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Abstract

Most learning-based approaches to category-level 6D
pose estimation are design around normalized object coor-
dinate space (NOCS). While being successful, NOCS-based
methods become inaccurate and less robust when handling
objects of a category containing significant intra-category
shape variations. This is because the object coordinates
induced by global and rigid alignment of objects are se-
mantically incoherent, making the coordinate regression
hard to learn and generalize. We propose Semantically-
aware Object Coordinate Space (SOCS) built by warping-
and-aligning the objects guided by a sparse set of keypoints
with semantically meaningful correspondence. SOCS is se-
mantically coherent: Any point on the surface of a object
can be mapped to a semantically meaningful location in
SOCS, allowing for accurate pose and size estimation under
large shape variations. To learn effective coordinate regres-
sion to SOCS, we propose a novel multi-scale coordinate-
based attention network. Evaluations demonstrate that our
method is easy to train, well-generalizing for large intra-
category shape variations and robust to inter-object occlu-
sions. Code is provided at: https://github.com/
wanboyan/SOCS.

1. Introduction

6D object pose estimation, i.e., determining the 3D rota-
tion and translation of a object in the camera coordinate sys-
tem, is an important computer vision task with a large body
of literature [2, 27, 13, 17]. Category-level object pose esti-
mation attempts to solve the problem without relying on the
exact CAD model of the target object [28], which is hence
more challenging than instance-level one. Since the semi-
nal work of Wang et al. [28], most existing category-level
works are based on a canonical representation of Normal-
ized Object Coordinate Space (NOCS). Given an unseen
object instance, they learn a neural network to map the per-
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Figure 1. NOCS [28], constructed with globally aligned objects,
finds difficulty in handling large intra-category shape variations.
In this example, the coordinates regressed against NOCS for the
long-lens camera contain much error (w.r.t. the CAD model un-
der ground-truth pose and size) and the resulting pose is incorrect
(middle). In contrast, the coordinates regressed against SOCS,
built by semantically-guided non-rigid object alignment, are se-
mantically coherent, leading to better pose estimation (right).

spective projection of the object to the NOCS of the corre-
sponding category from which object pose can be estimated.

Given an object category, NOCS is defined by globally
aligning a set of 3D object instances with normalized size
and poses. It works well for objects with moderate intra-
category shape variations. When handling object categories
containing significant shape variations, however, NOCS-
based methods become inaccurate and less robust. This is
because the object coordinates induced by global and rigid
alignment are not semantically coherent. For instance, a
point on the lens of a long-lens camera would be mapped to
a semantically incorrect point in NOCS if the NOCS was
constructed with camera models of significantly varying
part proportions. Such misalignment makes the mapping
network hard to learn and generalize, thus causing inferior
pose accuracy under large shape variations (Figure 1).

To tackle this issue, we propose Semantically-aware Ob-
ject Coordinate Space (SOCS) to achieve accurate and ro-
bust category-level 6D object pose and size estimation un-
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der large shape variations. Unlike NOCS which is con-
structed by directly aligning pose and size normalized ob-
jects of a specific category, SOCS is built by warping-and-
aligning the objects guided by a sparse set of keypoints
with semantically meaningful correspondence, leveraging
the state-of-the-art category-specific keypoint selection and
matching for a shape set [25]. In particular, we align all
objects of a specific category in the training set to the av-
erage shape [26] of the set. We utilize 3D thin-plate spline
warping [9] to ensure a smooth non-rigid deformation and
hence coordinate interpolation. SOCS is therefore seman-
tically coherent: Any point on the surface of a object can
be mapped to a semantically meaningful location in SOCS,
allowing for accurate pose and size estimation.

