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Figure 1: We propose DOODL - a process that directly optimizes diffusion latents w.r.t. a model-based loss on the final
generation. Our method improves on vanilla classifier guidance in all tested settings and we demonstrate capabilities novel
to this class of methods such as vocabulary expansion, entity personalization, and perceived aesthetic value improvement.

Abstract

Classifier guidance—using the gradients of an image
classifier to steer the generations of a diffusion model—
has the potential to dramatically expand the creative con-
trol over image generation and editing. However, currently
classifier guidance requires either training new noise-
aware models to obtain accurate gradients or using a one-
step denoising approximation of the final generation, which
leads to misaligned gradients and sub-optimal control.We
highlight this approximation’s shortcomings and propose
a novel guidance method: Direct Optimization of Diffu-
sion Latents (DOODL), which enables plug-and-play guid-
ance by optimizing diffusion latents w.r.t. the gradients of
a pre-trained classifier on the true generated pixels, using
an invertible diffusion process to achieve memory-efficient

backpropagation. Showcasing the potential of more pre-
cise guidance, DOODL outperforms one-step classifier
guidance on computational and human evaluation metrics
across different forms of guidance: using CLIP guidance to
improve generations of complex prompts from DrawBench,
using fine-grained visual classifiers to expand the vocabu-
lary of Stable Diffusion, enabling image-conditioned gen-
eration with a CLIP visual encoder, and improving image
aesthetics using an aesthetic scoring network.

1. Introduction

Text-conditioned denoising diffusion models (DDMs),
such as Latent/Stable Diffusion, Imagen and numerous oth-
ers, have been widely adopted for synthesizing realistic im-
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ages given an input text prompt [35, 36, 38, 34, 2]. The con-
ditioning setup requires DDMs to be trained using paired
data of images and the conditioning modality—image-
caption pairs in the case of text conditioning. Once trained,
the DDM can be steered to generate images using the condi-
tioning modality. However, the conditioning paradigm con-
stricts the image generation capabilities of a trained DDM
model; a text-conditioned diffusion model cannot readily
utilize other modalities such as depth maps or image clas-
sifiers or audio as conditioning signals. While DDMs con-
ditioned on multiple modalities have been trained [30, 36]
a “plug-and-play” approach that allows for a pretrained
DDM to be guided by any external function that determines
whether some generation criterion is satisfied is desirable.

In principle, classifier guidance [43, 8] enables this ca-
pability in DDMs. Classifier guidance, named so since it
was first demonstrated using pretrained image classification
models, combines the score estimate of the diffusion model
with the gradient of the image classifier to steer the genera-
tion process to produce images that correspond to a partic-
ular class. Any differentiable loss function can be used for
classifier guidance. In addition to class-conditional gener-
ation, it has been shown to improve compositionality using
cross-modal guidance [24]. There are two existing ways
of incorporating classifier guidance. In the first approach,
we train a noise-aware classifier that can be used to com-
pute an accurate gradient w.r.t. an intermediate generation
step [43, 8]. This approach requires re-training the classifier
model, which can be computationally expensive/infeasible
due to lack of access to training data. In the second ap-
proach, at a time step t, we denoise the image with a single
application of the DDM and compute the gradient using this
approximately denoised image [24]. This one-step approxi-
mation is necessitated by the prohibitive memory require-
ments of computing a gradient w.r.t. the latents through
the entire diffusion process containing many steps. Since
this approach only obtains gradients using an one-step de-
noising approximation of the final generation, the approxi-
mately denoised images are often misaligned with the final
generations which classifier guidance is aiming to modify
(Figure 2), leading to sub-optimal guidance signal.

To enable flexible and exact model guidance, without
noise-aware classifiers or approximations, we propose Di-
rect Optimization Of Diffusion Latents (DOODL). DOODL
optimizes the initial diffusion noise vectors w.r.t. a model-
based loss on images generated from the full-chain diffusion
process. We leverage EDICT, a recently developed drop-in
discretely invertible diffusion algorithm [46], which admits
backpropagation with constant memory cost w.r.t the num-
ber of diffusion steps, to compute classifier gradients on the
pixels of the final generation w.r.t. the original noise vec-
tors. This enables efficient iterative optimization of diffu-
sion latents w.r.t. any differentiable loss on the image pixels

Full Generation 1 Step Approx. Full Generation 1 Step Approx.

