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Abstract

Object detection (OD), a crucial vision task, remains
challenged by the lack of large training datasets with pre-
cise object localization labels. In this work, we pro-
pose ALWOD, a new framework that addresses this prob-
lem by fusing active learning (AL) with weakly and semi-
supervised object detection paradigms. Because the per-
formance of AL critically depends on the model initializa-
tion, we propose a new auxiliary image generator strat-
egy that utilizes an extremely small labeled set, coupled
with a large weakly tagged set of images, as a warm-start
for AL. We then propose a new AL acquisition function,
another critical factor in AL success, that leverages the
student-teacher OD pair disagreement and uncertainty to
effectively propose the most informative images to anno-
tate. Finally, to complete the AL loop, we introduce a new
labeling task delegated to human annotators, based on se-
lection and correction of model-proposed detections, which
is both rapid and effective in labeling the informative im-
ages. We demonstrate, across several challenging bench-
marks, that ALWOD significantly narrows the gap between
the ODs trained on few partially labeled but strategically
selected image instances and those that rely on the fully-
labeled data. Our code is publicly available on https:
//github.com/seqam-lab/ALWOD.

1. Introduction
Object detection (OD) is a critical vision problem. To

solve it, many fully-supervised object detection (FSOD)
methods have been developed to build deep neural network
architectures with high detection performance [35, 15, 3]
and fast inference [33, 34]. Typically, these networks
are trained on large fully-annotated (FA) data, which re-
quire humans to manually identify, with accurate bound-
ing boxes and category labels, each object in an im-

age. However, manual annotation of a large dataset is
time-consuming [44], limiting the scalability of FSOD
as the number of images, categories, and objects grows.
To address this, many weakly-supervised object detection
(WSOD) methods [2, 45, 19, 51] have been developed.
WSOD aims to reduce the object annotation cost by lever-
aging cheaper, weakly-annotated (WA) data, where an im-
age instance is tagged according to the objects present in it,
without the need to specify bounding boxes for each object.

Existing WSOD methods often struggle to distinguish
between object parts and objects, or between objects and
groups of objects [36]. The performance of WSOD methods
lags behind that of FSODs since WSODs rely on weaker an-
notation signals. Recently proposed semi-supervised [32,
43, 50] and few-shot [1, 29] learning approaches demon-
strated that a good trade-off between annotation effort and
detection performance can be achieved by first fully anno-
tating a set of random images, followed by training the de-
tector on a combination of large WA and small FA data.
Active learning (AL) methods [53, 5, 54, 49] aim to further
reduce the size of the FA sets using acquisition functions
to select the most informative images for human labeling.
AL methods can be either warm-start, which begin with a
labeled set and iteratively select informative samples with
feedback from the model, or cold-start, which select all in-
formative samples at once without the need for an initial
labeled set. Our work focuses on the warm-start setting.

To reduce the annotation cost and maximize the de-
tection performance, we introduce an Active Learning for
Weakly-Supervised Object Detection (ALWOD) framework
that combines semi-supervised learning with active learning
by dynamically augmenting the semi-supervised set with a
small set of actively selected and then fully annotated im-
ages, as illustrated in Fig. 1. However, traditional warm-
start AL methods commence with an FSOD model trained
on a random set of FA data [5, 8], typically hundreds or
thousands of images, or a WSOD model trained on a large
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set of WA data [49]. While the former results in effective
learning of OD models, it still requires a significant annota-
tor effort at initialization; the latter strategy is less effective
and necessitates more rounds of AL. To circumvent this and
further reduce the annotation cost, we design an image gen-
erator that leverages few FA images to synthesize a large
auxiliary FA FSOD training set. Together with the WA data,
the two sets are used for semi-supervised pre-training of an
OD. The auxiliary FA data can serve as a warm-start for
existing AL approaches, which require initial FA data.
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Figure 1: Overview of ALWOD. The teacher and student net-
works are first semi-supervised trained on WA data and aux-
iliary FA training data generated by an image generator, and
then fine-tuned in successive stages using a few new well-
selected FA and large remaining WA data. We propose a
model disagreement and image uncertainty based acquisi-
tion function to select images, and build a new annotation
tool to fully label selected images with decreased annotation
workload compared to traditional AL labeling strategies.

The effectiveness of AL is predicated on the selection of
the most informative samples for human labeling. To that
end, we propose a novel active learning function that nat-
urally leverages a combination of the model disagreement
between student-teacher based ODs [25, 50] and the image
uncertainty of the teacher network on the WA training data:
images, where the network pairs disagree most and where
the teacher exhibits high uncertainty, are passed on to hu-
man annotators for further labeling. This strategy allows us
to select informative samples for both the low and the high-
performing classes, particularly on class-unbalanced data.

