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Abstract

Recently, the RGB images and point clouds fusion meth-
ods have been proposed to jointly estimate 2D optical flow
and 3D scene flow. However, as both conventional RGB
cameras and LiDAR sensors adopt a frame-based data
acquisition mechanism, their performance is limited by
the fixed low sampling rates, especially in highly-dynamic
scenes. By contrast, the event camera can asynchronously
capture the intensity changes with a very high temporal res-
olution, providing complementary dynamic information of
the observed scenes. In this paper, we incorporate RGB
images, Point clouds and Events for joint optical flow and
scene flow estimation with our proposed multi-stage mul-
timodal fusion model, RPEFlow. First, we present an at-
tention fusion module with a cross-attention mechanism
to implicitly explore the internal cross-modal correlation
for 2D and 3D branches, respectively. Second, we intro-
duce a mutual information regularization term to explic-
itly model the complementary information of three modal-
ities for effective multimodal feature learning. We also
contribute a new synthetic dataset to advocate further re-
search. Experiments on both synthetic and real datasets
show that our model outperforms the existing state-of-the-
art by a wide margin. Code and dataset is available at
https://npucvr.github.io/RPEFlow .

1. Introduction
Optical flow estimation, i.e., estimating the dense 2D

motion between consecutive image frames, has been exten-
sively studied and significantly advanced with the develop-
ment of deep neural networks [1–3]. Scene flow estimation,
on the other hand, aims to estimate the 3D motion field
with various input configurations, ranging from monocu-
lar images [4, 5], stereo images [6, 7], two frames of point
clouds [8, 9], images combined with depth maps [10, 11]

† Corresponding author (daiyuchao@gmail.com).

or point clouds [12, 13]. Both are fundamental to down-
stream applications such as autonomous driving [14, 15],
object tracking [16, 17], scene reconstruction [18, 19], etc.

Due to the strong correlation between 2D and 3D mo-
tion, i.e., 2D motion can be regarded as the projection of 3D
motion on the image plane, recent works [10, 12, 13] make
efforts to jointly estimate optical flow and scene flow by
combining RGB images and point clouds (or depth maps).
Their success indicates that joint 2D and 3D motion esti-
mation within a framework can obtain more accurate re-
sults than separate tasks. However, as both conventional
RGB cameras and LiDAR (or depth) sensors adopt a fixed
frame-by-frame data acquisition mechanism, these methods
show unsatisfactory performance when dealing with com-
plex motion scenes (see Fig. 3), which motivates us to alle-
viate this problem by introducing the event camera.

Event camera, as a bio-inspired imaging sensor, can
asynchronously capture the brightness change with very
high temporal resolution (in the order of µs) and output an
event signal quickly [20]. As each pixel adapts its sampling
rate according to the captured changes, the amount of out-
put events usually depends on the complexity of motion (the
faster the motion, the more triggered events), thus providing
abundant motion information of the observed scene. Based
on this, some works use event data alone to estimate op-
tical flow [21, 22], but they show limitations in estimating
reliable motion at regions with no events [23]. As compen-
sation for this, image and event data are fused together to es-
timate dense optical flow [24, 25]. As far as we know, there
is no method to incorporate event data within a multimodal
learning framework for both 2D and 3D motion estimation.

In this paper, we propose to fuse RGB images, point
clouds and events for joint optical flow and scene flow es-
timation. We find the ability of the event camera to asyn-
chronously capture the brightness changes caused by mo-
tion makes it complementary to image cameras and LiDAR
sensors, especially for complex dynamics and high-contrast
brightness changes. We believe that combining these three
modalities together for 2D and 3D motion estimation meets
the practical needs, which has been further confirmed by
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existing datasets, such as MVSEC [26] and DSEC [22] that
contain these data for driving scenarios.