Figure 2: Stable Diffusion with prompt “A kangaroo in a
field” using 50 DDIM steps. vs. a single step. The one-
step approximation is inaccurate for high noise levels, even
though it is relied upon by classifier guidance. DOODL cal-
culates loss gradients with respect to fully formed realistic
images as opposed to approximations.

and accurate calculation of gradients for classifier guidance.
We demonstrate the efficacy of DOODL through a di-

verse set of guidance signals (Figure 1) using quantitative
and human evaluation studies. First, we show that CLIP
classifier guidance using DOODL improves generation of
images guided by text prompts from the DrawBench [38]
dataset, which test compositionality and the ability to guide
using unusual captions. Second, we show the ability to ex-
pand the vocabulary of a pretrained Stable Diffusion model
using fine-grained visual classifiers; a capability that one-
step classifier guidance does not have. Third, we demon-
strate that DOODL can be used for personalized entity gen-
eration (e.g. “A dog in sunglasses”), with zero retraining
of any new network—a first to our knowledge. Finally, we
utilize DOODL to perform a novel task; increasing the per-
ceived aesthetic quality of generated/real images. We hope
that DOODL can enable and inspire diverse plug-and-play
capabilities for pretrained diffusion models.

2. Related Work
2.1. Text-to-Image Diffusion Models

Text-to-image diffusion models [17, 43, 41] such as
GLIDE [28], DALLE-2 [34], Imagen [38, 16], Latent Dif-
fusion [35, 36], and eDiffi [2] have recently emerged at
the forefront of image generation, based on methods in
non-equilibrium thermodynamics [39]. Classifier guid-
ance [43, 8], and its adoptions [28, 24], use the gradients
of pretrained classifier models to guide such generations.
Instead of sequential denoising, [43] traverses at a fixed
noise level before each denoising step. Concurrent work [3]
modifies classifier guidance to refine the gradient prediction
at each noise level before continuing. DiffuseIT [23] is an-
other work that uses pretrained recognition models in con-
junction with DDMs. Specifically, it performs either text-
or image-guided image translation, leveraging a DINO ViT
[5] model to enforce structural similarity of a DDM gener-
ation to a source image via a contrastive loss and a CLIP
model to steer the image semantics towards the desired tar-
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Requirements

Method Type Training Data Pretrained
“Classifier”

Learning-Based
✓ ✓ ✗[12, 37, 48]

Guidance-Based
✗ ✗ ✓(DOODL, Clf. Guidance)

Table 1: Learning-Based methods require data and training
while Guidance-Based methods require pretrained recogni-
tion networks (trained on non-noisy data in our setting).

get. DiffuseIT calculates updates at incremental noise lev-
els as opposed to DOODL which optimizes xt based off of
x0. Table 1 shows the requirements for learned methods
such as ControlNet [48] vs. these guidance-based meth-
ods. The former require data and training, while the latter
substitute this need for pretrained recognition models. Di-
rectly optimizing latent variables of other generative mod-
els such as GANs or VAEs [11, 32, 29] w.r.t. a pixel-based
loss has been shown to generate in-distribution images that
fit targeted criteria. To the best of our knowledge, these
techniques have not been applied to diffusion models be-
fore DOODL.

At the intersection of diffusion models and invertible
neural networks is a recently proposed approach called
EDICT [46] which algorithmically reformulates the denois-
ing diffusion process to be invertible. This prior work
focuses solely on the applications to image editing and
does not consider properties of Invertible Neural Networks
(INNs) or similar processes. Methods such as DDIM are
theoretically invertible in the limit of discretization, but this
limit cannot be achieved in practice [46].

2.2. Invertible Neural Networks (INNs)

While neural networks tend to be non-dimensionality-
preserving functions, there has been prior work on con-
structing reversible architectures. A predominant class of
such INNs are normalizing flow models [9, 10, 22]. A mod-
ified version of the “coupling layers” in normalizing flow ar-
chitectures are incorporated into the EDICT [46] algorithm
employed in this work. [4] proposes an architecture guaran-
teed to be invertible via well-conditioned inverse problems
instead of a closed-form solution. The memory savings of
such architectures has been used in long-sequence recurrent
neural networks [26] and to study inverse problems [1].