To further reduce the AL cost, we replace the typical
annotator task of drawing bounding boxes and assigning
to each an object class label with the task of correcting
the class labels of selected predicted bounding boxes, as-
signing bounding box quality scores, and removing falsely
predicted bounding boxes. This type of annotation re-
quires a significantly lower annotation effort while only
slightly dampening the performance compared to the stan-
dard workload. The new FA and the remaining WA data
will be used to fine-tune the student-teacher OD. This pro-
cess is repeated until a desired annotation budget is met. As
shown in Sec. 4, our combined AL and WSOD approach
can achieve performance on par with FSOD, while reduc-
ing the need to precisely annotate large image datasets.

Our contributions are three-fold: (1) We present a new
framework ALWOD to improve annotation efficiency and an-
notation quality by combining active learning with weakly
and semi-supervised object detection paradigms. (2) We in-
troduce a new acquisition function that considers the model
disagreement between student-teacher networks, coupled
with image uncertainty. (3) We propose an auxiliary domain
to warm up the learning process utilizing small labeled sets.
Our experimental results demonstrate that ALWOD achieves
state-of-the-art performance across several benchmarks.

2. Related Work
Weakly-Supervised Object Detection (WSOD). WSOD
methods generally aim to reduce detection annotation costs
by exploiting only image-level annotations. Most existing
methods mainly formulate WSOD as a multiple-instance
learning (MIL) problem [2, 45, 11, 56, 36, 19, 18, 51].
Although many promising results have been achieved by
WSOD, they are still not comparable to FSOD. Our work
utilizes a small amount of FA data and a large amount
of WA data based on active learning strategies and semi-
supervised learning to achieve better performance.
Semi-Supervised Object Detection (SSOD). SSOD work
focuses on training an object detector with a combina-
tion of FA, WA, or un-annotated (UA) data. A traditional
paradigm of SSOD is to construct a multi-stage self-training
pipeline [38, 43, 50]: (1) pre-train a model on FA data; (2)
generate pseudo-labels on WA or UA data; (3) fine-tune the
model on both FA and pseudo-labeled data; (4) repeat this
process if needed. Some work [25, 50, 46, 26, 4, 23] relies
on a student-teacher framework, where the teacher network
generates pseudo-labels for the student network. Our work
is also based on a student-teacher framework, but extends
it with active learning strategies for selecting most informa-
tive WA or UA data, which are fully annotated by humans.
Active Learning for Object Detection (ALOD). The tra-
ditional active learning strategies [20, 10, 17, 13, 41] are
designed for classification tasks. Few active learning meth-
ods specifically focus on object detection [8, 49, 5, 52, 53],
which is more challenging with complex instance distri-
butions. ALOD methods aim to improve detection per-
formance by selecting the most informative images to be
fully annotated by humans. They define an acquisition
function used to assign a single score representing the in-
formativeness of each weakly or unlabeled image. Most
work [53, 5, 54] considers the instance-based uncertainty as
the acquisition signal. The work of [21] introduces localiza-
tion tightness and localization stability metrics to quantita-
tively evaluate the localization uncertainty of an object de-
tector. The work of [5] proposes the aleatoric and epistemic
uncertainty in both image and instance levels based on the
Gaussian mixture model. Yoo et al. [53] propose the active
learning method with the loss prediction module to predict

6460



the loss of an input data point. Elezi et al. [8] introduce a
class-agnostic active learning function based on the robust-
ness of the network. In [52], the instance-level uncertainty
and diversity are jointly considered in a bottom-up manner.
Our work is related but different from the aforementioned
methods. Similarly to these methods, we consider the im-
age uncertainty as a part of the acquisition score. Unlike
them, we also consider the model disagreement between
student-teacher based ODs as a part of the acquisition func-
tion which is even more reliable for both the low and the
high performing classes.

A key to making ALOD approaches effective is to ap-
propriately initialize the OD model. Choi et al. [5] pre-train
an FSOD model on a random set of fully-annotated data in-
cluding 2,000 images, which requires a large annotation ef-
fort, and achieves 62.4% AP50 on VOC2007 dataset. Vo et
al. [49] pre-train a WSOD model on weakly-annotated data
with a small annotation effort, and achieves 47.7% AP50
on VOC2007 dataset. It is essential to balance initial detec-
tion performance with annotation cost. In contrast to tra-
ditional approaches, our OD is pre-trained on a large fully-
labeled auxiliary domain constructed with minimal effort
from only a few (as low as 50) fully-annotated images and a
large weakly-labeled domain in a semi-supervised manner.
Annotation workflow. Traditional active learning ap-
proaches aim to query strong labels for data. However to
reduce annotation costs, Desai et al. [6] first query weak
localization information by requiring humans to click the
centers of objects. This point information is stronger than
the image-level tag. Pardo et al. [31] first decide the type of
annotation for each selected image then optimizes the detec-
tion model on the hybrid supervised dataset. To reduce an-
notation cost while maintaining high annotation quality, our
method allows one to select an imprecise bounding box for
each object, a stronger label signal than the marked points.

