU[33] 21.09 3.526 65.1

SNN[32] 14.06 1.696 61.4

Ours 1|2 9.44|9.51 1.550|1.558 62.9|65.4*

* Accuracy after fine-tuning is at https://github.com/z-hXu/ReCU [33].

Table 4. Comparison with the state-of-the-art methods on Ima-

geNet. The bit-width is 1 for both activation and weight.

parameters, 2.6× bit-Ops on ResNet-18; and 2.23× param-

eters, 2.27× bit-Ops on ResNet-34, compared to the base-

line [33], while the accuracy degradation is 4% and 2.2%

on ResNet18 and ResNet-34, respectively. Ours 2 achieves

2.27× parameters, 2.34× bit-Ops reduction on ResNet-18;

and 2.2× parameters, 2.26× bit-Ops reduction without ac-

curacy drop. Compared to SNN with the highest com-

pression ratio recently, our proposed method with Ours 1
saves 2.13× parameters and 1.3× bit-Ops on ResNet-18,

1.49× parameters and 1.09× bit-Ops on ResNet-34, while

the trained models give higher accuracy of 0.7% and 1.5%

on ResNet-18, ResNet-34, respectively. Meanwhile, Ours
2 without accuracy drop saves up to 1.51/1.47× parameters

and 1.23/1.08× bit-Ops on ResNet-18/34, respectively.

Hardware implementation comparison: Table 5 pro-

vides the hardware performance comparison with previous

works using CIFAR-10 for the training. we compare the

proposed architecture with FINN [30], FINN-R [3] from

Xilinx, ReBNet [10] and the design in [31]. Accordingly,

the proposed accelerator takes the leading place in both

speed and area efficiency (FPS/LUTs). More specifically, it

performs 1.6× faster than the fastest previous work (FINN),

while obtaining 3.7× area efficiency with a little higher ac-

curacy. In addition, compared to [31], our method gains

over 1.81× area efficiency. Besides, to compare our method

with the K-mean approach, we implement another design

from the same training result with the K-mean method. Ac-

cording to Table 5, our method performs better 1.25× in

terms of resources and area efficiency.

6. Conclusion
In conclusion, this paper introduces a comprehensive

method for compressing BNNs, which covers the entire pro-

cess from learning to hardware implementation. By utiliz-

ing the minimum spanning tree (MST), we effectively re-

6098

Design
Freq

(MHz)
LUTs

Acc.

(%)

FPS

(K)

FPS/

LUTs

FINN[30] 200 46,253 80.1 22 0.47

FINN[30] 125 365,963 80.1 128 0.35

FINN-R[3] 237 332,637 80.1 105 0.31

FINN-R[3] 300 41,733 80.1 20 0.48

FINN[3] 300 25,431 80.1 1.9 0.07

ReBNet[10] 200 53,200 80.6 6 0.11

[31] 210 290,012 80.2 205 0.70

Ours (K-mean) 210 201,434 80.5 205 1.01

Ours (MST) 210 161,294 80.5 205 1.27

Table 5. Hardware performance comparison with the state-of-the-

art architectures on CIFAR-10.

duce the computation cost of binary convolution calcula-

tion. To optimize the MST during the training stage, a learn-

ing algorithm is proposed. Moreover, we present a hardware

implementation for the inference task. Our experimental re-

sults demonstrate that the proposed method significantly re-

duces computation costs while maintaining high accuracy,

making it promising for practical applications.

7. Acknowledgements

This work was supported by the NRF grant funded by

the Korea government(MSIT) (No. RS-2023-00207816),

and part by IITP Grant funded by MSIT (Artificial Intel-

ligence Innovation Hub) under Grant 2021-0-02068, (No.

RS-2022-00155911, AI Convergence Innovation Human

Resources Development (Kyung Hee University)), IITP

No.2019-0-01287, Evolvable Deep Learning Model Gener-

ation Platform for Edge Computing and ITRC support pro-

gram (IITP-2023-RS-2023-00258649).