To learn the mapping from image space to SOCS effec-
tively, we propose a novel multi-scale coordinate-based at-
tention network. To capture the shape variation of the target
object in image space, we devise a multi-scale feature ex-
traction network with cross-attention feature aggregation.
In the cross-attention module, we encode global point po-
sitions to help better extract coordinate-sensitive features.
Thanks to such global positional encoding, our network is
able to model 3D points in the full space, which further en-
ables a dense point sampling in SOCS training. The latter
facilitates dense coordinate estimation even for unobserved
locations, which is critical to handling inter-object occlu-
sions. To attain pose invariance, the network is trained in a
contrastive fashion with a pose consistency loss.

We conducted extensive evaluations demonstrating that
our method is 1) easy to train, 2) well-generalizing for
large intra-category shape variations, and 3) robust to inter-
object occlusions. Even with the vanilla mapping net-
work of [28], our method is still comparable to state of the
arts, clearly showing the effectiveness of SOCS. Our full
method achieves state-of-the-art on the NOCS-REAL275
and ModelNet40-partial datasets, improving the 5◦5cm
score by 5.6 pts on NOCS-REAL275 and 5◦0.05 score by
16 pts on ModelNet40-partial. In particular, ModelNet40-
partial contains categories containing objects with large
shape variations.

In summary, our work makes two contributions. First,
we propose semantically-aligned object coordinate space
(SOCS) to accommodate large intra-category shape varia-
tions for semantically coherent coordinate regression. Sec-
ond, we propose a multi-scale attention network for learning
the mapping from image space to SOCS effectively allow-
ing for dense coordinate regression.

2. Related Work

2.1. Category-level pose estimation

Category-level pose estimation aims to predict the pose
of unseen instances from a single-view image without

knowing their 3D model. Existing work can be roughly
classified into direct regression and correspondence-based
methods. Direct regression methods estimate object pose
by extracting pose-sensitive features from the input [32, 19].
The recent research focuses on exploring advanced network
architectures [4], proper learning schemes [8], and differ-
ent output representations [7]. Crucially, DualPoseNet [20]
adopts two parallel pose decoders on top of a shared pose
encoder, learning the consistency between the two brunches
to impose complementary supervision. FS-Net [7] proposes
a decoupled rotation output mechanism to complementarily
estimate the rotation components. Correspondence-based
methods first estimate the correspondence between the ob-
served points and its coordinate in the canonical space
and then optimize pose and size by postprocessing. This
requires methods to extract pose-invariant point features.
Wang et al. [28] present the representation of NOCS to en-
able the learning of pose for unseen objects. Wen et al. [29]
introduce NUNOCS, which allows non-uniform scaling
across three dimensions, facilitating fine-grained dense cor-
respondences across object instances with large shape vari-
ations. Crucially, a bunch of recent works have adopted
the categorical shape prior to facilitating the computation
of correspondences between the observed points and their
canonical coordinate [26, 5, 18]. Our method falls into the
category of correspondence-based methods. However, it is
different from previous work as it learns semantically-aware
dense correspondences, resulting in more accurate results.

2.2. Implicit field for pose estimation

Many recent works have investigated implicitly repre-
senting 3D shapes with a continuous and differentiable im-
plicit field implemented by neural networks. While most of
the research in this field focuses on shape reconstruction, a
handful of methods adopt implicit fields to estimate object
pose [24, 1]. A straightforward way is to jointly reconstruct
the object surface and estimate its pose [3, 23, 15, 30] with
a unified framework. For example, ShAPO [12] jointly pre-
dicts object shape, pose, and size in a single-shot manner.
Neural Radiance Fields (NeRF) [22] provides a mechanism
for capturing complex 3D structures from only one or a few
RGB images, which is also applicable to object pose estima-
tion. iNeRF [31] estimates pose for objects with complex
geometry with a pre-trained NeRF model. NeRF-Pose [14]
first reconstructs the object with NeRF and then estimates
the object pose. Unlike the traditional correspondence-
based methods which predict 3D object coordinates at pix-
els of the input image, Huang et al. [11] predict canonical
coordinates at any sampled 3D in the camera frustum, gen-
erating continuous neural implicit fields of canonical coor-
dinates for instance-level pose estimation. Despite the sim-
ilarity in the general concept, our method tackles the prob-
lem of category-level pose estimation where semantically-
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ware cross-instance correspondences need to be estimated.