3. Methodology
Our proposed object detection framework, ALWOD, aims

to address the lack of accurate object localization informa-
tion in the real-world training data by formulating WSOD
as a combination of semi-supervision and active learning.

3.1. Preliminaries and Problem Statement

Consider an iterative, semi-supervised OD model learn-
ing setting where at each iteration t = 1, 2, . . . the model
M t is learned from a dynamic combination of weakly and
fully labeled data. Let W t, where |W t| = N − n, and F t,
where |F t| = n, denote the sets of indices of images in the
training set S with the weak and full annotations, respec-
tively, where N is the number of images in S. An RGB
image Xj ∈ Rh×w×3, where h and w are its height and
width, is said to be fully annotated, j ∈ F t, if it is asso-
ciated with the label Yf

j = {(bk, ck, pk)}n
f

k=1 for each of

the nf objects present (labeled) in that image. The label
consists of bk ∈ R4, the k-th object’s localization bound-
ing box defined by (xmin, ymin, xmax, ymax) that specifies
its top-left corner (xmin, ymin) and its bottom-right corner
(xmax, ymax). The label also contains the class label ck ∈
{1, . . . , C}, where C is the number of object categories, and
the bounding box quality score pk ∈ {1, 0}1. The same im-
age is said to be weakly annotated, j ∈W t, if the image la-
bel contains only the classes of objects present in that image
but not the objects’ locations, i.e., Yw

j = {ck}n
w

k=1, where
1 ≤ nw ≤ C is the number of object classes in that image.
We denote this “version” of the dataset St := S(W t, F t).

After model M t is learned at cycle t from S(W t, F t),
an active learning acquisition function α(S(W t, F t),M t)
will select a set of B weakly annotated images with indices
At+1 ⊆ W t, |At+1| = B, which will be passed on to a
human annotator to label. The selection will be based on an
assessment of model M t’s performance on St according to
existing full and weak labels over F t ∪ W t. In this fash-
ion, we will arrive at an updated “version” S(W t+1, F t+1),
where F t+1 = F t ∪At+1 and W t+1 = W t \At+1, which
will have B more fully annotated images |F t+1| = |F t|+B
and B fewer weakly annotated images |W t+1| = |W t|−B
than the previous St. This process is illustrated in Fig. 2.
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Figure 2: Training set notation for two steps of active learn-
ing for object detectors M t.

Our goal here is to design the acquisition function α()
and the semi-supervised learning approach for learning the
OD models M t to minimize the annotator workload prox-
ied through the annotation budget T · B, where T is the
total number of cycles of active learning, while maximizing
the final model detection accuracy. As a part of this pro-
cess, we also aim to design the initialization procedure for
model M0. The following sections describe our proposed
approach to achieving these goals.

3.2. Object Detection with Student-Teacher Net-
works

Fig. 3 gives an overview of our framework. Moti-
vated by the recent success of student-teacher networks for

1The score corresponds to a subjective (annotator) notion of whether
the (predicted) bounding box is precise, pk = 1 : IoU ≥ 0.9, or impre-
cise, pk = 0 : 0.5 < IoU < 0.9. See Sec. 3.4.
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Figure 3: Architecture of ALWOD. The framework couples student-teacher WSOD and SSOD with active learning. The initial
OD M0 is pre-trained on S0 ∪SX in a semi-supervised manner. The auxiliary SX is created using an image generator and a
small, fully-annotated A0. At each cycle t > 0, we select B images using a novel acquisition function α(·), which are passed
on to annotators for full labeling using our annotation tool. The M t is fine-tuned on the updated St+1.

semi-supervised learning [25, 50] and transformer-based
object detector [3, 37], our semi-supervised object detector
is composed of a student detection network Gstu(X|θstu)
and a teacher detection network Gtea(X|θtea). Both Gstu
and Gtea are transformer-based object detectors or Faster-
RCNN [35]2. Thus, M t := {Gstu(·|θtstu),Gtea(·|θttea)},
where θtstu and θttea are the models’ parameters at stage t of
active learning.

3.2.1 Initial Learning (t = 0)

Assumptions: Our learning of the OD model begins with
an assumption that the entire initial set of real-world im-
ages S is only tagged with weak labels, i.e., W 0 =
{1, . . . , N}, F 0 = ∅, which we will denote S0 :=
S(W 0, F 0). This, while realistic, is an extremely chal-
lenging assumption and will lead to poor initial OD mod-
els and high annotation workload, i.e., large B. To ad-
dress this challenge, we make the second assumption that
one can “cheaply” construct a large auxiliary “synthetic”
fully-labeled dataset, which we denote SX := SX(WX =
∅, FX = {1, . . . , NX}). We will use S0 ∪ SX to initialize
our student-teacher OD model3.
Auxiliary set: Performance of OD learning critically de-
pends on model initialization. It is thus essential to pre-train
an FSOD model that achieves good detection performance
with the least annotation cost. To that end, SX is created

2Since transformer-based object detectors are stronger than Faster-
RCNN, we focus on transformer-based object detectors.