References
[1] Richard Bellman. Dynamic programming treatment of the

travelling salesman problem. Journal of the ACM (JACM),
9(1):61–63, 1962. 2, 5

[2] Yoshua Bengio, Nicholas Léonard, and Aaron Courville.

Estimating or propagating gradients through stochastic

neurons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 3

[3] Michaela Blott, Thomas B Preußer, Nicholas J Fraser, Giulio

Gambardella, Kenneth O’brien, Yaman Umuroglu, Miriam

Leeser, and Kees Vissers. Finn-r: An end-to-end deep-

learning framework for fast exploration of quantized neural

networks. ACM Transactions on Reconfigurable Technology
and Systems (TRETS), 11(3):1–23, 2018. 2, 8, 9

[4] Adrian Bulat and Georgios Tzimiropoulos. Xnor-

net++: Improved binary neural networks. arXiv preprint
arXiv:1909.13863, 2019. 1, 3, 8

[5] Zhaowei Cai, Xiaodong He, Jian Sun, and Nuno Vasconce-

los. Deep learning with low precision by half-wave gaus-

sian quantization. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5918–5926,

2017. 2

[6] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne

Sze. Eyeriss: An energy-efficient reconfigurable accelera-

tor for deep convolutional neural networks. IEEE journal of
solid-state circuits, 52(1):127–138, 2016. 1

[7] Matthieu Courbariaux, Itay Hubara, Daniel Soudry, Ran

El-Yaniv, and Yoshua Bengio. Binarized neural networks:

Training deep neural networks with weights and activations

constrained to+ 1 or-1. arXiv preprint arXiv:1602.02830,

2016. 1, 2

[8] Ruizhou Ding, Ting-Wu Chin, Zeye Liu, and Diana Mar-

culescu. Regularizing activation distribution for training bi-

narized deep networks. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition,

pages 11408–11417, 2019. 8

[9] Cheng Fu, Shilin Zhu, Hao Su, Ching-En Lee, and Jishen

Zhao. Towards fast and energy-efficient binarized neural net-

work inference on fpga. arXiv preprint arXiv:1810.02068,

2018. 1, 2, 3, 4

[10] Mohammad Ghasemzadeh, Mohammad Samragh, and Fari-

naz Koushanfar. Rebnet: Residual binarized neural network.

In 2018 IEEE 26th annual international symposium on field-
programmable custom computing machines (FCCM), pages

57–64. IEEE, 2018. 2, 8, 9

[11] Ruihao Gong, Xianglong Liu, Shenghu Jiang, Tianxiang Li,

Peng Hu, Jiazhen Lin, Fengwei Yu, and Junjie Yan. Differ-

entiable soft quantization: Bridging full-precision and low-

bit neural networks. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 4852–4861,

2019. 8

[12] Song Han, Huizi Mao, and William J Dally. Deep com-

pression: Compressing deep neural networks with pruning,

trained quantization and huffman coding. arXiv preprint
arXiv:1510.00149, 2015. 1

[13] John A Hartigan and Manchek A Wong. Algorithm as 136:

A k-means clustering algorithm. Journal of the royal sta-
tistical society. series c (applied statistics), 28(1):100–108,

1979. 2, 4

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 1, 2, 5

[15] Geoffrey Hinton, Oriol Vinyals, Jeff Dean, et al. Distill-

ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2(7), 2015. 1

[16] Itay Hubara, Matthieu Courbariaux, Daniel Soudry, Ran El-

Yaniv, and Yoshua Bengio. Binarized neural networks. Ad-
vances in neural information processing systems, 29, 2016.