We formulate this task as a representation-based mul-
timodal learning problem, and exploit the complementary
information between these three very different modalities
implicitly and explicitly. We aim to exploit the relation-
ships between multimodal and multi-dimensional space ob-
servations (images and events in 2D with point clouds in
3D) and explore their contributions to 2D and 3D motion.
Specifically, in our RPEFlow framework, we first propose
a multimodal attention fusion module with cross-attention
mechanism to implicitly explore the correlations between
three modalities, based on which a pyramid multi-stage fu-
sion structure is introduced to extensively modeling. We
observe that each modality can contribute a part to 2D and
3D motion estimation, making representation learning [27]
suitable for our multimodal learning framework. Then we
introduce cross-modal mutual information minimization in
feature space to explicitly maximize the complementary in-
formation. We also contribute a new synthetic dataset with
simulations that conform to the gravity model and collision
detection and contain a larger variety of moving objects and
richer annotations than FlyingThings3D [28]. Extensive
experimental results validate both our implicit multimodal
attention fusion and explicit representation regularization
towards effective multimodal learning, leading to a new
benchmark on both synthetic and real-captured datasets.

Our main contributions are summarized as follows:
1) We propose to incorporate event cameras with RGB

cameras and LiDAR sensors to jointly estimate optical
flow and scene flow for complex dynamic scenes, which
constitutes a new and practical problem.

2) An implicit multimodal attention fusion module and
an explicit representation learning via mutual informa-
tion regularization are presented in our RPEFlow model,
achieving extensive cross-modal relationship modeling.

3) We contribute a large-scale synthetic dataset with
ground-truth motion annotations. Experimental results
on both synthetic and real datasets show that the pro-
posed RPEFlow outperforms existing state-of-the-art
and demonstrates the effectiveness of event data for mo-
tion estimation of complex dynamics.

2. Related Work

2.1. Unimodal 2D/3D Motion Estimation

Image only. For learning-based 2D optical flow estima-
tion, FlowNet series [29, 30] first propose end-to-end CNN
models for regression. PWC-Net [1] work on constructing
feature pyramids with coarse-to-fine refinement. RAFT [2]
and its variants [3,31] build all-pairs correlation and update
the optical flow iteratively. For 3D scene flow estimation,
learning-based studies [6, 7] use a sequence of stereo im-

ages as input [32], achieving faster and better performance
compared with earlier optimization-based methods [15,33].
Some recent works [4, 5, 34] use only monocular image
sequences, which are more difficult to model accurate 3D
structure and motion than stereo images. Due to the lim-
ited frame rate of input images and the difficulty in obtain-
ing 3D structure, the performance of image-only methods is
still unsatisfactory when dealing with complex dynamics.
Point Cloud only. Point cloud data from the LiDAR sensor
is favorable for 3D motion estimation. Due to the unique
data structure, existing methods [8, 9, 35] focus on study-
ing the model structure to represent the point cloud data for
scene flow estimation. However, the point cloud lacks se-
mantic information and leads to the difficulty of estimating
accurate motion only by the structural information [13].
Event only. Event-based motion estimation is dedicated to
extracting motion information from event-encoded bright-
ness changes. Some early optimization-based methods esti-
mate the motion flow of moving boundaries [36,37]. Recent
learning-based methods [21, 22, 38] are proposed to regress
the dense optical flow directly. Even though the predictions
of some of them are densely supervised, the sparse input
event data leads to unreliable optical flow estimation in the
regions without triggered events [23, 24].

2.2. Multimodal 2D/3D Motion Estimation

As unimodal data only provides partial information,
multimodal methods are presented to comprehensively
learn from multiple observations. For optical flow estima-
tion, event-based studies [24, 25, 39] combine the advan-
tages of the image in dense representation and events in
motion perception for reliable estimation. Besides, [40, 41]
incorporate gyroscope or depth sensor to guide the optical
flow. For scene flow estimation, using a sequences of RGB-
Depth images [10,11] becomes another trend, then [12,13]
replace depth with point clouds to deal with the limited
ideal range of depth camera when applied outdoors. But
again, they are still limited by the frame-by-frame acquisi-
tion mechanism, which leads us to introduce event data.