3Note that SX is only used in the initial cycle t = 0.

by combining real-world background images with syntheti-
cally “pasted” but otherwise real-in-appearance foreground
objects. These realistic foreground objects are cropped
from the FA images in A0, which are randomly selected
from S0. The annotation cost of this large fully-annotated
auxiliary set is identical to that of the B images in A0. How-
ever, as demonstrated in Sec. 4.2, the role of SX is essential,
when combined with S0, to learn an effective ALOD.
Burn-in: Gstu is first trained only on fully-labeled data SX .
The teacher Gtea is initialized by duplicating the burn-in
student model, θtea = θstu.
Student-teacher learning: We build upon the student-
teacher learning paradigm of [50]. Therein, two types
of augmentation (strong and weak) are used to regularize
learning of the student-teacher network pair. Here, we train
this pair using S0 ∪ SX .

Specifically, we apply both weak Uweak(·) and strong
Ustrong(·) augmentation to the data, expanding the fully-
labeled initial set to Uweak(SX) ∪ Ustrong(SX) and the
weakly labeled real-world set to Uweak(S0)∪Ustrong(S0).
We then train the student network using Uweak(SX) ∪
Ustrong(SX) as well as the pseudo-labeled Ustrong(S

0),
with labels proposed by Gtea(Uweak(S

0))4 and filtered by

4We use the following notation for brevity: Ua(S) means that the im-
age component X of (X,Y) ∈ S is transformed by the augmentation
operator Ua(·), i.e., Ua(S) := {(X′,Y′) : X′ = Ua(X),Y′ =
Ua(Y), ∀(X,Y) ∈ S}. Augmentation of labels is applied as neces-
sary to enforce label coherence, e.g., when Ua(·) is L-R flip, the object
class labels are maintained while the object locations are ”flipped”. Simi-
larly, Gm(S) stands for the set constructed by replacing the label compo-
nent Y of the (X,Y) ∈ S pair using the predictive model Gm(·). I.e.,
Gm(S) := {(X′,Y′) : X′ = X,Y′ = Gm(X), ∀(X,Y) ∈ S}.
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ϕ(·):

θ0stu ← min
∑

(X,Y)∈T 0

L(Gstu(X|θstu),Y), (1)

where

T 0 = Uweak(SX)∪Ustrong(SX)∪ ϕ(Gtea(Uweak(S
0))),

(2)
and L is the classification and bounding box regression loss
used in transformer-based detectors [3, 37]. Our pseudo-
labeling filtering approach ϕ(·) uses the bounding box qual-
ity score and the bounding box tag while [50] does not. For
details of ϕ(·), please refer to the Supplement Sec. 1.

The teacher network is updated by the exponential mov-
ing average (EMA) from the student network [48],

θtea ← qθtea + (1− q)θstu, (3)

where q ∈ (0, 1), set empirically to q=0.9996. This EMA
updated teacher can be seen as a temporal ensemble of stu-
dent models along the training trajectories [50]. After train-
ing M0, we set F 0 ← F 0 ∪A0 and W 0 ←W 0 \A0.

In Sec. 3.3, we introduce a novel way of exploiting the
model disagreement and the image uncertainty between the
student and the teacher networks to identify informative
samples, which are subsequently used to minimize the hu-
man annotation effort.

3.2.2 Active Learning Cycle (t > 0)

At each cycle t > 0, we select B images from the current
weakly-annotated data W t using our acquisition function
At+1 = α(S(W t, F t),M t). The human annotator will an-
notate images in this acquisition set At+1 with bounding
boxes, object class labels, and bounding box quality scores,
helped by predictions generated from M t. This results in a
new set of full labels for images in this set, Yf

j , j ∈ At+1,
replacing their existing weak labels. In this manner, we
have created a new training set St+1 = S(W t+1, F t+1),
increasing by B images the fully labeled image set F t to
F t+1. Since the new fully-annotated images may include
imprecise bounding boxes bk, where pk = 0, we propose a
new pseudo-labeling filtering method embodied in ϕ(·). For
an imprecise bounding box bk, using the strategy of [50],
we find the best matched predicted bounding boxes b̂k. We
then generate a final pseudo-labeled bounding box by in-
terpolating the coordinates of the imprecise and matched
boxes. The precise bounding boxes coincide with the fi-
nal pseudo-labeled boxes. St+1 will be used to fine-tune
the student-teacher pair (θtstu, θ

t
tea), using the new pseudo-

labeling filtering, resulting in an updated OD M t+1. This
cycle will repeat T times until the annotation budget T ·B is
met or the model converges in validation loss. The detection
performance is evaluated with the teacher network.