3. Background

3.1. Invertible Neural Networks w.r.t Memory

When using gradient descent for optimizing neural net-
works, with network parameters Ξ = {ξp}p=P

p=1 , network
input x, network output y = f(x), and loss function c,

the derivative dc(y)
dξ is calculated and gradient descent per-

formed to minimize EDatac(y) = EDatac(f(x)). Here f is
implicitly conditioned on Ξ. Consider f as the composition
of n functions (layers) fn ◦ fn−1 ◦ ... ◦ f1. To optimize ξ,
a parameter of the ith layer f i the derivative dc(y)

dξ is calcu-
lated. Denote fk ◦ fk−1 ◦ ... ◦ f j = F k

j . Since y = Fn
1 (x)

the derivative w.r.t. ξ can be calculated using the chain rule:

dc(y)

dξ
=

dc(Fn
1 (x))

dξ
(1)

=
dc(Fn

1 (x))

dFn
1 (x)

· dFn
1 (x)

dFn−1
1 (x)

· · · dF i
1(x)

dF i−1
1 (x)

· dF
i−1
1 (x)

dx

(2)

In the general case, calculating dc(y)
dξ requires storing all in-

termediate activations, a key bottleneck to backpropagation.
Network sharding [33] across processors reduces the per-
processor hardware memory requirement but the total re-
mains the same. Gradient checkpointing [13, 49] decreases
memory cost, but increases runtime linearly w.r.t. saved
memory. INNs can recover intermediate states/inputs from
the output, reducing memory costs by avoiding activation
caching. If every f j is invertible in Equation (1), the de-
nominator terms can be reconstructed during the backwards
pass; such methods have been leveraged to train large INNs
much faster than non-invertible equivalents(Section 2.2).

3.2. Denoising Diffusion Models (DDMs)

Image DDMS are trained to predict the noise ϵ added to
an image x [40, 17, 8, 18, 42]. Noise levels are discretized
into a set T = {0, 1, .., T} that index a noising schedule
{αt}Tt=0, αT = 0, α0 = 1. t ∈ T are randomly sampled
during training and paired with data x(i) (images or autoen-
coded representations) to generate noisy samples

x
(i)
t =

√
αtx

(i) +
√
1− αtϵ (3)

where ϵ ∼ N(0, I). DDMs conditioned on the timestep t
and auxiliary information (e,g, image caption) C are trained
to approximate the added noise DDM(x

(i)
t , t, C) ≈ ϵ. At

generation time, an xT ∼ N(0, 1) is drawn and the DDM
is iteratively applied to hallucinate a real image from the
noise. Following the DDIM [40] sampling model, the final
generation x0 is equal to the composition of S denoising
functions: applications of Θ conditioned on C and varying
timesteps t. Denoting Θ(x, t, C) as Θ(t,C)(x)

x0 = [Θ(0,C) ◦Θ(1,C) ◦ ... ◦Θ(T,C)](xT ) (4)

3.2.1 Classifier Guidance

In addition to C, other guidance signals can steer gen-
erations to objectives. The foremost example, “classifier
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guidance” incorporates gradients of a loss (cclf , from a
classifier network Φ) on estimated pixels into the noise
prediction [43, 8]. From a theoretical perspective, this
typically is the gradient of the log-conditional probability
∇ log pΦ(y|xt) There are two primary ways of incorporat-
ing classifier guidance:
1: A noise-aware classifier is trained for direct use on inter-
mediate (noisy) xt, with ∇xt

cclf (xt) incorporated into the
denoising prediction [28]. Training noise-aware models is
effective but often infeasible due to computational expense
and data availability (e.g. medical images). This results in
there being very few publicly available noise-aware models.
2: x0 is approximated with a single application of Θ(t,C) as
in the training objective [24]. Here, the incorporated gradi-
ent is ∇xt

cclf (x
∗
0), where x∗

0 is a 1-step approximate solve
by substituting ϵ for Θ(t,C) in Equation (3). While a stan-
dard (noise-unaware) model can be used, the gradients are
calculated w.r.t. an approximation of x0 (Figure 2) and as
such may be misaligned with the true derivative of dcclf (xt)

x0
.

3.2.2 Exact Inversion of the Diffusion Process

Recently, EDICT [46], an exactly invertible variant of
the discrete (time-stepped) diffusion process was proposed.
EDICT operates on a latent pair (xt, yt) instead of a single
variable. Initially xT = yT ∼ N(0, I), followed by itera-
tively denoising using the reverse diffusion process:

xinter
t = at · xt + bt ·Θ(t,C)(yt)

yintert = at · yt + bt ·Θ(t,C)(x
inter
t )

xt−1 = p · xinter
t + (1− p) · yintert

yt−1 = p · yintert + (1− p) · xt−1

(5)

where (at, bt) are time-dependent coefficients, and p ∈
[0, 1] is a mixing parameter to mitigate latent drift. In-
tuitively, this process first updates the x and y sequences
based on the current state of the counterpart, and then invert-
ibly “averages” them together. The above equations admit
linear solves to invert them, defining the inverse process:

yintert+1 = (yt − (1− p) · xt)/p

xinter
t+1 = (xt − (1− p) · yintert+1 )/p

yt+1 = (yintert+1 − bt+1 ·Θ(t+1,C)(x
inter
t+1 ))/at+1

xt+1 = (xinter
t+1 − bt+1 ·Θ(t+1,C)(yt+1))/at+1

(6)

We employ this construction in DOODL, and use Equa-
tion (6) to encode images x0 to latents xT in Section 5.3.

