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Abstract

3D visual grounding involves finding a target object in a
3D scene that corresponds to a given sentence query. Al-
though many approaches have been proposed and achieved
impressive performance, they all require dense object-
sentence pair annotations in 3D point clouds, which are
both time-consuming and expensive. To address the prob-
lem that fine-grained annotated data is difficult to obtain,
we propose to leverage weakly supervised annotations to
learn the 3D visual grounding model, i.e., only coarse
scene-sentence correspondences are used to learn object-
sentence links. To accomplish this, we design a novel se-
mantic matching model that analyzes the semantic similar-
ity between object proposals and sentences in a coarse-to-
fine manner. Specifically, we first extract object propos-
als and coarsely select the top-K candidates based on fea-
ture and class similarity matrices. Next, we reconstruct the
masked keywords of the sentence using each candidate one
by one, and the reconstructed accuracy finely reflects the se-
mantic similarity of each candidate to the query. Addition-
ally, we distill the coarse-to-fine semantic matching knowl-
edge into a typical two-stage 3D visual grounding model,
which reduces inference costs and improves performance by
taking full advantage of the well-studied structure of the ex-
isting architectures. We conduct extensive experiments on
ScanRefer, Nr3D, and Sr3D, which demonstrate the effec-
tiveness of our proposed method.

1. Introduction

3D Visual grounding (3DVG) refers to the process of lo-
calizing an object in a scene based on a natural language
sentence. The 3DVG task has recently gained attention
due to its numerous applications. Despite the significant
progress made in this area [3, 4, 40, 41, 17, 38], all these
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Figure 1. (a). 3D visual grounding aims to find the object-
sentence pair from the whole scene. The fully supervised setting
requires all the dense ground-truth object-sentence labels for train-
ing, while the weakly supervised method only needs the coarse
scene-sentence annotations. (b). Coarse-to-Fine Semantic Match-
ing Model (bottom) analyzes the matching score of each proposal
to the sentence, and the semantic matching knowledge is distilled
to the two-stage 3DVG architecture (upper).

approaches require bounding box annotations for each sen-
tence query, which are laborious and expensive to obtain.
For example, it takes an average of 22.3 minutes to anno-
tate a scene in the ScanNet-v2 dataset [6]. Thus, we focus
on weakly supervised training for 3DVG, which only re-
quires scene-sentence pairs for training. This problem is
meaningful and realistic since obtaining scene-level labels
is much easier and can be scaled effectively.

However, weakly supervised 3DVG poses two chal-
lenges. Firstly, a 3D point cloud can contain numerous ob-
jects of various categories, and a sentence query may con-
tain multiple objects besides the target object to aid in lo-
calization. Without knowledge of the ground-truth object-
sentence pair, it is difficult to learn to link the sentence to
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its corresponding object from the enormous number of pos-
sible object-sentence pairs. Secondly, the 3DVG task often
involves multiple interfering objects in the scene with the
same class as the target object, and the target object must
be distinguished based on its object attributes and the rela-
tions between objects described in the given sentence. As
illustrated in Figure 1 (a), there are two trash cans in the
scene, and the described target object can only be identified
by fully comprehending the language description.

To address both challenges simultaneously, we propose
a coarse-to-fine semantic matching model to measure the
similarity between object proposals and sentences. Specifi-
cally, our model generates object-sentence matching scores
from scene-sentence annotation, guided by coarse-to-fine
semantic similarity analysis. Firstly, we calculate the ob-
ject category similarity and feature similarity between all
the proposals and the sentence. Combining these two sim-
ilarities, we roughly select K proposals with the highest
similarity to the sentence, which can effectively filter out
the proposals that do not belong to the target category. Sec-
ondly, we utilize NLTK [2] to conduct part-of-speech tag-
ging on the sentences and randomly mask the more mean-
ingful nouns and adjectives words. The selected candidates
would be used to reconstruct the masked keywords of the
sentence, which can help the model fully and deeply un-
derstand the whole sentence. Since the target object and
the sentence query are semantically consistent, the more the
candidate and the target object overlap, the more accurate its
predicted keywords will be. The object-sentence matching
score of each candidate can be measured by its reconstruc-
tion loss. Eventually, in order to reduce inference time and
make full use of the structure of existing 3DVG models, we
utilize knowledge distillation [15] to migrate the knowledge
of the coarse-to-fine semantic matching model to a typical
two-stage 3DVG model, where the distilled pseudo labels
are generated by the object-sentence matching scores.