The key to making this active learning process effective
is to define an optimal acquisition function α(·) and the an-
notation workflow. In the next section, we propose a novel
approach to designing such a function together with a new
annotation procedure.

3.3. Active Learning Strategies

We aim to select the most informative training samples
At+1 from St, with a small annotation budget B, that will
lead to the largest reduction in loss (improvement in detec-
tion performance), based on the trained student and teacher
networks. For this, we consider the following two signals:
(a) the disagreement between the teacher-student network
pair, and (b) the uncertainty of predictions on each image.
We first define the scores for each signal, then fuse them to
arrive at the final acquisition function.
Model Disagreement. The EMA updated teacher behaves
as a stochastic average of consecutive student models [47].
In an ideal case, the student network’s predictions would
be consistent with the teacher’s predictions. This naturally
leads to using the disagreement of predictions between stu-
dent and teacher networks as one of the acquisition signals
to create At+1. Specifically, we define the model disagree-
ment acquisition score βMD(·) on image X as

βMD(X|St,M t) := 1−
∑

c APc(Gstu(X)|Gtea(X))

nw
,

(4)
where c ∈ {ck}n

w

k=1 are the known classes of objects present
in X. This scores an image according to the value of the
average precision per-class score of the student model pre-
dictions when treating the teacher model predictions as the
“ground truth”. The higher the score, the less agreement the
models have on image X, indicating that the image may be
a plausible candidate for manual annotation.
Image Uncertainty. Another traditional signal that points
toward the need to manually annotate an image is the class
prediction uncertainty. Given the uncertainty for each pre-
diction in an image, we define the uncertainty of the image
by aggregating the score over all predicted objects. Here,
we define the image uncertainty score as the maximum en-
tropy βIU (·) on image X for the nf objects predicted by the
teacher network:

βIU (X|St,M t) :=
nf

max
k=1

H(ck|θtea), (5)

where H(ck|θtea) represents the entropy over the distribu-
tion ck of predictions generated from the teacher network.
The higher the entropy, the more uncertain the model is
about its prediction, indicating that the image may need to
be manually annotated.
Acquisition Function. We propose the final acquisition
function for each image, which fuses the model disagree-
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ment and the image uncertainty signals:

αΣ(S(W t, F t),M t) :=

argmaxB
j∈W t

βMD(Xj |St,M t) + βIU (Xj |St,M t), (6)

or

αΠ(S(W t, F t),M t) :=

argmaxB
j∈W t

βMD(Xj |St,M t) · βIU (Xj |St,M t), (7)

which selects B images from the weakly labeled set W t

with the highest values of the total score. We empirically
find that taking the product of the model disagreement and
the image uncertainty scores performs better than taking the
sum5. Intuitively, for each cycle t of active learning, we will
be selecting those images where the student-teacher models
disagree the most and the teacher model predictions are the
most uncertain.

3.4. Annotation Procedure and Tool

In traditional OD annotation, for each image humans are
asked to draw tight bounding boxes around the objects to be
detected and then select categories for each bounding box,
an expensive and tedious task [7, 9, 14]. For instance, [44]
reports an average drawing box annotation time of 34.5 sec-
onds (25.5 seconds for drawing one box and 9.0 seconds for
verifying quality). Extreme clicking [30] relaxes the task of
clicking on four extreme points of the object and requires
about 7 seconds. Considering the trade-off between an-
notation efficiency and annotation quality, we develop an
annotation tool that leverages our acquisition scores from
Sec. 3.3 to improve the efficacy of labeling. An example of
the tool’s frontend is shown in Fig. 4.

Specifically, all images from At+1 are presented to the
user in an ordered list according to (7). Each image con-
tains a large number of predicted bounding boxes with pre-
dicted class labels generated from both student and teacher
networks. After applying non-maximum suppression and
confidence threshold, some proposals with bounding boxes
and class labels are given to the annotators. The annotators
are asked to: (1) select the bounding boxes from proposals
that overlap with true objects (> 50% IoU) and include at
least one of the four extreme points (top, bottom, left-most,
right-most), (2) correct the bounding box categories, and (3)
assess the bounding box quality. The remaining unselected
bounding boxes are removed. If there is no bounding box
over an actual object, the annotators directly draw a tight
bounding box and select the object label.

5We use ALWODΣ to denote the model based on αΣ(S(W t, F t),Mt)
and ALWODΠ to denote the model that uses αΠ(S(W t, F t),Mt) active
learning strategy. When not specified, ALWOD refers to ALWODΠ.

Figure 4: Web tool for manual checking, editing bounding
boxes, and correcting classes.

Compared to [44, 30], our annotation process is signif-
icantly cheaper: on average, it can be completed in only 2
seconds, a reduction of over 70% over [30]. This results in
a significantly decreased overall workload, as demonstrated
in Sec. 4. For details of the annotation procedure, please
refer to the Supplement Sec. 3.