4. Direct Optimization of Diffusion Latents
We aim to develop a method that overcomes the

shortcomings of classifier guidance discussed in Sec-

tion 3.2.1. Concretely, a method that (1) does not require re-
training/finetuning an existing pretrained classifier model,
(2) computes gradients w.r.t. the true output instead of
a one-step approximation, and (3) incorporates the guid-
ance in a semantically meaningful way (as opposed to an
adversarial-style perturbation). We emphasize the last point
in particular. As shown in the literature on adversarial at-
tacks [44, 47, 14], gradients w.r.t. pixels can satisfy a clas-
sifier loss while not perceptually changing the content of
an image. This is as opposed to techniques such as latent
optimization in GANs, where the regularization provided
by the decoder means that optimization happens in a space
where perturbations typically result in perceptually mean-
ingful changes that satisfy the desired objective. In this
work, we aim to directly optimize diffusion latents, a first
in the literature to our knowledge.

As shown in Equation (4), it is mathematically trivial to
optimize xT for a desired outcome on x0. There is a closed
form expression for dx0

xT
as in Equation (1). However, due

to activation caching, the naı̈ve memory cost is linear in
the number of DDIM sampling steps due to the T appli-
cations of Θ. With a typical value of S = 50, this memory
cost nears a terabyte for state-of-the-art diffusion models
which is impractical for most uses. Gradient checkpointing
trades memory for computational complexity, resulting in
the computational complexity of each backwards pass in-
creasing by a factor of S if memory costs are held constant.

We draw inspiration from INNs (Section 3.1) to optimize
xT w.r.t. criteria on x0 in feasible runtime. Using invertible
Θ(i,C) in Equation (4), intermediate states can be recon-
structed during the backwards pass using only a constant
number of applications of Θ w.r.t. T , circumventing the
prohibitive memory cost without sacrificing runtime.

We turn to the recently developed EDICT [46] as an
invertible reverse diffusion process that admits constant-
memory implementation of optimization of xt. Given con-
ditioning C, differentiable model-based cost function c and
a latent draw x

(0)
T , the EDICT generative process is per-

formed ( 50 steps, p = 0.93, StableDiffusion v1.4) yielding
initial output f(x(0)

T ) = x
(0)
0 , which is then used to calculate

a loss c(x
(0)
0 ) and corresponding gradient ∇xt

c(f(x
(0)
T )).

This gradient can then be used to perform a step of gradient
descent optimization on x

(0)
T .

We modify vanilla gradient descent in several key ways
to achieve realistic images that satisfy the guidance crite-
ria. After each optimization step, the EDICT “fully noised”
latent pair x

(j)
T and y

(j)
T (from Equations (5) and (6)) are

averaged together and renormalized to the original norm of
the initial draw x

(0)
T . The averaging prevents latent drift

which degrades quality, as noted in [46]. Normalizing to
the original norm keeps the latent on the “gaussian shell”
and in-distribution for our diffusion model.
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Figure 3: Method diagrams. A Standard classifier guidance: at each timestep, t, a one-step denoising approximation of x0

is computed and the loss is calculated w.r.t the pixels of this generation. The gradient of this loss is incorporated into the
subsequent diffusion step. B EDICT [46], an invertible variant of the diffusion process which admits backpropagation through
the entire chain with no additional memory cost. C DOODL, our proposed method. We leverage EDICT and demonstrate
that the gradients of model losses computed w.r.t. the final generation can be used to optimize the fully noised xT directly.
▼ indicates a gradient calculation from a differentiable model-based loss with networks employed in this work displayed.

Method Vanilla T2I Clf. Guidance DOODL
U-Net Calls T T 2mT
Scorer Calls 0 T m
Runtime (s) 6 33 45 ·m

Table 2: Functional calls for guiding a diffusion process
of T steps with m optimization steps. A factor of 2 for
classifier-free guidance is omitted due to parallelization.
Metrics for A100 GPU with T = 50 shown. Note back-
wards passes take relatively much longer than the forward
counterparts. Typically m ∈ [10, 50].

We also perform multi-crop data augmentation on the
generated (x0, y0), sampling 16 crops per image (details in
Supplementary). Momentum with η = 0.9 is employed.
We do not find Nesterov momentum to be useful. Finally,
to increase stability and realism of outputted images, we
perform element-wise clipping of g at magnitude 10−3 and
perturb xT by N (0, 10−4 · I) at each update. Our algorithm
is formally laid out in Algorithm 1. Figure 3 provides an
overview of our method alongside classifier guidance and
Table 2 compares computational complexity as well as wall-
clock time on an A100 GPU.