3. Method

Overview. In this section, we first describe how to gen-
erate SOCS. Then, we present the multi-scale coordinate-
based attention network for SOCS estimation. In particular,
a surface-independent point sampling strategy and a pose-
invariant feature extraction training scheme are introduced.
Last, we elaborate on the details of network inference and
pose estimation.

3.1. SOCS

Existing canonical coordinate spaces for category-level
6D pose estimation, such as NOCS [28], are induced by
global and rigid alignment, leading to semantic incoherency
on the object coordinates. When handling object cate-
gories containing significant shape variations, NOCS-based
methods become inaccurate and less robust. We introduce
Semantically-aware Object Coordinate Space (SOCS) to al-
leviate the problem of NOCS. The coordinates in SOCS are
generated by the category-specific keypoints, allowing fine-
grained non-rigid coordinate alignment.

Specifically, given the shapes {Si} of a category in the
training set, we first generate the categorical average shape
Sa by using the pre-learned autoencoder [26]. The coor-
dinates of Sa are regarded as the coordinates of SOCS. To
build correspondence between the object coordinate of any
object instance {Si} and the SOCS, we detect the semanti-
cally consistent keypoints {Ki} and Ka for {Si} and Sa,
respectively, by using the Skeleton Merger [25]. We de-
note the detected keypoints Ki = {kj}, j ∈ [1,m] and
Ka = {kaj }, j ∈ [1,m]. m is the number of keypoints in a
single shape, which is unified for all shapes.

Next, we compute the dense correspondence between Si

and Sa by considering the alignment of the semantically
consistent keypoints. This is achieved by a 3D thin plate
spline warping function [9]:

Φ(x) = c+ bTx+ wT s(x),

s(x) = [σ (x− ka1) , σ (x− ka2) , · · · ,σ (x− kam)]T ,

σ(x) = ∥x∥22 · log ∥x∥2,
(1)

where c ∈ R3, b ∈ R3×3, w ∈ Rm×3 are the parameters
which are determined by optimizing the following function:

min

m∑
j=1

∥∥kaj − Φ(kj)
∥∥2 . (2)

Once the parameters c, b, and w are determined, for any co-
ordinate x in the object coordinate space, its SOCS is com-
puted as xSOCS = Φ(x).

Figure 2. The proposed SOCS is more semantically meaningful,
facilitating the learning of correspondence for objects with large
shape variations. The coordinates in the canonical space (repre-
sented by the color) of the same semantic part in different objects
are similar in SOCS (Middle row) and dissimilar in NOCS (Bot-
tom row). Please pay special attention to the highlighted regions.

Compared to the NOCS representation and its vari-
ants [29] developed for category-level 6D pose and size es-
timation, the SOCS is more semantically meaningful, thus
facilitating the learning of correspondence even for objects
with large shape variations. See Figure 2 for an illustration.

3.2. Training of SOCS Estimation Network

In this section, we describe how to estimate the point-
wise SOCS from an image. Estimating SOCS from a single-
view image is non-trivial due to the potential large shape
variations and the inter-object occlusions. To learn the map-
ping from input points to SOCS effectively, we propose a
novel multi-scale coordinate-based attention network. An
overview of the network architecture is shown in Figure 3.

Multi-scale coordinate-based attention network. The
network contains two main components: aggregation lay-
ers and propagation layers. The aggregation layers extract
per-point features from the point cloud. The point cloud is
cropped from the depth image of the detected object. Since
the task of category-level pose estimation can be challeng-
ing due to the large shape variations and severe occlusion
of the input point cloud, we take 3D-GCN [21], which is
able to aggregate contextual information of 3D point clouds
with good performance, as the backbone. To be specific, the
3D-GCN takes the point cloud P ∈ Rn×3 as input, gener-
ates downsampled points Pα and extracts features Fα at the
α-th block, where α ∈ {1, ..., 5}. Note that the aggregation
layers could be any other 3D point-based network backbone
according to the practical requirements. We found that 3D-
GCN works best in our problem setting.