In summary, the key contribution is four-fold:

• To the best of our knowledge, this paper is the first
work to address weakly supervised 3DVG, which
eliminates the need for expensive and time-consuming
dense object-sentence annotations and instead requires
only scene-sentence level labels.

• We approach weakly supervised 3DVG as a coarse-to-
fine semantic matching problem and propose a coarse-
to-fine semantic matching model to analyze the simi-
larity between each proposal and the sentence.

• We distill the knowledge of the coarse-to-fine semantic
matching model into a two-stage 3DVG model, which
fully leverages the well-studied network structure de-
sign, leading to improved performance and reduced in-
ference costs.

• Experiments conducted on three wide-used datasets
ScanRefer [4], Nr3D [1] and Sr3D [1] demonstrate the
effectiveness of our method.

2. Related Work

Supervised 3D Visual Grounding. Grounding a sen-
tence query in a 3D point cloud is a fundamental prob-
lem in vision-language tasks, with wide-ranging applica-
tions in fields like automatic robotics [36, 35, 26, 11] and
AR/VR/metaverse [27, 9, 21]. The ScanRefer [4] and
Referit3D [1] datasets annotate dense object-sentence links
on the widely-used 3D point cloud dataset ScanNet [6].

Most recent 3D visual grounding methods [3, 40, 41, 17,
16, 38] follow a two-stage pipeline. In the first stage, pre-
trained 3D object detectors [30, 23] generate 3D object pro-
posals. The second stage involves matching the selected ob-
ject proposals with the sentence query. Existing two-stage
methods improve performance by exploring the object at-
tributes and relations between proposals in the second stage.
For example, 3DVG-Transformer [41] uses a coordinate-
guided contextual aggregation module to capture relations
between proposals and a multiplex attention module to dis-
tinguish the target object. TransRefer3D [13] uses an entity-
aware attention module and a relation-aware attention mod-
ule for fine-grained cross-modal matching. 3DJCG [3] de-
vises a joint framework for 3D visual grounding [4] and 3D
dense captioning [5] tasks, and their experiments demon-
strate that extra caption-level data can improve the perfor-
mance of 3D visual grounding.

In contrast to these supervised methods, our approach
learns to localize target objects in 3D space using only
caption-level annotations.
Weakly Supervised Image Grounding. The image
grounding task, similar to 3DVG, aims to identify objects in
an image based on a sentence, and has a wide range of ap-
plications [29, 20, 8, 39, 19, 37]. Weakly supervised image
grounding, which requires only images and corresponding
sentences in the training phase, has gained popularity due
to the low cost of annotation [12, 32, 34, 10, 7].

Weakly supervised image grounding is typically treated
as a Multiple Instance Learning (MIL) problem [18, 25],
where the image is represented as a bag of regions, gener-
ated by a pre-trained image object detector. Image-sentence
matching scores are calculated based on region-phrase sim-
ilarity scores, and ground-truth image-sentence links are
used to supervise these scores. For example, ARN [22]
pairs image proposals and queries based on subject, loca-
tion, and context information through adaptive grounding
and collaborative reconstruction. InfoGround [12] proposes
a contrastive learning objective function [14] to optimize
image-sentence scores. Wang et al. [34] use a pre-trained
image object detector to generate pseudo category labels for
all regions, achieving region-phrase alignment by distilling
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Figure 2. Overall architecture diagram of our model. The model is based on a two-stage grounding pipeline. We first extract object
proposals by pre-trained object detector. Then, we propose a coarse-to-fine semantic matching process to find the matched object-query
pair. Furthermore, we distill the semantic matching knowledge into an effective matching architecture to enhance the inference efficiency.

knowledge from these pseudo labels.
However, MIL-based weakly supervised image ground-

ing methods cannot solve the weakly supervised problem
in 3DVG. Firstly, the presence of numerous different ob-
jects in a single 3D scene makes it difficult to learn a stable
MIL classifier. Secondly, while image grounding aims to
locate objects corresponding to all phrases in the sentence,
3DVG requires the identification of a single target object,
necessitating a deeper and more comprehensive understand-
ing of the sentence’s semantic information, rather than just
its phrases.