We note that DOODL can be theoretically grounded by
considering it as Langevin dynamics. In the general form of
Langevin dynamics, the movement of a particle in a space
with energy potential E (particle moves high to low poten-

tial) is described by the update rule:

xt+1 = xt −∇E∆t+ ϵ∆t (7)

where ϵ is a normal noise Brownian motion term. The up-
date rule of DOODL,

gi = 0.9 · gi−1 + Clip(−λ · ∇xT
L) (8)

x
(i+1)
T = xT + gi +N (0, 10−4 · I) (9)

is sum of the previous position, velocity (with momentum,
induced by energy potential L), and drift term.

5. Applications and Results
Previous work has used dataset- or webly-supervised

classifiers such as CLIP [32, 28]. We consider these as well
as previously unexplored settings. The optimization learn-
ing rate, λ, is a key hyperparameter and we note its values
throughout. The focus of our work is on how the gradients
from non-noise-aware classifiers can be better incorporated
into the diffusion process. As such, we do not consider
noise-aware classifier methods [28]. For larger images and
other example results, please refer to the Supplementary.

5.1. Reinforcing Text Guidance

Classifier guidance using a CLIP text-image similarity
loss has been used to reinforce the text conditioning C pro-
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Algorithm 1 DOODL

Input: λ (Learning rate), C (Model conditioning), c
(Cost function), T (# Diffusion steps), m (# Optimiza-
tion steps), Θ (Diffusion Model)
Initialize x

(0)
T = N (0, I).

g−1 = 0
for i = 0 to m do
xT , yT = x

(i)
T

for t = T − 1 to 0 do
xinter
t = at · xt + bt ·Θ(t,C)(yt)

yintert = at · yt + bt ·Θ(t,C)(x
inter
t )

xt−1 = p · xinter
t + (1− p) · yintert

yt−1 = p · yintert + (1− p) · xt−1

end for
L = 0.5 · (c(MultiCrop(x0)) + c(MultiCrop(y0)))
gi = −λ · ∇xT

L Linear in T b/c of EDICT
gi = Clip(gi,−10−3, 10−3)
gi = 0.9 · gi−1 + gi
x
(i+1)
T = xT + gi +N (0, 10−4 · I)

end for
yield x

(m)
T

vided as input to a text-to-image diffusion model [28]. Pre-
vious work [24] shows that classifier guidance with gradi-
ents calculated on 1-step approximations of x0 enhance the
ability to generate complex prompts. This setting serves as
an initial validation of our proposed method.

We employ a spherical distance loss from the literature:

d(x, y) = 2λ

√
sin−1(

||x− y||
2

) (10)

computing a distance between the embedding of C by the
CLIP text encoder, CLIPText(C), and the embedding of
x
(i)
0 by the image encoder, CLIPImage(x

(i)
0 ). λ ∈ [10, 100]

is effective for the baseline one-step guidance, we use λ =
30. For DOODL, we find λ = 0.1 to be preferable. We
attribute the lower value to the gradient magnitudes increas-
ing when computed through repeated applications of the
network, as well as the incorporation of momentum.

We test on the DrawBench benchmark [38], a collection
containing 11 categories of text prompts designed to probe
different aspects of text-to-image generation. In particular,
we evaluate on the DALLE and Reddit categories of Draw-
Bench, which focus on compositionality and highly implau-
sible scenes, being especially suited for testing fidelity to
conditioning text. Image-text alignment is measured both
automatically (CLIP score) and with human evaluation in
Figure 5. Experiments are performed across 9 seeds for
all method-prompt pairs. We use a LAION-trained CLIP
model [20] for classifier guidance and an OpenAI-trained

A sphere made
of kitchen tile.
A sphere with
the texture of
kitchen tile.

(DALLE)

Photo of an athlete
cat explaining

it's latest scandal
at a press
conference

to journalists.
(Reddit)

A painting by
Grant Wood of
an astronaut

couple, american
gothic style.

(Reddit)
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Figure 4: Generations using DrawBench prompts[38] for
DOODL and baselines from the same seed. Note the
prompting style of the DALLE category uses multiple sen-
tences to reinforce a single concept.

Per-Class % FID Change (Lower Better)
Dataset CUB Dogs Aircraft

DOODL -3.2% -5.3% -0.4%
Baseline +6.1% +0.27% +13.7%

Table 3: Quantitative results for rare vocabulary generation.
Per-class FID is measured between generated samples and
the validation set. Change relative to the original SD gen-
erations is shown. DOODL achieves a more similar set of
images in all instances, while the baseline fails in all.