4. Experimental Results

Datasets and Evaluation. We evaluate our method
on three object detection benchmarks, VOC2007 [9],
COCO2014 [22], and RealPizza10 [51]. Following previ-
ous works [49, 51], we use the trainval split of VOC2007 for
training and the test split for evaluation, respectively con-
taining 5,011 and 4,952 images. On COCO2014, we train
detectors with the train split (82,783 images) and evaluate
on the validation split (40,504 images). We use trainval split
of RealPizza10 with 5,029 images for training and 552 test
split images for testing. On RealPizza10, COCO2014, and
VOC2007 datasets, each image contains 19.1, 7.7, and 2.5
instances on average, respectively. To evaluate the detection
performance, we use the average precision metrics AP50
and AP, computed with the IoU threshold of τ = 0.5 and
the threshold set τ ∈ {0.5, 0.55, . . . , 0.95}, respectively. A
predicted box is treated as a positive example when the IoU
between the ground truth bounding box and the predicted
object box exceeds τ .
Auxiliary Image Generator. The image generator creates
auxiliary images in SX by composing background images
and object templates, as illustrated in Fig. 5. The object
templates are created by cropping the object instances of
fully-annotated images in A0. Image augmentations such
as rotation and scaling are performed on these templates,
after which they are placed at random locations over the
background images by employing a copy-paste augmenta-
tion technique sourced in [55, 12]. For details of the image
generator, please refer to the Supplement Sec. 2.
Implementation Details. The VGG16 [42],
ResNet50 [16], and Swin-T [27] models pre-trained
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Figure 5: Examples of background images, auxiliary im-
ages, and real images on COCO2014, VOC2007, and Re-
alPizza10 datasets.

on ImageNet [39] were used as backbones. We adopt
Sparse DETR [37] or Faster-RCNN [35] for both Gstu and
Gtea. The confidence threshold for pseudo-labeling is 0.7.
Following [25], for strong augmentations, we apply random
color jittering, grayscale, Gaussian blur, and cutout patches.
For weak augmentations, only random horizontal flipping
is used. We report the results of “L%” experiments, where
about L% of the training weakly-labeled set are selected
to be fully annotated. The minimal image height and
width are set to 800 pixels. On VOC2007 and RealPizza10
datasets, NX = 2N , and on COCO2014, NX = 0.5N .
Baselines. We mainly focus on comparing against the
state-of-the-art FSOD baselines: Faster-RCNN [35],
SSD [24], and Sparse DETR [37]; WSOD baselines: WS-
DDN [2], OICR [45], C-MIDN [11], WSOD2 [56],
MIST(+Reg) [36], CASD [19], W2N [18], and
D2DF2WOD [51]; SSOD baselines: BCNet [29],
OAM [1], Unbiased teacher v2 [26], and Label Match-
ing [4]; and ALOD baselines: BAOD [31], SSDGMM [5],
NALAE [8], Active Teacher [28], and BiB [49].

4.1. Main Results

In total, we annotate 5% of training images on VOC2007
and RealPizza10, 1% of training images on COCO2014.
We perform five annotation cycles with a budget of B = 50
images per cycle on VOC2007 and RealPizza10, and B =
160 images per cycle on COCO2014.

We compare our method ALWOD to state-of-the-art
FSOD (n/N = 100% FA data in S), WSOD (n/N = 0%
FA data in S), and SSOD methods (n/N = 10% or n/N =
5%/1%/5% FA data in S), where n is the total number of
fully-labeled samples. Tab. 1 summarizes the detection re-
sults on different benchmarks.
Our method outperforms the ALOD baselines. As
shown in Tab. 1, on VOC2007 our method reaches 68.0%
AP50, outperforming SSDGMM [5] and BiB [49] by 39.2%
and 7.4% absolute points, using the same number of fully-
annotated images. On the more challenging COCO2014,

our method reaches 38.4% AP50, outperforming BiB [49]
by 5.2%. Using the same number of annotated training
images, our detection performance benefits from the com-
bination of semi-supervised learning and active learning
compared with SSDGMM and WSOD-based BiB. On Re-
alPizza10, our method outperforms SSDGMM [5] using
80% fully-annotated data by 14.5% using only 5% fully-
annotated data. The auxiliary set is comparable with the
large fully-labeled real data. Our method also outper-
forms the SSOD baselines. On VOC2007 in Tab. 1, we ob-
serve that our method improves by over n/N = 10% SSOD
baselines, while using only n/N = 5% full-annotated data.
Our method also outperforms the WSOD baselines.
Compared to WSOD baselines, our method obtains signifi-
cantly better results, across the three benchmarks, with only
a small amount of full-annotated data. Our method gen-
eralizes across different datasets, performing particularly
well on datasets that contain multiple and varied object in-
stances per image, i.e., RealPizza10 and COCO2014. Our
method generalizes to different backbones. Our method
approaches to FSOD state-of-the-art Sparse DETR [37] by
3.4% AP50 difference with only 5% fully-annotated train-
ing images on RealPizza10 using ResNet50 backbone. Our
method generalizes to different detectors. We compare
Faster-RCNN with Sparse DETR for both Gstu and Gtea.
They both perform similarly. Hence, the performance gain
is largely not affected by the detector architecture. ALWOD
shows a better trade-off between detection performance and
annotation effort than FSOD, WSOD, and SSOD. Qualita-
tive results can be found in Supplement Sec. 5.