3. Method

3.1. Problem Formulation

In this paper, we address the problem of weakly-
supervised 3DVG. The input point cloud P = {pi}

Np

i=1 con-
tains point coordinates in 3D space, represented by pi 2
R3. Correspondingly, a sentence query Q = {qi}Nq

i=1 is
given to describe the object of interest. The objective of
our model is to predict a 3D bounding box B = (c, r) that
encompasses the object, where c = (cx, cy, cz) represents
the center of the box, and r = (rx, ry, rz) represents the
dimensions of the box. The number of input points and sen-
tence length is denoted by Np and Nq, respectively. In the
weakly-supervised setting, there are no bounding box anno-

tations available during training.

3.2. Overview

As depicted in Figure 2, our model utilizes a two-stage
grounding pipeline. In the first stage, we employ a pre-
trained 3D object detector to extract Mp object proposals
from the given point cloud. In the second stage, we propose
a coarse-to-fine semantic matching process to evaluate the
semantic similarity between each proposal and the sentence
query. Specifically, the coarse-to-fine process comprises
two steps. Firstly, we coarsely extract the top K object pro-
posals, which are referred to as candidates, by computing
the object-sentence similarity matrix between all proposals
and the sentence query. Secondly, we generate a more ac-
curate pseudo label by considering the semantic reconstruc-
tion result of each candidate-sentence pair. Further details
will be explained in Section 3.3 and Section 3.4.

Moreover, for reducing the inference costs and further
enhancing the performance, we propose to distill the seman-
tic matching knowledge into a supervised 3DVG pipeline as
elaborated in Section 3.5. Most advanced fully-supervised
models typically operate using a “detection-and-matching”
paradigm. This means that these powerful matching archi-
tectures can be used as plug-and-play modules to incorpo-
rate knowledge learned from weak supervision.
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3.3. Coarse-grained Candidate Selection

Object-Sentence Similarity. Although we have extracted
numerous high-quality object proposals from the pre-
trained 3D object detector, identifying the best-matched
proposal with the sentence query is still challenging. This
is because a 3D scene may contain many different classes
of objects, and the semantic spaces between objects and the
sentence are not aligned. To overcome this challenge, we
propose calculating a similarity matrix between the objects
and the sentence based on both class and feature levels.

For the class level, we can obtain the object class from
the pre-trained 3D object detector and the text class from
a text classifier. For simplicity, we choose to train the text
classifier from scratch and the classification loss Lcls is a
simple cross-entropy loss. Considering that the object de-
tector might be pre-trained on another dataset, the object
class set and the text class set may be inconsistent. There-
fore, before directly comparing the object proposals and the
sentence, we need to transfer the object class prediction to
the target text class. To achieve this, we propose using a
class transform matrix Mc 2 RNc

o⇥Nc
q for class alignment.

The matrix is based on the cosine similarity between the
GloVe embeddings of different class names. Here, N c

o and
N c

q denote the number of object classes and the number of
words in the sentence query, respectively.

For the feature level, we align the feature representations
of the objects and the sentence query using a contrastive
learning approach. Specifically, we pull the positive object-
query pairs in the same scene closer and push the negative
pairs further apart in the semantic space. To achieve this,
all the object-query pairs in the same scene are considered
as positive pairs P, while those from different scenes are
considered as negative pairs N. The feature matching loss
for object-sentence feature alignment can be computed by

Lmatch = � log

0

BB@

P
(p,q)2P

e�(p,q)

P
(p,q)2P

e�(p,q) +
P

(p0 ,q)2N
e�(p

0 ,q)

1

CCA ,

(1)
where p represents an object proposal and q a sentence
query. � is the feature similarity function, which is a dot
product in our practice.