CLIP model [32] for CLIP score evaluation. While there
is an overlap in the training sets of these models; we find
them sufficiently independent to provide automated valida-
tion. Generated samples are shown in Figure 4.

DOODL relatively improves on baseline classifier guid-
ance’s CLIP score by 3.1% and 2.6% on DALLE and Reddit
respectively. For human study, we define prompt alignment
success rate (PASR) as the percent of generations rated as
humans to be aligned with the prompt in head-to-head com-
parisons (see Figure 5 caption). The PASR of DOODL is
highest, notably increasing on the complex unusual prompts
of Reddit by 11.3% as compared to vanilla Stable Diffusion,
with a 6% increase over one-step classifier guidance.
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Figure 5: DrawBench results. Left: CLIP Scores. Right:
Human evaluation. 5 labelers are given a pairwise compar-
ison of DOODL to another method for the same prompt-
seed inputs and asked which represents the prompt better,
with options for equal success or failure. We display the
fraction of time for each method that it is classified by the
majority of labelers as “Better” or “Both Achieve”. Value
for DOODL averaged across two comparison runs.
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Figure 6: Qualitative generations for fine-grained classes
with rare vocabulary. Example Image is an exemplar of the
class from the CUB [45]/Dogs [21] dataset. Though the op-
timization process of DOODL starts from pixels not match-
ing the target class (Original Generation) due to the rare
vocabulary failure of StableDiffusion, it is able to produce
an image of the targeted species using the gradients of a su-
pervised classifier trained solely on the specialized dataset.

5.2. Vocabulary Expansion

Fine-grained visual classification (FGVC) models aim
to classify datasets with subtle variations between classes,
such as the Caltech-UCSD Birds (CUB) [45], Stanford
Dogs (Dogs) [21], and FGVC-Aircraft (FGVC-A) [27]
datasets. We seek to expand and refine the vocabulary of
a pretrained DDM using DOODL such that it can generate

a specific class learnt by an FGVC classifier. For classifier
guidance, we use binary cross-entropy (BCE) loss from su-
pervised models trained on FGVC datasets. Given a model
m trained on a dataset with classes {classi}nc

i=1 we generate
instances of classj via loss c(x(i)

0 ) = λBCE(m(x
(i)
0 ), j),

(λDOODL, λBaseline) = (0.05, 5).
We evaluate DOODL’s ability to expand Stable Diffu-

sion’s vocabulary using FGVC classifiers trained, respec-
tively, on CUB, Dogs, and FGVC-A using WS-DAN [19].
The majority of concepts present in these datasets are rare or
non-existent in the training data and as such, the pretrained
DDM cannot generate accurate images for them (Figure 6-
second row). We measure the FID [15] between a set of
generated images (4 seeds) and the validation set of the
FGVC dataset being studied. Despite overlap between Im-
ageNet and the targeted datasets, FID has historically still
been considered a useful generative evaluation metric [6].
In Table 3 we see that DOODL reduces FID compared to
original Stable Diffusion generation on all datasets (aver-
age decrease of ∼ 3%), while classifier guidance does not
improve the original generation FID on any. This indi-
cates that DOODL is able to better incorporate the gradient
signal from the classifiers as compared to the one-step ap-
proximation. Indeed, example images (Figure 6) show that
DOODL can produce images with requisite fine-grained
features that identify the object category in question (e.g.,
a bird species or a dog breed), such as colors, textures, and
shapes. DOODL obtains the least relative improvement on
Aircrafts, perhaps due to the class differences being largely
subtle structural changes with very few textural cues that
can act as guiding signals for the optimization process.

5.3. Aesthetic Improvement

Image generation research has emphasized the ability to
generate aesthetically pleasing images. Notably, the pub-
licly available Stable Diffusion model is trained on the
LAION-5B dataset pre-filtered using an ”Aesthetics Predic-
tor” model. The ”Aesthetics Predictor” model a is a linear
head trained on top of CLIP visual embeddings to predict
a scalar value in the range of [1,10], indicating perceived
aesthetic quality (trained on [31]). This can easily be in-
corporated into DOODL’s framework with the cost function
caes(x

(i)
0 ) = λ · |a(x(i)

0 )−A|, λDOODL = 1 where A = 10
for aesthetic maximization and 1 for minimization.