2.3. Multimodal Fusion

Given multimodal data, effective multimodal fusion is
critical to extensively explore the contribution of each
modality [42]. Two main directions have been explored:
1) attention based [43–45] and 2) representation learn-
ing [46–49] based. For the former, a specific attention mod-
ule [50, 51] is designed to implicitly control the contribu-
tion of each modal. For the latter, representation similarity
is measured to explicitly constrain the reliability of the fea-
ture embedding. Within this direction, mutual information
(MI) estimation and optimization [48, 52–54] is the widely
studied strategy, which is typically used as a regularizer to
encourage (via MI maximization) or limit dependency (via
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（a) Feature Pyramid Extraction
with Feature Stage Fusion

（b) Correlation Construction 
with Motion Stage Fusion

（c) Joint Flow Estimation 
with Estimation Stage Fusion

R RGB or 2D motion feature
P PointCloud or 3D motion feature
E Event feature

MIR: Mutual Information Regularization

MAF-3D: Multimodal Attention Fusion in 3D

MAF-2D: Multimodal Attention Fusion in 2D

Residual update

Figure 1: Our RPEFlow Structure. We learn motion correlations from the input three modalities (RGB-PointCloud-Event,
RPE) by multi-stage fusion (FS, MS and ES) incorporating explicit multimodal attentional fusion (MAF) and implicit repre-
senting learning with mutual information regularization (MIR), and perform pyramidal updates from coarse to fine to estimate
the optical flow in the 2D branch (top) and the scene flow in the 3D branch (bottom), respectively. Best viewed on screen.

MI minimization) between variables.

3. Our Method
We introduce two main strategies to achieve effective

multimodal learning, one is explicit multimodal attention
fusion (Sec. 3.1) and the other is implicit mutual informa-
tion regularization (Sec. 3.2). Based on them, we propose
a pyramid multi-stage framework (see Fig. 1) for RGB-
PointCloud-Event fusion and joint optical flow and scene
flow estimation in 2D and 3D branches (Sec. 3.3).

3.1. Multimodal Attention Fusion (MAF)

As shown in Fig. 1, we have both 2D and 3D branches
for optical flow and scene flow estimation. Due to the dif-
ferent data structures of the two branches [8,13], we design
symmetric attention fusion strategy for both two branches in
Fig. 2, which consists of two steps, namely feature projec-
tion and cross-attention fusion. In the 2D branch, we treat
the RGB image as the primary modality and project point
cloud feature into the image plane, then fuse with auxiliary
features, i.e., event and point cloud. For the 3D branch, we
define the point cloud data as the primary modality, then
project the others into the 3D space and fuse them together.
Multimodal Attention Fusion in 3D branch (MAF RPE-
3D). We take the fusion module in the 3D branch of a single
pyramid level as a detailed example, where the encoded im-
age feature is er ∈ RH×W×C2D , event feature is eev ∈
RH×W×C2D , and point cloud feature is epc ∈ RN×C3D

with the point positions p = {pxi
,pyi

,pzi}
N ∈ RN×3

in 3D space. Note that H,W and N are the feature size at

the current pyramid level, not the original input size. We
first use the point position to sample the corresponding im-
age and event feature into 3D space with focal length f and
denote the projected point position at the image plane as:

{(ui, vi)}N = {(f pxi

pzi

, f
pyi

pzi

)}N ∈ RN×2. (1)

Thus, the projected image and event features are:

epjr ={er(ui,vi)}N , epjev={eev(ui, vi)}N ∈RN×C2D , (2)

where er(ui, vi) represents the feature obtained by bilinear
interpolation sampling at (ui, vi) position in image plane.

After projection, we feed the features of auxiliary modal-
ities epjr and epjev with the primary modality feature X3D

pri =
epc into the attention fusion module. In the original self-
attention mechanism [50, 51], all of the keys K, values V
and queries Q come from the same modality. Here we adapt
it to accommodate inputs from multiple modalities and pro-
pose our cross-attention fusion structure. Specifically, we
first combine the auxiliary features and align the number
of channels with the master feature by 1 × 1 convolution,
yielding the aligned auxiliary feature Y 3D

aux = Wa

[
epjr , epjev

]
(RN×C3D ⇐ RN×(C2D+C2D)), where [·, ·] is the concatena-
tion operation. With layer normalization [55] (LN), we ap-
ply 3×3 depth-wise convolution to encode spatial and chan-
nel information with queries Q3D

pri = WQ
d LN(X3D

pri), keys
K3D

aux = WK
d LN(Y 3D

aux) and values V 3D
aux = WV

d LN(Y 3D
aux),

respectively, obtaining the cross-modal self-attention as:

Attention(Q,K, V ) =V Softmax

(
QTK

τ

)
, (3)
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Figure 2: Our proposed Multimodal Attention Fusion
Module fuses both three modal features in 2D (top) and
3D (bottom) branches, including feature projection and
cross-attention fusion. In particular, only image and point
features are fused in Feature Stage (FS).

where τ is a learnable scaling factor. We input Q3D
pri, K

3D
aux,

V 3D
aux to the above attention module, and the resultant atten-

tion map with dimension RC3D×C3D is much smaller and
more efficient than the original implementation [51] with
dimension RHW×HW adopted from [56]. With the cross-
modal attention in Eq. 3, we obtain the fused feature X3D

pri
′

corresponding to the primary modality epc by another 1× 1
convolution projection and residual connection as:

X3D
pri

′
=WpAttention(Q3D

pri,K
3D
aux, V

3D
aux)+X3D

pri . (4)

Multimodal Attention Fusion in 2D branch (MAF RPE-
2D). The fusion process in 2D is similar to the 3D branch
above. To project the sparse point feature into a dense
feature at the image plane, we adopt a learnable fusion-
aware interpolation [13] and get the projected point fea-
ture epjpc ∈ RH×W×C3D . Then we regard the image fea-
ture as the primary modality feature X2D

pri = er, then the
aligned auxiliary featureY 2D

aux=W 2D
a

[
epjpc, eev

]
. After sim-

ilar cross-attention, the fused feature X2D
pri

′ is obtained as:

X2D
pri

′
=WpAttention(Q2D

pri,K
2D
aux, V

2D
aux)+X2D

pri . (5)

3.2. Mutual Information Regularization (MIR)

We incorporate mutual information minimization as a
regularizer to explicitly model the cross-modal dependency
following disentangled representation learning [27] based
on the observation that each modality, i.e. RGB image, point
cloud and event data, contributes partially to the output, and
mutual information minimization is suitable for our task to
explore the complementary information of each modality.

We start with the case of two modalities with RGB image
and event feature embeddings er and eev . Note that these
feature embeddings are the features that have been projected
into the same spatial space (2D or 3D) in Sec. 3.1.

To explicitly model the cross-modal correlation, we de-
fine cross-modal mutual information between er and eev

as I(er; eev) = Ep(er,eev)

[
log p(eev|er)

p(eev)

]
, where p(er, eev)

is the joint distribution, p(eev|er) is the conditional dis-
tribution and p(eev) is the marginal distribution. With
importance sampling [57], we introduce a variational
marginal approximation q(eev) with a variational upper
bound Ivub [54] of mutual information I(er; eev) as:

I(er;eev)≤Ep(er,eev)

[
log

p(eev|er)
q(eev)

]
=DKL(p(eev|er)∥q(eev)) = Ivub = Lmi,

(6)

where q(eev) can be fixed as a standard normal distribu-
tion [58], i.e. q(eev) = N (eev; 0, I), and p(eev|er) can
be modeled with the reparameterization trick [59], thus the
Kullback-Leibler (KL) divergence term DKL within Ivub

can be solved in closed form.
In the case of three modalities feature embeddings

er, epc and eev , respectively, the interaction information
II(er; epc; eev) [60], as a multivariate generalization of the
mutual information, is upper bounded by:

II(er;epc;eev)≤min{I(er;epc),I(epc;eev),I(er;eev)}
≤ min{Ivub(er; epc), Ivub(epc; eev), Ivub(er; eev)}.

(7)

To compute Ivub, we need to design a transition function,
achieving the transformation of one modality to the other
and assume the variational marginal approximation q as the
standard normal distribution for closed-form KL divergence
computation. In practice, the standard normal distribution
assumption of q leads to high-bias mutual information es-
timation. Alternatively, we first map the representation of
each modality (er, epc, eev) to a common manifold, with
reparameterization trick [59] in the end to achieve Gaus-
sian latent code of each modality. Then, we compute KL
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divergence between the two Gaussian latent codes, leading
to the final mutual information regularization term:

Lii = Ivub(er; epc) + Ivub(epc; eev) + Ivub(er; eev), (8)

where we compute the sum of Ivub instead of choosing the
minimum for stable training.