We get the object-sentence similarity ŝ 2 RMp by

ŝ = �(P̃cMc, Q̃c) + �(P̃, Q̃), (2)

where P̃ 2 RMp⇥d / Q̃ 2 RNq⇥d is the encoded ob-
ject/sentence feature, and P̃c 2 RNc

o / Q̃c 2 RNc
q is the

object/sentence class prediction. � is a similarity function
(e.g., cosine similarity or dot product). Mp is the number
of object proposals. d is the hidden dimension.

Top-K Selection. According to the object-sentence simi-
larity, we coarsely select the top K candidates C̃ 2 RK⇥d

out of the Mp proposals P̃ 2 RMp⇥d, which can effectively
filter out proposals that are significantly different from the
semantics of the sentence.

3.4. Fine-grained Semantic Matching

Given the K object candidates, we propose a seman-
tic reconstruction module to measure fine-grained semantic
similarity between the objects and the sentence query.

As depicted in Figure 2, we mask important words in
the sentence query, such as the target object (table), its at-
tribute (blue), and its relation to other objects (in front of )
in the scene. We reconstruct the masked words with the as-
sistance of each candidate, respectively. The candidate that
provides the most useful semantic information to predict the
keywords and contains the least amount of noise is expected
to be the best match.

We encode the masked sentence query using a textual
encoder, denoted as Q̃m 2 RNq⇥d. For the k-th candidate
c̃k 2 Rd, we obtain the cross-modal semantic representa-
tion fk = {fki }

Nq

i=1 2 RNq⇥d by a transformer decoder

fk = Dec(Q̃m, c̃k). (3)

To predict the masked words, we compute the energy dis-
tribution ek = {eki }

Nq

i=1 2 RNq⇥d over the vocabulary by

eki = Wfki + b, (4)

where eki 2 RNv represents the energy distribution of the
i-th predicted word, and Nv is the number of words in the
vocabulary. W 2 RNv⇥d and b 2 RNv are learnable pa-
rameters of a fully-connected layer.

Then, we use a reconstruction loss to train the seman-
tic reconstruction module to effectively learn key informa-
tion from the object context and predict the masked words.
Specifically, the reconstruction can be computed as

Lk
recon = �

X

i2Nmask

log p(qi|eki ), (5)

where Nmask represents positions of masked words in the
query and Lk

recon is the reconstruction loss for the k-th can-
didate c̃k. Then the total loss for all the K candidates is
Lrecon =

PK
k=1 Lk

recon.

3.5. Knowledge Distillation

As mentioned earlier, a lower reconstruction loss indi-
cates that the object candidate provides more consistent se-
mantic information. A direct approach for object prediction
is to select the candidate with the lowest reconstruction loss,
as it is likely to be the best match. However, this coarse-to-
fine matching process is computationally expensive during
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Table 1. Performance comparison on ScanRefer. “SUN” and “SCAN” denotes that the 3D object detector is pretrained on SUN RGB-D[33]
or ScanNet[6], respectively. For the “R@n, IoU@m” metric, n 2 {1, 3} and m 2 {0.25, 0.5}.

Method
R@3 R@1

Unique Multiple Overall Overall
m=0.25 m=0.5 m=0.25 m=0.5 m=0.25 m=0.5 m=0.25 m=0.5

SUN

Upper Bound 57.07 35.28 55.30 35.29 55.65 35.29 - -
Random 15.88 6.99 7.38 3.28 9.03 3.96 3.66 1.37

MIL-Margin [10] 19.94 10.51 10.18 3.60 12.07 4.94 6.80 2.37
MIL-NCE [12] 19.13 10.95 7.57 3.56 9.81 5.00 5.64 2.69

Ours 24.07 18.05 12.54 7.50 14.78 9.55 10.43 6.37

SCAN

Upper Bound 93.82 77.02 72.61 58.01 76.72 61.70 - -
Random 21.36 14.25 10.10 7.15 12.28 8.53 4.74 3.32