The propagation layers are then developed to propa-
gate the feature from the downsampled points {Pα}, α ∈
{1, ..., 5} to any query point x and estimate its SOCS xSOCS.
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Figure 3. Given an input point cloud P , the aggregation layers gen-
erate the features {Fα}, α ∈ [1, 5] at multiple network blocks.
The propagation layers then propagate features from the input
points to the sampled point x.

Extracting the feature of unseen points is a non-trivial task,
due to the possibly infinite query locations in the 3D space.
The ideal extracted feature should be both context-sensitive
and coordinate-sensitive. To achieve this, we propose an
implicit neural network with coordinate-based multi-scale
contextual feature propagations.

We first initialize the feature vector at query point x as
a zero vector, i.e., F0

x = 0, F0
x ∈ Rh, where h is the fea-

ture length. For each block, we update the feature with a
cross-attention module to aggregate feature from the near-
est points (see Figure 4). Specifically, at the α-th block,
we compute the k-nearest neighbors Nα ∈ Rk×3 of x
from Pα, where k is 16. We denote the features of Nα

as Fα
N ∈ Rk×h. Moreover, we introduce a global point

gα = Mean(Pα) with the feature being Fα
g = Mean(Fα),

where Mean(·) is the element-wise averaging operation.
The global positional encoding provides contextual infor-
mation, facilitating dense coordinate estimation even on un-
observed locations, which is critical to handling occlusions.

The update term on the feature Fα−1
x is estimated by

considering the relations to both Nα and gα:

∆α = Softmax

(
(Fα

NWk)
(
Fα−1

x Wq

)T
+R

√
h

)
Fα

NWv

+ Softmax

((
Fα

g Wk

) (
Fα−1

x Wq

)T
+ rg√

h

)
Fα

g Wv

(3)
where Wq , Wk, Wv ∈ Rh×h are the learnable weights.
r ∈ Rk denotes the influence factor of x to the points in
Nα. Each element ri in R is computed as follows by con-
sidering the relative position between the query point x and
the nearest neighbor i:

ri = EmbLayer(x−Nα
i ), (4)

where EmbLayer(·) is a two-layer MLP. Similarly, rg is
computed to capture the position w.r.t. the center of input

𝑄 = ℱ𝑥
α−1𝑊𝑞𝐾 = ℱ𝑔

α−1𝑊k 𝑉 = ℱ𝑔
α−1𝑊𝑣

Cross-attention

FFN

Add & Norm

ℱ𝑥
α

ℱ𝑥
α−1ℱ𝑔

α−1 ℱ𝒩
α−1

𝑉 = ℱ𝒩
α−1𝑊𝑣 𝐾 = ℱ𝒩

α−1𝑊𝑘

Cross-attention

Add & Norm

Figure 4. The network architecture of the propagation layers. For
a sampled point (gray), the query point (red) updates its feature by
performing cross-attention operations with the k-nearest neighbors
(green) and the global point (yellow), respectively.

points:
rg = EmbLayer(x− gα). (5)

Then, the updated feature at point x is:

Fα
x = LayerNorm(Fα−1

x +∆α) (6)

where LayerNorm(·) is the layer normalization operation.
The extracted features at all the blocks are then concate-

nated: Fx = Concat(F1
x ,F2

x ,F3
x ,F4

x ,F5
x). The concate-

nated feature is utilized to estimate the SOCS:

xSOCS
X = Softmax(MLPX(Fx)),

xSOCS
Y = Softmax(MLPY(Fx)),

xSOCS
Z = Softmax(MLPZ(Fx)),

(7)

where xSOCS
X , xSOCS

Y , xSOCS
Z are the predicted class denoting

the coordinate in the axes of X, Y, Z, respectively. MLPX(·),
MLPY(·), MLPZ(·) represent multi-layer perceptrons.