While we find improvement signal for incorporating
caes into text-to-image generations, we place the results in
the Supplementary and instead focus on editing an exist-
ing image to increase its perceptual appeal, a novel task
with a practical application for users who may wish to im-
prove the aesthetic quality of their photographs. We em-
ploy EDICT to unconditionally invert an existing image to
a latent pair (xT , yT ) and then optimize the latents w.r.t.
caes.Qualitative results of incorporating this cost function
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Low Aes. Edit Unedited Image High Aes. Edit

Figure 7: We use EDICT to invert a real-world image to
latents which are then optimized using DOODL, targeting
an “aesthetic score” of either 1 (top row) or 10 (bottom).

are shown in Figure 7 where in-the-wild images are edited
to have lower or higher aesthetic quality. We quantify
DOODL’s editing ability using human evaluation in Fig-
ure 8, seeing that DOODL produces satisfactory edits sig-
nificantly more often than the baseline classifier guidance.
For the baselines in the latter, we find that inverting the im-
ages to t = T results in generation content largely decor-
related from the original image, and invert to t = T

2 which
we find to produce satisfactory edits.

5.4. Visual Personalization Guidance

Visual personalization, making a diffusion model gener-
ate images that contain a highly specific entity or concept
based off of a limited exemplar set of images, is an area
that has garnered much research attention. Most methods,
such as Dreambooth [37] or Textual Inversion [12] learn or
finetune components such as text embeddings or subsets of
the diffusion model parameters in order to generate visu-
ally personalized images. While highly effective, the train-
ing cost and subsequent model storage are drawbacks. We
propose a novel on-the-fly personalization paradigm using

3/5
Approvals

4/5
Approvals

5/5
Approvals

0.0

0.2

0.4

0.6
Edit Success Rate: Human Eval

Binomial(5, 0.5)
Baseline:

= 100
Baseline:

= 500
DOODL

Figure 8: Quantitative evaluation of aesthetic quality edit-
ing. 5 labelers are asked whether the edited image both re-
tains content and improves perceptual appeal. Displayed
are the success rates for DOODL and the baseline method
(two guidance scale settings) for 3 increasingly stringent ap-
proval thresholds. Accounting for labeling noise, we plot
the “success rate” of a Binomial(5, 0.5) distribution. Eval-
uation is done on 96 random images from COCO [25].

DOODL to employ a pretrained recognition model in leiu
of any additional generative model training or tuning.

We utilize the distance from Equation (10) taken be-
tween the image embedding of a conditioning image,
CLIPImage(CImage), and that of the current generation
CLIPImage(x

(i)
0 ) We find ensembling ViT/B-32, ViT/L-

14, and ViT/g-14 CLIP models with loss weights of 0.5,
0.25, 0.25 respectively achieves good performance. Input
text conditioning to the diffusion model is as standard. A
similar regime of λDOODL performs here as in Section 5.1,
λDOODL = 3 for displayed results. This setting is unusu-
ally difficult for DOODL, requiring more (5×) optimization
iterations than other reported experiments (additionally, we
find a much higher λBaseline needed).

We visualize generated samples in Figure 9, placing dogs
pictured in the top row (CImage) into various contexts.
Prompts generically refer to “a dog”, with all identifying in-
formation coming from CImage. DOODL maintains faith-
fulness to both the text prompt and visual conditioning; a
first for non-learned methods to our knowledge.

We perform a human evaluation, sampling four tar-
get dog images from Imagenet [7] and using four
prompt templates (A dog {at the Acropolis/swimming/in a
bucket/wearing sunglasses}) across 6 random seeds, result-
ing in 96 generated images per method. For each image,
three labelers are asked whether the dog in the generated
image appears to be the same dog as the original with the
context matching the caption. A majority of labelers clas-
sify the original generation and baseline as successful just
2% and 1% of the time respectively as opposed to 14% for
DOODL, 7× more often than either baseline. Further anal-
ysis is given in the Supplementary.
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Figure 9: Personalization generations from a single seed.
Baseline Clf. Guidance does not depict the pictured dog
without destabilizing. DOODL produces realistic images
containing both the desired text and image conditioning.