MIL-Margin [10] 29.54 22.49 11.48 8.04 14.99 10.84 8.16 5.66
MIL-NCE [12] 48.94 40.76 17.41 13.73 23.53 18.97 18.95 14.06

Ours 70.84 58.21 25.28 20.68 34.12 27.97 27.37 21.96

inference and not explicitly optimized for grounding tasks.
To tackle the issues, we propose to distill the coarse-to-
fine semantic matching knowledge into a supervised 3DVG
pipeline. Our approach offers multiple benefits, including
reduced inference costs and the ability to capitalize on more
powerful 3DVG architectures and established learning ob-
jectives tailored for 3DVG tasks. By incorporating knowl-
edge distillation, our framework can be integrated with any
advanced supervised 3DVG pipeline, enhancing the flexi-
bility and practicality of our method.

For candidates, we calculate the reward according to
their rank of Lk

recon. The reward is reduced from one
to zero, under the assumption that lower reconstruction
loss gets better reward. The distilled pseudo labels d =
{d1, ..., dMp} can be generated by filling the rewards of
candidates to their original indices and padding the non-
candidate indices with zeros, following by a SoftMax op-
eration. After all, we distill the knowledge by aligning the
predict scores s = {s1, ..., sMp} to the pseudo labels, where
the predict scores are obtained from the powerful matching
architecture. The distillation loss is:

Ldistill = �
MpX

i=1

di log(
exp(si)

PMp

j=1 exp(sj)
). (6)

3.6. Training and Inference

Multi-Task Loss We train the model end-to-end via a
multi-task loss function, formulated by

Loverall = Ldistill + �1Lcls + �2Lmatch + �3Lrecon (7)

where �1, �2 and �3 are hyper-parameters to balance four
parts of the loss function.

Inference. Thanks to the knowledge distillation, all we
need in the inference phase is the two-stage 3DVG pipeline.

We get the predict score s 2 RMp from the matching ar-
chitecture, and the index of the predicted best-match pro-
posal is argmax(s). Then, we obtain the corresponding 3D
bounding box of this object proposal.

4. Experiments

4.1. Datasets

ScanRefer. The ScanRefer [4] dataset contain 51,583 de-
scriptions of 11,046 objects from 800 ScanNet [6] scenes.
On average, each scene has 64.48 sentences and 13.81 ob-
jects. The data can be divided into “Unique” and “Mul-
tiple”, depending on whether there are multiple objects of
the same category as the target in the scene.
Nr3D/Sr3D. The Nr3D/Sr3D dataset [1] is also based on
the 3D scene dataset ScanNet [6]. Nr3D contains 41,503
human utterances collected by ReferItGame, and Sr3D con-
tains 83,572 sentences automatically generated based on a
“target-spatial relationship-anchor object” template. Simi-
lar to the definition of “Unique” and “Multiple” in Scan-
Refer, Nr3D/Sr3D can be split into “easy” and “hard” sub-
sets. The “view-dep.” and “view-indep.” subsets depend on
whether the description is related to the speaker’s view. 1

4.2. Evaluation Metric.

To evaluate the performance of our method and baselines
on these three datasets, we adopt the “R@n, IoU@m” met-
ric. Specifically, this metric represents the percentage of at
least one of the top-n predicted proposals having an IoU

1In the Nr3D/Sr3D datasets, the supervised task involves selecting the
correct matching 3D box from a set of given boxes, with the instance
matching accuracy serving as the evaluation metric. However, in the
weakly-supervised setting, we predict the boxes from scratch and assess
the IoU metrics, which cannot be directly compared to the results of super-
vised methods.
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Table 2. Performance comparison on Nr3D and Sr3D dataset. “SUN” and “SCAN” denotes that the 3D object detector is pretrained on
SUN RGB-D [33] or ScanNet [6], respectively. For the “R@n, IoU@m” metric, n = 3 and m 2 {0.25, 0.5}.