Note that, our method is different from most existing
methods where regression or classification with a small
number of bins (B < 50) for coordinate estimation are
adopted. We found that using a larger number of bins (e.g.
B = 256) in our method will not lead to the training be-
ing inefficient or failing to converge. The advantage comes
from the representation of SOCS, which greatly reduces the
learning complexity.

Surface-independent point sampling. We then describe
how to sample points to feed into the multi-scale
coordinate-based attention network. Several sampling
strategies could be considered: 1) Sampling from the in-
put points; 2) Surface-dependent sampling: random sam-
pling near the input points; 3) Surface-independent sam-
pling: random sampling in the whole 3D space. We em-
pirically found the surface-independent sampling strategy
outperforms the others, thanks to the mechanism of global
positional encoding. There are two reasons for this phe-
nomenon. First, sampling in the whole space facilitates
feature aggregation in the invisible region, bringing more
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Figure 5. Illustration of the point sampling strategies. (a) The input
object. (b) Sampling from the input points. (c) Surface-dependent
sampling. (d) Surface-independent sampling. The color denotes
the point-wise SOCS estimation error.

context information. Second, sampling in the whole space
would decrease the overall pose estimation uncertainty, es-
pecially in scenarios where severe occlusion exists. Illustra-
tion of the sampling strategies is visualized in Figure 5.

Network training. Next, we describe how to train the
above network. Suppose X is the set of sampled points,
a naive loss function of the shape correspondence field esti-
mation could be:

LSOCS =
∑
x∈X

[LCE(x
SOCS
X , x̂SOCS

X )+

LCE(x
SOCS
Y , x̂SOCS

Y ) + LCE(x
SOCS
Z , x̂SOCS

Z )],

(8)

where LCE(·) is the cross entropy loss, x̂SOCS
X , x̂SOCS

Y , x̂SOCS
Z

denote the ground-truth. However, we found that training
the network is unstable and hard to converge, especially on
categories with large shape variations.

To alleviate this issue, we adopt a contrastive training
fashion with a pose consistency loss to further enhance the
training. The key insight is to learn the pose-invariant fea-
ture by transforming the input point cloud, extracting its
per-point features, and making the features of the initial
point cloud and the transformed point cloud consistent.

Specifically, during training, we transform the input
points P with a random rigid transformation Tr = {R|t}.
We denote the transformed point cloud as P ′

= Tr · P . P
and P ′

are then fed into the multi-scale coordinate-based
attention network, respectively, to generate the per-point
features. For any point x ∈ X and the transformed point
x

′
= Tr · x, the generated features should be consistent:

Lconsistency =
∑
x∈X

||Fx −F
′

x′ ||2, (9)

where Fx and F ′

x′ denote the extracted feature by the two
network towers, respectively. Overall, the training loss
function is: L = wSOCSLSOCS+wconsistencyLconsistency, where
wSOCS and wconsistency are the pre-defined weights.

Training data preparation. To generate the training data
of SOCS estimation, for each dataset, we first generate the

dense SOCS for the complete 3D objects using the method
described in Sec. 3.1. The dense SOCS are then trans-
formed into the camera coordinates with the 6D object pose.

3.3. Network Inference, Pose and Size Estimation

Network inference. During the inference, given an RGB-
D image with untrained object instances in it, we first per-
form an object detection with Mask R-CNN [10]. For
each detected object, we crop the image, generate the point
cloud, and feed it into the aggregation layers to generate fea-
tures. Then, we densely sample points in 3D space around
the input points, and extract their features with the propaga-
tion layers, predicting the SOCS for every sampled point.