8

[17] Hyeonuk Kim, Jaehyeong Sim, Yeongjae Choi, and Lee-

Sup Kim. A kernel decomposition architecture for binary-

weight convolutional neural networks. In Proceedings of the
54th Annual Design Automation Conference 2017, pages 1–

6, 2017. 1, 3

[18] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple

layers of features from tiny images. 2009. 2

[19] Dongsoo Lee, Se Jung Kwon, Byeongwook Kim, Yongk-

weon Jeon, Baeseong Park, and Jeongin Yun. Flexor: Train-

6099

able fractional quantization. Advances in neural information
processing systems, 33:1311–1321, 2020. 3

[20] Mingbao Lin, Rongrong Ji, Zihan Xu, Baochang Zhang, Yan

Wang, Yongjian Wu, Feiyue Huang, and Chia-Wen Lin. Ro-

tated binary neural network. Advances in neural information
processing systems, 33:7474–7485, 2020. 1, 3, 8

[21] Xiaofan Lin, Cong Zhao, and Wei Pan. Towards accurate

binary convolutional neural network. Advances in neural in-
formation processing systems, 30, 2017. 3

[22] Zechun Liu, Zhiqiang Shen, Marios Savvides, and Kwang-

Ting Cheng. Reactnet: Towards precise binary neural net-

work with generalized activation functions. In European
conference on computer vision, pages 143–159. Springer,

2020. 1, 3

[23] Zechun Liu, Baoyuan Wu, Wenhan Luo, Xin Yang, Wei Liu,

and Kwang-Ting Cheng. Bi-real net: Enhancing the per-

formance of 1-bit cnns with improved representational ca-

pability and advanced training algorithm. In Proceedings of
the European conference on computer vision (ECCV), pages

722–737, 2018. 1, 3, 8

[24] Haotong Qin, Ruihao Gong, Xianglong Liu, Mingzhu Shen,

Ziran Wei, Fengwei Yu, and Jingkuan Song. Forward and

backward information retention for accurate binary neural

networks. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2250–2259,

2020. 3, 8

[25] Mohammad Rastegari, Vicente Ordonez, Joseph Redmon,

and Ali Farhadi. Xnor-net: Imagenet classification using bi-

nary convolutional neural networks. In European conference
on computer vision, pages 525–542. Springer, 2016. 1, 3

[26] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, et al. Imagenet large

scale visual recognition challenge. International journal of
computer vision, 115(3):211–252, 2015. 2

[27] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4510–4520, 2018. 1

[28] Zhijun Tu, Xinghao Chen, Pengju Ren, and Yunhe Wang.

Adabin: Improving binary neural networks with adaptive

binary sets. In European Conference on Computer Vision,

pages 379–395. Springer, 2022. 3, 8

[29] William Thomas Tutte and William Thomas Tutte. Graph
theory, volume 21. Cambridge university press, 2001. 4

[30] Yaman Umuroglu, Nicholas J Fraser, Giulio Gambardella,

Michaela Blott, Philip Leong, Magnus Jahre, and Kees Vis-

sers. Finn: A framework for fast, scalable binarized neural

network inference. In Proceedings of the 2017 ACM/SIGDA
international symposium on field-programmable gate arrays,

pages 65–74, 2017. 1, 2, 8, 9

[31] Quang Hieu Vo, Ngoc Linh Le, Faaiz Asim, Lok-Won Kim,

and Choong Seon Hong. A deep learning accelerator based

on a streaming architecture for binary neural networks. IEEE
Access, 10:21141–21159, 2022. 1, 2, 3, 4, 5, 6, 8, 9

[32] Yikai Wang, Yi Yang, Fuchun Sun, and Anbang Yao. Sub-bit

neural networks: Learning to compress and accelerate binary

neural networks. In International Conference on Computer
Vision (ICCV), 2021. 1, 2, 3, 8

[33] Zihan Xu, Mingbao Lin, Jianzhuang Liu, Jie Chen, Ling

Shao, Yue Gao, Yonghong Tian, and Rongrong Ji. Recu:

Reviving the dead weights in binary neural networks. In

Proceedings of the IEEE/CVF international conference on
computer vision, pages 5198–5208, 2021. 1, 2, 3, 5, 6, 7, 8

6100