Method Easy Hard View-dep. View-indep. Overall
m=0.25 m=0.5 m=0.25 m=0.5 m=0.25 m=0.5 m=0.25 m=0.5 m=0.25 m=0.5

Nr3D

SUN

Upper Bound 40.24 24.62 40.62 23.80 40.66 24.88 40.32 23.82 40.44 24.20
Random 6.70 2.40 6.34 2.75 6.59 2.91 6.47 2.41 6.51 2.59

MIL-Margin [10] 9.93 5.63 7.79 4.03 8.71 4.77 8.88 4.81 8,82 4,80
MIL-NCE [12] 9.93 5.42 7.77 4.79 8.45 4.67 9.00 5.32 8.81 5.09

Ours 10.93 6.36 9.83 6.18 10.77 6.53 10.13 6.13 10.36 6.27

SCAN

Upper Bound 62.43 44.75 58.98 44.18 59.15 42.91 61.44 45.29 60.64 44.45
Random 8.81 5.66 7.57 4.97 7.28 4.80 8.65 5.61 8.17 5.30

MIL-Margin [10] 14.25 10.64 9.79 7.68 10.64 8.35 12.63 9.50 11.93 9.10
MIL-NCE [12] 17.29 13.53 9.61 7.59 11.96 9.44 14.01 10.98 13.29 10.44

Ours 27.29 21.10 17.98 14.42 21.60 16.80 22.91 18.07 22.45 17.62

Sr3D

SUN

Upper Bound 39.22 23.69 39.58 21.83 25.93 13.30 39.92 23.24 39.33 22.82
Random 6.53 2.28 4.61 2.17 1.86 0.80 6.05 2.32 5.96 2.25

MIL-Margin [10] 8.52 4.84 5.66 3.98 3.19 2.66 7.86 4.67 7.67 4.59
MIL-NCE [12] 8.66 4.92 4.10 2.78 2.46 0.93 7.56 4.42 7.30 4.28

Ours 10.31 6.60 8.57 6.23 4.19 1.86 10.09 6.69 9.79 6.49

SCAN

Upper Bound 65.42 46.75 58.46 42.69 53.59 34.84 63.77 46.01 63.34 45.54
Random 8.50 5.38 6.85 4.55 5.59 3.72 8.12 5.20 8.01 5.13

MIL-Margin [10] 12.55 9.82 9.59 7.50 9.57 7.98 11.76 9.18 11.67 9.13
MIL-NCE [12] 17.45 12.51 9.61 7.14 12.37 7.97 15.22 11.03 15.11 10.90

Ours 29.40 24.87 21.00 17.47 20.21 17.15 27.19 22.90 26.89 22.66

greater than m when compared to the ground-truth target
bounding box. In our setting, n 2 1, 3 and m 2 0.25, 0.5.

4.3. Implementation Details.

In our practice, we use the pretrained GroupFree
model [23] as our 3D object detector and distill the learned
semantic matching knowledge to the matching architecture
proposed in 3DJCG [3]. The input point number Np, the
proposal number Mp, and the candidate number K are set
to 50000, 256 and 8, respectively. More details can be found
in the supplementary material.

4.4. Compared Methods

Random. We randomly select a candidate from all the pro-
posals as the predicted result.
MIL-Margin. The MIL-Margin method [10] proposes a
max margin loss to enforce the score between a sentence
and a paired scene to be higher than non-paired scenes, and
vice versa.
MIL-NCE. The MIL-NCE method [12] maximizes the In-
foNCE lower bound on mutual information between the
sentence and proposals from the paired scene, compared to
non-corresponding pairs of scenes and sentences.
Upper Bound. The quality of the bounding boxes gener-
ated by the 3D object detector determines the upper bound
performance of our model. We consider the maximum IoU

between all the Mp object proposals and the ground-truth
bounding box as the upper bound.