Pose and size estimation. The predicted per-point coor-
dinate in SOCS is then transformed into the camera co-
ordinate space with the transformation of the 6D object
pose and a scaling operation. The ideal transformation ma-
trix T ∈ R4×4 of the pose and the scaling matrix S =
diag(sX, sY, sZ, 1) should make the following function op-
timized:

min
∑
x∈X

∥T · S · Φ(x)− x∥2 , (10)

where X represents the sampled points. Note that the scal-
ing matrix S is anisotropic, so it allows more flexible and
accurate size estimation compared to NOCS whose scaling
matrix is isotropic. To achieve convergence toward a global
optimum, we sample multiple initial T and S, optimize them
respectively, and select the best one.

3.4. Implementation details

We detected 32 keypoints on each object. The multi-
scale coordinate-based attention network takes 1, 024 points
as input. The number of classification bins is 128. The net-
work is optimized by a ranger optimizer, with batch size 16
and learning rate 0.001. The learning rate is annealed at
50% of the training phase using a cosine schedule. We train
individual models for each category respectively. In the
surface-independent sampling, we randomly sample points
in a sphere with the center being the center of input points
and its diameter being the diagonal length of the largest
shape in the category. We set wSOCS as 1 and wconsistency
as 0.1. Our method is trained and tested on an NVIDIA
Tesla V100. The training takes 10 hours to converge. The
inference time of one image is about 0.6 second.

4. Results and Evaluation
4.1. Experimental Datasets

We train and test our method on the NOCS-
REAL275 [28] and ModelNet40-partial [16] datasets. The
NOCS-REAL275 contains 4.3k training RGB-D images
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Figure 6. Visual comparison of the estimated pose by our method, RBP-Pose [32], and DPDN [19].

and 2.75k testing RGB-D images captured from 6 real-
world scenes. The objects belong to six object cate-
gories: bottle, bowl, can, camera, laptop, and mug. The
ModelNet40-partial dataset is a synthetic dataset that con-
tains 60k training depth images and 6k testing depth im-
ages. It contains object categories with large shape varia-
tions, such as airplane, chair, and sofa.

4.2. Evaluation Metrics

We use standard metrics to evaluate the performance on
the two datasets, respectively. For NOCS-REAL275, we
adopt the intersection over union (IoU) with a threshold of
e, and the average precision of instances for which the er-
ror is less than n◦ for rotation and m for translation. For
ModelNet40-partial, we report the rotational error, and the
translational error in the form of mean, and median values.
We also report the average precision of instances for which
the error is less than 5◦ for rotation and 5cm for translation.
4.3. Performance on NOCS-REAL275

We first compare our method with the state-of-the-art on
the NOCS-REAL275 dataset. The quantitative results are
shown in Table 1. There are several phenomena we can ob-
serve. First, DPDN [19] slightly outperforms our method
on metrics of IoU50 and IoU75, showing that their method
is better than ours in terms of object detection. Second, our
method outperforms all the baselines on metrics of 5◦2cm,
5◦5cm, 10◦2cm, 10◦5cm, demonstrating the effectiveness

of our method on pose estimation despite the inferiority on
object detection. In particular, to further study the effective-
ness of the proposed SOCS and the proposed network, we
replace each of them with NOCS and the network in [27] re-
spectively (i.e., the baseline of Network in [28] + SOCS est.
and Our network + NOCS est.), and conduct experiments.
The results show that our full method is better than the two
baselines, revealing the necessity of both the SOCS and the
proposed network. We also found our method requires less
training time compared to the baseline of Our network +
NOCS est., demonstrating SOCS is easy to train compared
to NOCS. The qualitative comparisons to the state-of-the-
art are visualized in Figure 6.

4.4. Performance on ModelNet40-partial

To demonstrate the performance of our method under
large shape variations, we conduct experiments on the
ModelNet40-partial dataset. The results are reported in Ta-
ble 2. We see that our method outperforms all baselines by
a large margin over all the metrics, which suggests that our
method is much more effective in handling categories with
large shape variations. Moreover, to quantitatively analyze
how our method performs under different shape variations,
we conduct an additional experiment. Specifically, we gen-
erate several subsets of the lamp category in the Model-
Net40 dataset with different degrees of shape variations.
The degree of shape variations is computed as the average
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Table 1. Quantitative results on the NOCS-REAL275 dataset.