3.3. Pyramid Fusion and Joint Estimation Model

With the proposed multimodal attention fusion and the
mutual information regularization term, we achieve once
multimodal feature fusion. Inspired by CamLiFlow [13],
we further perform multi-stage feature fusion implicitly and
explicitly. Here we present the details of multi-stage fea-
ture fusion, and more details about the network structure are
given in the supplementary materials. As shown in Fig. 1,
our model contains both 2D and 3D branches, where each
branch consists of feature extraction, correlation construc-
tion and flow estimation.

In feature extraction, we first voxelized the raw events
E= {xi, yi, ti, pi}K into one event voxel EV ∈RH×W×B

that can be used as input to our network, where K is the
number of events during the period between two frames and
B is the manually set number of time intervals to sample
events. We apply three Siamese encoders to construct fea-
ture pyramids ({er1 , er2}l, {epc1 , epc2}l and eevl

with pyra-
mid layers l ∈ [1, L]) for three modalities respectively. As
spans between two frames, the event data is not included in
Feature Stage Fusion, which is applied to fuse the features
of two frames RGB images and corresponding point clouds
with two-modal attention fusion, i.e. simplify the auxiliary
feature to a single modality in Eq. 4, 5 and mutual informa-
tion regularization in Eq. 6 for both 2D and 3D branches.

In correlation construction, we first warp the second
frame of image and point cloud features using the coarse
optical flow and scene flow (initialize with zero) from the
previous pyramid layer, then construct correlation motion
features by computing 2D and 3D cost volumes and fused
them with the event feature at Motion Stage Fusion. In flow
estimation, we construct a motion decoder and flow estima-
tor, and perform an Estimation Stage Fusion between them
to fuse the hidden motion features from the two branches
decoder with the event feature. In these two fusion stages,
we conduct multimodal attention fusion in Eq. 4, 5 and mu-
tual information regularization in Eq. 8 for 2D and 3D mo-
tion features and event feature, because events can provide
complementary information to enhance the motion correla-
tion construction. The estimated optical flow and scene flow
are fed into the next pyramid layer to achieve coarse-to-fine
predictions. We take the optical flow and scene flow from
the last pyramid layer as our final joint estimations.

3.4. Objective Functions

The objective functions in the training of our model are
divided into feature representation loss and task loss. The
former consists of multiple mutual information regulariza-
tions at each fusion stage. Lfs1

mi l, L
fs2
mi l represent the mutual

information minimization loss imposed on the RGB image
and point cloud features of the first and the second frame
at the Feature Stage fusion, and Lms

ii l and Les
ii l represent

on both RGB image, point cloud and event features at the
Motion Stage and Estimation Stage fusion. Thus the feature
representation loss is the sum of all stages and is weighted
at each pyramid level:

Lfeat =

L∑
l=1

λl

[
Lfs1

mi l + Lfs2
mi l + Lms

ii l + Les
ii l

]
, (9)

where l is the pyramid level, and λl is used to reweight the
contribution of each pyramid level.

The latter task loss measures the L2 distance between the
ground-truth and the model output at each pyramid level by:

Ltask=

L∑
l=1

λl

[∑
x

(∥fpred
l (x)− fgt

l (x)∥2)+

α
∑
p

(∥spredl (p)− sgtl (p)∥2)
]
,

(10)

where x, p are the valid image positions and point coor-
dinates, fpred

l , spredl are the estimated 2D optical flow and
3D scene flow and fgt

l , sgtl are the corresponding resized
ground truth at the l-th pyramid level, respectively. α is the
weight to balance 2D and 3D errors.

The total loss is a weighted sum of the above:

L = Ltask + βLfeat, (11)

where β is the weight to balance two losses in training.