4.5. Quantitative Comparison

The performance results of our methods and baselines
on ScanRefer and Nr3D/Sr3D are reported in Table 1 and
Table 2, respectively, with the best results highlighted in
bold. The comparison to supervised methods is presented
in Table 3. Although the 3D object detector pre-trained on
ScanNet implicitly utilizes ground truth boxes on ScanNet,
the object-sentence annotations are still unseen, and pre-
training on ScanNet is only used to obtain more accurate
proposals. To fully avoid annotations in ScanNet, we also
evaluate results using a detector pre-trained on SUN RGB-
D [33]. Despite the degradation caused by out-of-domain
data, our method still shows significant improvement over
baselines. By analyzing the evaluation results, we can ob-
serve the following facts:

• Our method achieves significant improvements over
the Random method on all datasets, indicating the
effectiveness of the coarse-to-fine semantic matching
model in analyzing the similarity between objects and
sentences when true object-sentence pairs are unavail-
able.

• The results show that our method outperforms widely
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Table 3. Comparison to supervised methods on ScanRefer.

Method Backbone R@1
m=0.25 m=0.5

ScanRefer [4] VoteNet 41.19 27.40
SAT [38] VoteNet 44.54 30.14

3DVG-Transformer [41] VoteNet 47.57 34.67
3DJCG [3] VoteNet 49.56 37.33

Ours VoteNet 25.87 16.63
Ours GroupFree 27.37 21.96

Table 4. Ablation studies on the coarse-to-fine semantic matching
model. The experiments of all the ablation study are conducted on
ScanRefer dataset. “R@3, SUN” refers to n = 3 and the object
detector is pretrained on SUN RGB-D.

Lcls Lmatch Lrecon
R@3, SUN R@3, SCAN

m=0.25 m=0.5 m=0.25 m=0.5

9.03 3.96 12.28 8.53
X 10.53 6.29 17.41 14.28

X 13.10 8.17 32.71 25.90
X X 13.76 8.48 33.03 26.58
X X X 14.78 9.55 34.12 27.97

used MIL-based weakly supervised methods by a large
margin, and even approaches the upper bound in the
“Unique” subset of ScanRefer. This suggests that our
proposed model can deeply exploit the alignment rela-
tionship between 3D scenes and sentences and identify
the most semantically relevant object proposals.

• Our coarse-to-fine semantic matching model signifi-
cantly improves performance in the challenging “Mul-
tiple” subset of ScanRefer and “Hard” subset of
Nr3D/Sr3D, where there are multiple interfering ob-
jects with the same category as the target object. This
problem requires a comprehensive understanding of
the sentence to distinguish the described object, which
our model handles efficiently with the keywords se-
mantic reconstruction module.

• The performance improvement with the SUN RGB-
D pre-trained backbone is relatively small on Nr3D
and Sr3D datasets, possibly because the target ob-
jects are inherently more challenging to detect, and
the pre-trained detector performs poorly due to out-
of-distribution data. The low grounding upper bound
and inaccurate proposals make the training phase un-
stable. Nevertheless, our method outperforms all base-
lines, and when the detector is more reliable, our se-
mantic matching model shows much more significant
advantages on Nr3D/Sr3D.

4.6. Ablation Study

To further assess the effectiveness of each component,
we conduct ablation studies on the ScanRefer dataset.

Table 5. Ablation study on the candidate number K.

K
R@3, SUN R@3, SCAN

m=0.25 m=0.5 m=0.25 m=0.5

4 14.04 9.05 33.68 27.50
8 14.78 9.55 34.12 27.97

16 14.37 9.39 33.23 26.99
32 14.26 9.21 31.29 25.90

Table 6. Ablation study on the knowledge distillation. The match-
ing time is evaluated for one batch.

Distill Target R@3, SUN R@3, SCAN Matching Phase
m=0.25 m=0.5 m=0.25 m=0.5 Time Params

w/o distill. 13.88 9.09 31.71 26.38 31.4 ms 5.85 M
SAT [38] 14.00 9.15 33.70 27.85 6.78 ms 1.85 M

3DVG-Trans [41] 14.01 9.10 34.61 28.22 8.38 ms 1.91 M
3DJCG [3] 14.78 9.55 34.12 27.97 8.22 ms 1.93 M