4.2. Ablation Study

Impact of SX . We analyze the impact of our warm-
start active learning approach using the auxiliary set SX ,
described in Sec. 3.2.1, on RealPizza10 and VOC2007
datasets. ALWOD first annotates randomly selected images
A0, then creates SX constructed from task-specific aug-
mentations of these fully-labeled images A0. The initial
student-teacher model is trained on weakly-annotated S0
and fully-annotatedA0 or SX . In Tab. 2 SX ∪A0 ∪S0 de-
notes that a model is trained on the fully-annotated auxiliary
images SX coupled with weakly-annotated real images S0
in a semi-supervised manner, where A0 is not directly used
for training, while used for creating SX . To our knowledge,
this is the first use of this concept in active learning. We
compare our framework with SSDGMM [5], and BiB [49]
using different training sets. In our framework, we only
use fully-labeled images A0 or auxiliary domain SX to ini-
tialize the student and teacher networks. In SSDGMM [5],
the initial FSOD model is only trained on fully-annotated
images A0 or auxiliary domain SX . In BiB, we first pre-
train the base weakly-supervised detector MIST [49] on S0.
Then we fine-tune MIST either on A0 selected by BiB AL
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Table 1: Results (AP50 and AP in %) for different methods in different settings on VOC2007, COCO2014, and RealPizza10.
In FSOD and WSOD settings, each baseline considers the same fraction of the FA images across datasets. In SSOD and
ALOD settings, different approaches consider different fractions of FA images in different benchmarks, e.g., ALWOD and BiB
consider 5% of FA data on VOC2007, 1% on COCO2014, and 5% on RealPizza10, respectively, denoted as 5%/1%/5%. Red
figures denote the best-performing non-FSOD method, followed by the second-best in blue. * denotes reproduced results.

Setting n/N Backbone (Detector) Method VOC2007 COCO2014 RealPizza10
AP50 AP50 AP AP50

FSOD 100%

VGG16 Faster-RCNN [35] 69.9 42.1 20.5 39.1
VGG16 SSD [24] 68.0 42.1 24.1 32.8
VGG16 Sparse DETR [37] 72.1 58.1 33.4 41.2

ResNet50 Faster-RCNN [35] 74.1 59.1 38.4 40.2
ResNet50 Sparse DETR [37] 88.4 65.8 45.5 42.7
Swin-T Sparse DETR [37] 90.2 69.2 48.2 43.8

WSOD
0% VGG16

WSDDN [2] 34.8 11.5 - -
OICR [45] 41.2 - - 4.7

C-MIDN [11] 52.6 21.4 9.6 -
WSOD2 [56] 53.6 22.7 10.8 -

MIST(+Reg) [36] 54.9 24.3 11.4 -
CASD [19] 56.8 26.4 12.8 12.9
W2N [18] 65.4 - - -

D2DF2WOD [51] 66.9 - - 25.1

SSOD

10% VGG16 BCNet [29] 61.8 38.3 22.9 35.4
10% VGG16 OAM [1] 63.3 - - -

5%/1%/5% ResNet50 (Faster-RCNN) Unbiased teacher v2 [26] 61.2 37.5 22.3 32.8
5%/1%/5% ResNet50 (Faster-RCNN) Label Matching [4] 61.7 37.7 22.4 34.1

ALOD

10% VGG16 (Faster-RCNN) BAOD [31] 50.9 - - -
80%/8%/80% VGG16(SSD) SSDGMM [5]* 62.1 28.8 15.3 23.4

80%/12.5%/80% VGG16 (SSD) NALAE [8]* 67.7 25.5 11.9 32.3

5%/1%/5%

VGG16 (SSD) SSDGMM [5] 28.8 8.7 4.3 16.4
VGG16 (SSD) NALAE [8] 36.3 8.8 3.4 22.2

Resnet50 (Faster-RCNN) Active Teacher [28] 49.7 33.5 18.0 30.8
VGG16 (MIST [36]) BiB [49]* 60.6 33.2 16.5 15.7

ResNet50 (Faster-RCNN) ALWOD 69.1 39.8 24.5 38.0
VGG16 (Sparse DETR) ALWOD 68.0 38.4 23.7 37.9

ResNet50 (Sparse DETR) ALWOD 70.5 41.8 26.0 39.3
Swin-T (Sparse DETR) ALWOD 71.7 42.5 27.2 40.2

Table 2: Effectiveness of the auxiliary domain SX on RealPizza10 and VOC2007. For RealPizza10, the set cardinalities are:
|A0| = 50, |SX | = 10, 058, and |S0| = 5, 029. For VOC2007, the set cardinalities are: |A0| = 50, |SX | = 10, 022, and
|S0| = 5, 011. To focus on the auxiliary domain, we reproduce all numbers by applying each training set to each method.