4. Experiment
4.1. Implementation Details

Datasets. Since there is no large-scale scene flow dataset
with real event data, we use synthetic data for pretraining.
Follow the preprocess pipeline [13, 62], we generate point
clouds from depth images for FlyingThings3D [28] dataset,
which contains 19,640 and 3,824 RGB-PointColud pairs
for “train” and “val” splits. We use the popular video-to-
events conversion method [63] to generate the correspond-
ing events. In addition, we use kubric [64] to simulate
15,367 RGB-PointCloud-Event pairs with rich annotations
(including optical flow and scene flow ground truths), de-
noted as EKubric, which aims to simulate photo-realistic
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Overlapped Frames Events Optical Flow GT CamLiFlow [13] CamLiFlow+Events RPEFlow (Ours)

Point Clouds Scene Flow GT CamLiFlow [13] CamLiFlow+Events RPEFlow (Ours)

More

Less

Error 

Figure 3: Visual comparisons on simulated data, in which the top row is on the “val” split of FlyingThings3D [28] dataset
and the reset two are on the test split of our simulated EKubric dataset. For the bottom 3D comparisons, blue indicates a lower
error, red indicates a higher error, and green indicates the median. Best to zoom in on the screen for detailed comparisons.

Table 1: Performance comparison on the “val” split of the FlyingThings3D [28] subset.

Input Method EPE2D ACC1px EPEN.Occ
3D ACCN.Occ

.05 EPEFull
3D ACCFull

.05

RGB RAFT [2] 3.12 81.1% - - - -
FlowFormer [3] 3.02 82.6% - - - -

PC
Meteornet* [61] - - - - 0.209 -
PointPWC [8] - - 0.112 51.8% - -

SCTN [9] - - 0.038 84.7% - -

RGB+Depth RAFT-3D [10] 2.37 87.1% 0.062 84.5% 0.089 71.1%

RGB+PC DeepLiDARFlow [12] 6.04 47.1% - 27.2% - -
CamLiFlow [13] 2.20 84.6% 0.033 91.7% 0.059 86.0%

RGB+Event RAFT+Event 2.49 84.6% - - - -

RGB+PC+Event CamLiFlow+Event 1.56 84.4% 0.028 91.7% 0.048 85.9%
RPEFlow (Ours) 1.40 86.2% 0.024 93.1% 0.042 88.0%

scenes with collision detection, gravity model and ambi-
ent illumination and has more object kinds than FlyingTh-
ings3D. We also use the DSEC [22] dataset, which contains
8,170 pairs of real-captured samples in driving scenarios.

Training, Hyper-parameters and Metrics. Our model is
trained with PyTorch on four RTX3090 GPUs and evalu-
ated on one. We use the Adam optimizer with weight de-
cay 10−6. The number of event bins is B = 10, pyramid
layers is L = 5. Loss weights are α = 10.0, β = 0.01,
λl = 2(l−2) for l ∈ [1, L]. Following [10, 13], we evalu-

ate using 2D and 3D end-point error (EPE2D and EPE3D),
and ACC1px and ACC.05 to measure the portion of accu-
racy within 1 pixel and 5cm. The scene flow metrics with
N.Occ superscript indicates only the not occluded positions
are calculated, while Full or none indicates all positions in-
cluding occlusion. More details about datasets and training
are provided in the supplementary materials.
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Table 2: Finetuned performance comparison on the test split of our simulated EKubric dataset.

Input Method EPE2D ACC1px EPEN.Occ
3D ACCN.Occ

.05 EPEFull
3D ACCFull

.05

RGB RAFT [2] 0.757 93.70% - - - -
FlowFormer [3] 0.683 93.92% - - - -

RGB+Depth RAFT-3D [10] 0.715 94.33% 0.016 95.20% 0.049 92.62%

RGB+PC CamLiFlow [13] 0.761 95.00% 0.009 98.39% 0.032 94.90%

RGB+Event RAFT+Event 0.487 95.25% - - - -

RGB+PC+Event CamLiFlow+Event 0.505 95.41% 0.008 98.48% 0.031 95.01%
RPEFlow (Ours) 0.442 96.08% 0.007 98.68% 0.027 95.30%

Overlapped Frames Events Flow GT CamLiFlow [13] CamLiFlow+Events RPEFlow (Ours)

Point Clouds Scene Flow GT CamLiFlow [13] CamLiFlow+Events RPEFlow (Ours)

More

Less

Error 

Figure 4: Visual comparisons on real-captured data, i.e. the “val” split of DSEC [22] dataset.