6. Conclusion & Future Work

In this work, we demonstrated that Direct Optimization
Of Diffusion Latents (DOODL) offers an exciting new way
to incorporate the knowledge of pretrained recognition net-
works in the generative process of diffusion models. We
expect future work to both expand the types of guidances
incorporated as well as sophisticate and accelerate the opti-
mization process of DOODL to incorporate the process into
applications that require higher compute efficiency.
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Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerg-
ing properties in self-supervised vision transformers. In Pro-
ceedings of the International Conference on Computer Vi-
sion (ICCV), 2021. 2

[6] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya
Sutskever, and Pieter Abbeel. Infogan: Interpretable rep-
resentation learning by information maximizing generative
adversarial nets. Advances in neural information processing
systems, 29, 2016. 7

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 8

[8] Prafulla Dhariwal and Alexander Nichol. Diffusion models
beat gans on image synthesis. Advances in Neural Informa-
tion Processing Systems, 34:8780–8794, 2021. 2, 3, 4

[9] Laurent Dinh, David Krueger, and Yoshua Bengio. Nice:
Non-linear independent components estimation. arXiv
preprint arXiv:1410.8516, 2014. 3

[10] Laurent Dinh, Jascha Sohl-Dickstein, and Samy Ben-
gio. Density estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016. 3

[11] Patrick Esser, Robin Rombach, and Björn Ommer. Taming
transformers for high-resolution image synthesis, 2020. 3

[12] Rinon Gal, Yuval Alaluf, Yuval Atzmon, Or Patash-
nik, Amit H Bermano, Gal Chechik, and Daniel Cohen-
Or. An image is worth one word: Personalizing text-to-
image generation using textual inversion. arXiv preprint
arXiv:2208.01618, 2022. 3, 8

[13] Audrunas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanc-
tot, and Alex Graves. Memory-efficient backpropagation
through time. In D. Lee, M. Sugiyama, U. Luxburg, I.
Guyon, and R. Garnett, editors, Advances in Neural Infor-
mation Processing Systems, volume 29. Curran Associates,
Inc., 2016. 3

[14] Chuan Guo, Mayank Rana, Moustapha Cisse, and Laurens
van der Maaten. Countering adversarial images using input
transformations. In International Conference on Learning
Representations, 2018. 4

[15] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner,
Bernhard Nessler, and Sepp Hochreiter. Gans trained by a

7288



two time-scale update rule converge to a local nash equilib-
rium. Advances in neural information processing systems,
30, 2017. 7

[16] Jonathan Ho, William Chan, Chitwan Saharia, Jay Whang,
Ruiqi Gao, Alexey Gritsenko, Diederik P Kingma, Ben
Poole, Mohammad Norouzi, David J Fleet, et al. Imagen
video: High definition video generation with diffusion mod-
els. arXiv preprint arXiv:2210.02303, 2022. 2

[17] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffu-
sion probabilistic models. Advances in Neural Information
Processing Systems, 33:6840–6851, 2020. 2, 3

[18] Jonathan Ho and Tim Salimans. Classifier-free diffusion
guidance. arXiv preprint arXiv:2207.12598, 2022. 3

[19] Tao Hu, Honggang Qi, Qingming Huang, and Yan Lu.
See better before looking closer: Weakly supervised data
augmentation network for fine-grained visual classification.
arXiv preprint arXiv:1901.09891, 2019. 7

[20] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade
Gordon, Nicholas Carlini, Rohan Taori, Achal Dave,
Vaishaal Shankar, Hongseok Namkoong, John Miller, Han-
naneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Open-
clip, July 2021. If you use this software, please cite it as
below. 6

[21] Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng
Yao, and Fei-Fei Li. Novel dataset for fine-grained image
categorization: Stanford dogs. In Proc. CVPR workshop on
fine-grained visual categorization (FGVC), volume 2. Cite-
seer, 2011. 7

[22] Durk P Kingma and Prafulla Dhariwal. Glow: Generative
flow with invertible 1x1 convolutions. Advances in neural
information processing systems, 31, 2018. 3

[23] Gihyun Kwon and Jong Chul Ye. Diffusion-based image
translation using disentangled style and content representa-
tion. In The Eleventh International Conference on Learning
Representations, 2023. 2

[24] Wei Li, Xue Xu, Xinyan Xiao, Jiachen Liu, Hu Yang, Guo-
hao Li, Zhanpeng Wang, Zhifan Feng, Qiaoqiao She, Ya-
juan Lyu, et al. Upainting: Unified text-to-image diffu-
sion generation with cross-modal guidance. arXiv preprint
arXiv:2210.16031, 2022. 2, 4, 6

[25] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft coco: Common objects in context. Euro-
pean conference on computer vision, pages 740–755, 2014.
8

[26] Matthew MacKay, Paul Vicol, Jimmy Ba, and Roger B
Grosse. Reversible recurrent neural networks. Advances in
Neural Information Processing Systems, 31, 2018. 3

[27] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual classi-
fication of aircraft. arXiv preprint arXiv:1306.5151, 2013.
7

[28] Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav
Shyam, Pamela Mishkin, Bob McGrew, Ilya Sutskever, and
Mark Chen. Glide: Towards photorealistic image generation
and editing with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021. 2, 4, 5, 6
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