Methods Data type Data source IoU50 ↑ IoU75↑ 5◦2cm↑ 5◦5cm↑ 10◦2cm↑ 10◦5cm↑
NOCS [28] RGB Syn.+Real 0.78 0.30 0.07 0.10 0.14 0.25

SGPA [5] RGB-D Syn.+Real 0.80 0.62 0.36 0.40 0.61 0.71

DPDN [19] RGB-D Syn.+Real 0.83 0.76 0.46 0.51 0.70 0.78

GPV-Pose [8] D Real 0.83 0.64 0.32 0.43 - 0.73

RBP-Pose [32] D Real 0.83 0.68 0.38 0.48 0.63 0.79

Network in [28] + SOCS est. RGB Real 0.79 0.41 0.11 0.12 0.15 0.30

Our network + NOCS est. D Real 0.82 0.73 0.40 0.49 0.64 0.81

Ours D Real 0.82 0.75 0.49 0.56 0.72 0.82

Table 2. Quantitative results on the ModelNet40-partial dataset.

Methods Data type Data source
Rotation Translation

Mean(◦) ↓ Median(◦)↓ 5◦ ↑ Mean()↓ Median()↓ 5◦0.05 ↑
EPN [16] D Syn. 32.86 23.84 0.49 0.14 0.13 0.08

KPConv [16] D Syn. 37.48 30.86 0.24 0.11 0.08 0.06

GPV-Pose [8] D Syn. 30.75 30.41 0.28 0.17 0.11 0.06

RBP-Pose [32] D Syn. 33.09 35.25 0.26 0.08 0.13 0.10

Ours D Syn. 22.53 22.81 0.59 0.03 0.07 0.26

Table 3. Ablation studies of the key components.

MP GP CL Sampling IoU75↑ 10◦2cm↑
✓ ✓ SI 0.59 0.56

✓ - ✓ SI 0.63 0.58

✓ ✓ - SI 0.65 0.60

✓ ✓ ✓ P 0.67 0.62

✓ ✓ ✓ SD 0.66 0.63

✓ ✓ ✓ SI 0.75 0.72

chamfer distance between every shape instance and the cat-
egorical shape prior. The results are visualized in Figure 7.
It shows that our method is able to handle object instances
with large shape variations, while the baselines cannot.
4.5. Ablation Studies and Parameter Setting

In Table 3, we conduct ablation and parameter setting
studies to quantify the efficacy of the key components in
our method. In Table 4 and 5, we study the key parameter
settings. All the experiments are conducted on the NOCS-
REAL275 dataset.

Network architecture. We then study the necessity of
crucial network modules, i.e., the multi-block feature
propagation (MP), the global position encoding in cross-
attention (GP), and the consistency loss function (CL). In
the experiment, we remove these crucial modules respec-

1 3

6 9

Figure 7. Left: Comparisons on subsets with different degrees of
shape variations. We see our method outperforms the baselines
on all subsets. Right: Examples of objects instances of different
degrees of variations.

tively, retrain the networks, and evaluate the performances.
Note that, in the ablation baseline of MP, we only per-
form feature propagations at the last block, so it has no
multi-block contextual features. The experiments show that
adding any of the modules would lead to a performance im-
provement, confirming the effectiveness of these modules.

Sampling strategy. We have discussed the advantages
of the surface-independent sampling (SI) strategy in Sec-
tion 2.2. Here, we quantitatively compare it with the alter-
natives of sampling from the input points (P) and surface-
dependent sampling (SD). We see that the network trained
by the surface-independent sampling strategy outperforms
the rest. Moreover, we visualize the per-point SOCS esti-
mation error in a cross-section in Figure 8. It is clear that
the estimation in most of the unseen regions is as accurate
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Table 4. Effect of different numbers of keypoints.