4.2. Comparisons with Synthetic Events

Following the conventional setting, our model is first
pre-trained on FlyingThings3D [28], and Table 1 shows
the quantitative comparison performance on the “val” split.
Both results are evaluated using their pre-trained model on
FlyingThings3D. Meteornet* [61] has not released model
for scene flow estimation, so we compare the EPE3D re-
sult from its paper. We also finetune them on our simulated
EKubric dataset, and the performance comparisons on the
test set are shown in Table 2, where the compared mod-
els were all pre-trained on FlyingThings3D and then fine-
tuned on EKubric with the same training settings. Note that
we did not evaluate the PC-only methods on our EKubric
dataset due to their different data preprocessing strategies.

We report the results of two representative methods [2,8]
and two latest methods [3, 9] using only one modal for one
task, and find that combining multiple modalities can sig-
nificantly improve model accuracy for both optical flow and
scene flow estimation. Furthermore, the methods that com-
bine all three modalities, i.e. RGB+PC+Event, achieve bet-
ter results than the rest [10,12,13], which illustrates the sig-

nificant benefit of introducing event data for accurate mo-
tion estimation. With the same input setting, we compare
our model with CamLiFlow+Event and observe improved
accuracy, which is because our proposed multimodal atten-
tion fusion module is able to fully mine valuable informa-
tion from continuous event data for accurate motion estima-
tion. The comparison of visualization results in Fig. 3 and
in the supplementary materials is also consistent with the
above observations, especially in high dynamic and detail
moving or motion-blurred areas.

4.3. Comparisons with Real Events

We further conduct experiments on the real-captured
DSEC [22] dataset. We divide the public set into “train” and
“val” splits for finetuning and evaluation. Since the dense
depth required by RAFT-3D [10] is not available, we use
CFNet [65] to obtain a pseudo-dense depth map by stereo
matching as input. E-RAFT* [22] does not have a publicly
available training code, thus we can only use the pretrained
model on the entire DSEC dataset including the “val” split
(marked with *). Both quantitative and qualitative (Table 3
and Fig. 4) comparisons demonstrate the superiority of our
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Table 3: Finetuned Performance comparison on the “val”
split of DSEC [22] dataset.

Method EPE2D ACC1px EPEFull
3D ACCFull

.05

RAFT [2] 0.572 89.63% - -
E-RAFT* [22] 0.473 92.11% - -

RAFT-3D [10] 0.567 90.55% 0.140 51.30%
CamLiFlow [13] 0.383 94.92% 0.120 53.49%

RAFT+Event 0.537 90.08% - -
CamLiFlow+Event 0.361 95.07% 0.116 55.26%

RPEFlow (Ours) 0.332 95.27% 0.104 60.50%

Table 4: Ablation Studies. The results validate the effec-
tiveness for introducing event data, attention fusion and mu-
tual information regularization, respectively.

Event Fusion MI EPE2D ACC1px EPEFull
3D ACCFull

.05

(a) - Concat - 2.200 84.62% 0.059 86.02%
(b) - Attention - 2.133 84.74% 0.058 86.53%
(c) - Attention ✓ 2.067 84.92% 0.055 86.85%
(d) ✓ ConcatW/o E - 1.561 84.37% 0.048 85.86%
(e) ✓ ConcatW/ E - 1.519 85.34% 0.046 86.63%
(f) ✓ Attention - 1.494 86.01% 0.043 87.39%

(g) ✓ Attention ✓ 1.402 86.22% 0.042 88.01%

model for real-captured data, which is consistent with the
observations on synthetic datasets above. In particular, our
method performs better in night driving (the 2nd sample in
Fig. 4), because the event camera is still sensitive to bright-
ness changes even in low-light scenes. These comparisons
further illustrate the importance of introducing events and
the applicability of our model to practical needs.