4.6.1 Effectiveness of Semantic Matching Model

Coarse-to-Fine Matching Scores. We aim to examine the
effect of each module in the coarse-to-fine semantic match-
ing model. Lcls and Lmatch denote whether to use class
similarity and feature similarity for coarsely selecting the
top-K candidates, respectively. Lrecon represents using the
reconstruct module to finely generate distilled pseudo la-
bels for the selected K candidates. If Lrecon is not used,
all the selected K candidates’s rewards are set directly to 1.
Table 4 shows that using Lcls or Lmatch alone can effec-
tively aid the model in learning object-sentence pairs from
the caption-level annotations, while joint usage of Lcls and
Lmatch leads to better performance. Furthermore, the last
two rows suggest that the fine-grained semantic matching
module can effectively and comprehensively analyze the se-
mantic similarity between the selected K candidates and the
sentence query, and further enhance the performance.
Number of Coarse-grain Candidate. We analyze the
performance for varying numbers of coarse-grained candi-
dates, K 2 4, 8, 16, 32. As shown in Table 5, we observe
that selecting 8 candidates yields the best results for fine-
grained semantic matching. We tentatively infer the reason
is that too small K leaves out the possible proposal that
covers the target object, while too large K leads to selecing
many proposals that are not relevant to the description due
to the numerous objects in a 3D scene.

4.6.2 Effectiveness of Knowledge Distillation

To investigate the effect of the semantic distillation in terms
of performance and efficiency, we construct the baseline
without knowledge distillation that removes the distillation
loss Ldistill during training and directly uses the coarse-to-
fine semantic matching model for inference. As shown in
Table 6, distilling the semantic matching knowledge into
the matching module of a two-stage 3DVG model brings
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Figure 3. Qualitative Comparison between MIL-based methods and Ours.

a significant performance improvement. The well-studied
structure of the existing 3DVG model enhances the gener-
alization ability of our method. As for the efficiency, we
observe that the distilled matching module is 3⇥ smaller
and 4⇥ faster than the coarse-to-fine semantic matching
model, demonstrating that the distilling operation reduces
inference costs significantly. Meanwhile, we try to distill
the knowledge into the matching modules of different su-
pervised methods (SAT [38], 3DVG-Transformer [41], and
3DJCG [3]), the results show that the distillation fits well to
different architectures.

4.7. Qualitative Comparison

As depicted in Figure 3, we visualize the predicted
bounding boxes in the corresponding 3D scene, where the
green box denotes that the method predicts the correct ob-
ject (IoU � 0.5 with the true box), and the red box indicates
a wrong prediction.

In case (a), the target object cabinet is the only cabinet
in the simple scene. So, both MIL-based methods and our
method can predict the box well. In case (b) / (c), the target
object is a trash can / chair. MIL-based methods may be
misled by the presence of another object (bathroom counter
/ desk) in the sentence. While our method can filter out the
objects that do not belong to the target category, benefit-
ing from the coarse-grained candidate selection module. In
case (d), there are six desks in the scene. The MIL-based
methods fail to localize the correct object, even though they

figure out the target object (category) is desk. With the fine-
grained semantic matching module, our methods can better
differentiate among these six desks and choose the one best-
matched to the sentence (“brown” and “under two moni-
tors”). In case (e), the scene contains 32 different chairs.
Unfortunately, both our method and MIL-based methods
fail in this case. However, we consider our method’s pre-
dicted result acceptable. Firstly, the sentence query’s ex-
pressions, such as “near the doors” and “near the center”,
are ambiguous and cannot give a precise location of the tar-
get object. Secondly, our method’s predicted chair is also
consistent with the sentence description and is close to the
true chair.

5. Conclusion

In this paper, we raise the weakly-supervised 3D visual
grounding setting, using only coarse scene-sentence corre-
spondences to learn the object-sentence links. The weak
supervision gets rid of time-consuming and expensive man-
ual annotations of accurate bounding boxes, which makes
this problem more realistic but more challenging. To tackle
this, we propose a novel semantic matching method to ana-
lyze the object-sentence semantic similarity in a coarse-to-
fine manner. Moreover, we distill the semantic matching
knowledge into the existing 3D visual grounding architec-
ture, effectively reducing the inference cost and further im-
proving performance. The sufficient experiments on large-
scale datasets verify the effectiveness of our method.
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