#keypoints IoU75↑ 5◦2cm↑ 5◦5cm↑ 10◦2cm↑
8 0.72 0.42 0.50 0.64

16 0.72 0.46 0.54 0.68

32 0.75 0.49 0.56 0.72
64 0.75 0.47 0.56 0.68

32 (ISRP [6]) 0.71 0.42 0.48 0.65

Table 5. Effects of different numbers of classification bins.
#bins IoU75 ↑ 5◦2cm↑ 5◦5cm↑ 10◦2cm ↑

32 0.70 0.44 0.52 0.61

64 0.71 0.47 0.55 0.64

128 0.75 0.49 0.56 0.72
256 0.73 0.49 0.55 0.72

Regression 0.69 0.43 0.50 0.66

as that near the observed surface, showing the necessity of
surface-independent sampling and the efficacy of our fea-
ture propagation mechanism.

Number of keypoints. The number of keypoints is a cru-
cial parameter that has the potential to influence the effects
of SOCS. We conduct several experiments using different
numbers of keypoints to generate the SOCS and retrain our
network. As reported in Table 4, we see that using a rela-
tively small number of keypoints would lead to a significant
performance decrease. The reason might be that an insuffi-
cient number of keypoints would lead to inaccurate dense
correspondence between object instances. We also tried
to adopt an alternative keypoints extraction method, i.e.,
ISRP [6], instead of Skeleton Merger [25]. Results show the
alternative key-point extraction method is also applicable to
our method but will lead to inferior performances, implying
that the quality of keypoints is crucial to our method.

Number of classification bins. We conduct a comparison
with baselines that use different numbers of bins in the coor-
dinate classification, as well as a baseline that replaces the
classification with regression. As reported in Table 5, we
found that using classification is a better choice compared
to using regression. Besides, the performances reach their
peak when the number of classification bins is 128 or 256,
showing that our method is able to be compatible with a rel-
atively large number of classification bins. This reveals that
SOCS indeed simplifies and facilitates the network training.

4.6. Performance under Occlusion

Our method is designed to handle moderate inter-object
occlusions. In order to verify this, we evaluate our method
and compare it to the state-of-the-arts on a subset contain-
ing objects with heavy occlusions. To be specific, we select

Table 6. Comparisons under heavy occlusion.

Method IoU75 ↑ 5◦2cm↑ 5◦5cm↑ 10◦2cm ↑
RBP-Pose [32] 0.60 0.29 0.39 0.42

DPDN [19] 0.61 0.29 0.40 0.47

Ours 0.66 0.38 0.51 0.55

input

xy plane

xz plane

上图中颜色代表预测的canonical 坐标和真实值之间的误差, 我们展示了物体坐标系xy平面以及
xz平面上的误差分布. 可以看出并不是离输入点云越近误差越小，这证明在空间中采样的重要
性. 另外几何特征明显的地方，误差也相对更小，比如相机的镜头以及mug杯的杯柄附近

Figure 8. The per-point SOCS estimation error in a cross-section
(Bottom row) of the input scene (Top row). The estimation in
most of the unseen regions is as accurate as that near the observed
surface, showing the necessity of surface-independent sampling
and the efficacy of our feature propagation mechanism.

500 RGB-D images with instances that have been heavily
occluded (≤ 30% object surface can be observed) from the
NOCS-REAL275 dataset. The visualization of the exam-
ples in this subset is provided in the supplemental material.
In Table 6, we see that our method outperforms the state-
of-the-arts by a large margin, verifying the ability of our
method in terms of handling occlusions.

5. Conclusion

We have presented a method for accurate and ro-
bust category-level 6D pose and size estimation based
on the novel Semantically-aware Object Coordinate Space
(SOCS). Since SOCS is built by non-rigidly aligning ob-
jects based on semantically meaningful correspondences,
it is semantically coherent and leads to accurate pose and
size estimation under large shape variations. In future, we
would like to investigate the weakly-supervised learning
and sim2real transfer techniques to boost the performance
of our method on more complicated categories. We would
also like to apply SOCS to the category-level pose estima-
tion of articulated objects.
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