4.4. Ablation Studies

In Table 4, We conduct ablation experiments to verify
the contribution of each component in our model. All vari-
ations are trained on the “training” split and evaluated on
the “val” split of FlyingThings3D [28] dataset. In addition
to the following discussion, in the supplementary materials
we analyze the impact of real and simulated events and the
role of combining the two tasks.
Event data. As we are the first to introduce the event data
for joint optical flow and scene flow estimation, we explore
the effectiveness of event data in two aspects. Firstly, we
remove the event data in our framework (see Table 4 (a)-
(d) and (c)-(g)), leading to significant performance degra-
dation, especially in optical flow error. This is in line with
our claim that event data with continuous observations of
scene brightness changes can provide significant help for
accurate motion estimation. Secondly, in order to validate
the benefit of introducing events to other methods, we con-
catenate the extracted event feature as an additional input of
flow decoder for RAFT [2] and CamLiFlow [13], denoted
as RAFT+Event and CamLiFlow+Event, respectively. Re-

Setting EPE2D ACC1px EPE
N.Occ
3D ACCN.Occ

.05 EPEFull
3D ACCFull

.05

2D only 1.937 83.17% - - - -
3D only - - 0.043 86.37% 0.078 79.05%

2D&3D 1.402 86.22% 0.024 93.14% 0.042 88.01%

Table 5: Joint vs independent tasks. These models both
use three modalities and the results validate that combining
the two tasks makes better use of motion information.

sults in Table 1, 2 and 3 show that introducing event data to
existing models can also significantly improve the perfor-
mance, rather than just on our proposed framework.
Fusion Structure. Unlike CamLiFlow [13] that concat
the features from two modalities, we propose an attention-
based multimodal fusion module. We conduct experiments
with both no-event and with event settings (see Table 4 (a)-
(b) and (d)(e)-(f)), and our proposed attention fusion im-
proves both 2D and 3D motion estimation performance.
This shows that our multimodal attention fusion module can
effectively explore the complementary information and cor-
relations among the three modalities and generate fused fea-
tures that are suitable for subsequent motion estimation.
Mutual Information. The purpose of the mutual informa-
tion regularization term is to explicitly constrain the net-
work to learn complementary information from different
modalities of data. To verify its contribution to motion es-
timation, we conduct experiments with both no-event and
with event settings (see Table 4 (b)-(c) and (f)-(g)). The
results show that with this explicit constraint, the fused fea-
tures can further improve the accuracy of motion estima-
tion. In addition, we believe that the multimodal attention
fusion module and mutual information regularization term
both play an important role in motion estimation, because
their contribution to 2D and 3D motion estimation is signif-
icant in both the with-event and without-event settings.

4.5. Computation Cost

Our model is relatively efficient compared to the latest
unimodal and multimodal methods in model size and run-
time, i.e., FlowFormer [3]: 17.6M, 1.35s, SCTN [9]: 7.8M,
242ms, RAFT-3D [10]: 45M, 593ms, CamLiFlow [13]:
7.7M, 88ms (≈2s with refine) and Ours: 9.75M, 112ms
(both on a single RTX3090 GPU with 1280×720 size).

4.6. Joint 2D and 3D estimation.

In previous comparisons, the methods of joint optical
flow and scene flow estimation perform significantly better
than independent methods. To further verify the necessity
of jointing these two tasks, we compare the models that only
supervise the optical flow or scene flow estimation in Ta-
ble 5. Although using all three modalities for a single task
(2D only and 3D only) is more beneficial than the meth-
ods using fewer modality data in Table 1 of main paper.
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However, combining the two tasks in 2D and 3D benefits
from the tight correlation between the two deeply super-
vised branches, allowing more adequate exploiting of the
correlation between 2D and 3D input modalities and more
accurate estimating of 2D and 3D motion jointly.

5. Conclusion

We introduce a multimodal fusion framework for joint
2D optical flow and 3D scene flow estimation by fusing
RGB images, point clouds and event data. Our contribu-
tions are threefold: 1) By incorporating event data, our new
framework could handle highly dynamic scenes. 2) We fuse
representations of the three very different modalities both
implicitly and explicitly through multimodal attention and
mutual information regularization, respectively. 3) We con-
tribute a new simulation dataset to further advocate research
in this direction. Our work shows that event cameras can
play an important role in 2D and 3D motion estimation, and
reveals the prospect of event-based 3D vision.
Limitation. Our model is not specially designed for ex-
treme situations such as dark nights or sensor failures, and
we plan to address them in the future.
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