Backbone Setting Training set AP50 (%)
RealPizza VOC2007

SSDGMM BiB ALWOD SSDGMM BiB ALWOD

VGG16 ALOD

A0 10.7 - 4.3 14.4 - 3.3
S0 - 11.8 - - 47.7 -
SX 10.8 - 7.0 14.6 - 39.2

A0 ∪ S0 - 15.2 11.9 - 54.5 55.4
SX ∪ A0 ∪ S0 - 14.0 18.8 - 50.6 60.1

strategy or SX constructed from A0.

Tab. 2 shows the key role of SX in lifting the initial
detection performance of ALWOD from 11.9% to 18.8% in
terms of AP50 on RealPizza10. As shown in Tab. 2 our ap-
proach significantly outperforms the initialization strategy
of SSDGMM [5] by utilizing the auxiliary domain.

We also analyze the impact of our auxiliary domain SX
in the BiB framework. As shown in Tab. 2, in ALWOD SX
helps to initialize the student-teacher model. SX improves

the performance of MIST, while due to the domain gap be-
tween SX and S0, the improvement is less than the im-
provement using A0.

Comparison of active learning strategies. We investi-
gate the performance of our semi-supervised framework on
three benchmarks under different acquisition functions us-
ing our proposed annotation strategy. We complete T = 5
annotation cycles with a budget of B = 50 images per
cycle on VOC2007 and RealPizza10, B = 160 images
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per cycle on COCO2014 datasets. We report the perfor-
mance using the average of AP50 over three repetitions.
As shown in Fig. 6, across the three benchmarks, our ac-
quisition method ALWODΠ consistently achieves improve-
ment over other strategies. The performance of BiB trails
our ALWODΠ, since BiB strategy aims to select the “best”
training samples to “fix” the mistakes of the base weakly-
supervised detector [49], while ALWOD disagreement-based
AL strategy leverages the key property of the student-
teacher networks. Entropy-sum obtains significantly worse
results than other strategies on RealPizz10 and COCO2014
datasets as shown in Fig. 6a and Sec. 4.2. Core-set [40] and
loss [53] underperform uniform sampling. The performance
of uniform sampling is always worse than our proposed
functions in each AL cycle. At t = 3, we see a significant
improvement compared with the previous steps. As shown
in Fig. 6, our product strategy ALWODΠ for the final fused
acquisition function exceeds the sum strategy ALWODΣ. Per
class results can be found in Supplement Sec. 4
Comparison of annotation strategies. As shown in
Tab. 3, our final fused acquisition function αΠ combined
with our “selecting the box” annotation strategy obtains
comparable results to the traditional “drawing the box” an-
notation strategy by only a 0.6% difference in terms of
AP50.

Table 3: Ablation study on affect annotation tools based
on our semi-supervised framework on RealPizza10 dataset
using ResNet50 backbone.

Labeling AP50 (%)
Cycle (t) 0 1 2 3 4

Drawing 19.1 27.1 37.3 38.8 39.9
Selecting (ALWOD) 19.1 25.8 29.3 37.7 39.3

5. Discussion and Conclusion
We propose a new approach to boost the detection per-

formance of weakly-supervised object detectors by com-
bining semi-supervised learning and active learning. We
introduce a simple yet effective image generator to create
large auxiliary fully-annotated data by leveraging few fully-
annotated real images to warm-start active learning. Our
framework introduces a novel acquisition function based on
the fusion of the student-teacher OD model disagreement
and the traditional image uncertainty, combined with an ef-
fective, low-effort annotation strategy. Empirical evalua-
tions show that our method significantly outperforms the
state-of-the-art on several key benchmarks and is particu-
larly adept at tackling challenging multi-object, multi-class
scenarios such as those in COCO2014 and RealPizza10
datasets. Limitation. Our annotation strategy requires the
framework to automatically select certain object proposals
on each image for manual checking. The default selection

(a) RealPizza10

(b) VOC2007

(c) COCO2014

Figure 6: Detection performance across different active
learning strategies in our framework on the three bench-
marks using ResNet50 backbone.

criteria may either introduce noisy or false positive bound-
ing boxes or ignore bounding boxes with true objects in
them; this may negatively affect the annotation quality or
the annotation speed and, subsequently, the OD accuracy.
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