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Abstract

Recovering missing modality is popular in incomplete
multimodal learning because it usually benefits downstream
tasks. However, the existing methods often directly estimate
missing modalities from the observed ones by deep neural
networks, lacking consideration of the distribution gap be-
tween modalities, resulting in the inconsistency of distri-
butions between the recovered and the true data. To mit-
igate this issue, in this work, we propose a novel recov-
ery paradigm, Distribution-Consistent Modal Recovering
(DiCMoR), to transfer the distributions from available
modalities to missing modalities, which thus maintains the
distribution consistency of recovered data. In particular,
we design a class-specific flow based modality recovery
method to transform cross-modal distributions on the condi-
tion of sample class, which could well predict a distribution-
consistent space for missing modality by virtue of the invert-
ibility and exact density estimation of normalizing flow. The
generated data from the predicted distribution is integrated
with available modalities for the task of classification. Ex-
periments show that DiCMoR gains superior performances
and is more robust than existing state-of-the-art methods
under various missing patterns. Visualization results show
that the distribution gaps between recovered modalities and
missing modalities are mitigated. Codes are released at
https://github.com/mdswyz/DiCMoR.

1. Introduction
Multimodal machine learning dedicates to designing a

strong model for understanding, reasoning, and learning
by fusing multimodal data, such as language, acoustic,
image, et al [15, 24]. Researchers have extensively ex-
ploited how to effectively encode the discriminative repre-
sentations from different modalities [22, 33, 3, 28]. How-
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Figure 1. Two paradigms for missing modality recovery. (a) Typ-
ical paradigm usually exploits a well-crafted encoder and decoder
modality recovery. (b) Our method transfers the distribution from
the available to the missing modality, aiming to guarantee the dis-
tribution consistency. (c) Recovered and ground truth modality
distribution visualization comparison between MCTN [20] (top)
and our DiCMoR (bottom). DiCMoR exhibits a higher degree of
proximity to the ground truth. More results can be found in Fig. 3.

ever, in real world scenarios, the well-trained model may
be deployed when certain modalities are not available, e.g.,
language may be unavailable due to speech recognition er-
rors; acoustic modality may be lost due to background noise
or sensor sensing limitations; visual data may be unavail-
able due to lighting, occlusion, or social privacy security.
In practice, the problem of missing modality inevitably de-
grades the multimodal understanding performance.

To address this problem, a straightforward way is to con-
duct data recovery and then perform downstream tasks on
the recovered data. As shown in Fig. 1 (a), this is a typical
recovery paradigm that has been extensively studied by re-
searchers [23, 20, 34, 16]. The core of this paradigm aims
to design a well-crafted encoder and decoder, and then take
as input the available modality so as to recover the miss-
ing modality. Tran et al. [23] proposed a cascaded residual
autoencoder architecture to reconstruct the missing modal-
ities; Lian et al. [16] leveraged graph neural networks to
estimate the missing modalities from partially observed in-
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put. However, this paradigm fails to fully consider the dis-
tribution gap caused the inherent modality heterogeneity,
resulting in the inconsistent distribution between the vanilla
available and the corresponding recovered modality.

In this work, we propose a novel framework to mitigate
the above issues. As shown in Fig. 1 (b), different from
the previous paradigm, we transfer the distribution from the
available modalities to the missing modalities before decod-
ing the missing data. The missing modality is then recov-
ered under the estimated distribution. Thus, the key is to
construct and learn a model that has the ability to perform
transformations between cross-modal distributions.

To this end, we propose a distribution-consistent modal
recovering (DiCMoR) method to complete those missing
modalities for robust multimodal understanding. To trans-
form cross-modal distributions, we introduce the modality-
related flows and bridge different modalities within the em-
bedded distribution space. To facilitate the distribution
transfer, the invertible modality-specific normalizing flow
is used for each modality to map the features of different
modalities into the latent spaces with gaussian distributions,
which reduces the distribution gap between the modalities.
In the latent distribution space, the latent states of the miss-
ing modality could be sampled to feed into the inverse flow
to faithfully estimate the original missing data. To increase
the discriminability, the modality-related flows are built on
condition of class labels to avoid the common collapse of
different-class samples. In other words, we constrain the
latent spaces from the same class but different modalities
share the same class-specific Gaussian distribution, aim-
ing to enhance the discriminative ability of the recovered
modality. Owing to the favorable attributes inherent to flow-
based models, such as their invertibility and capacity for
precise density estimation, an assurance of distributional
congruence emerges between the inferred data and the ac-
tual ground truth. Finally, the recovered modalities together
with the available modalities could be jointly fed into mul-
timodal fusion network for the downstream tasks. The con-
tributions of this work are summarized as:

• We propose a novel missing modality recovery frame-
work by transferring the distributions from the avail-
able modalities to the missing modalities, which re-
duces the distribution gap between the recovered data
and the vanilla available data.

• We propose a cross-modal distribution transformation
method by designing class-specific multimodal flows,
which not only ensures the congruence of the distribu-
tions but also enhances the discriminative capacity.

• We experimentally verify the superiority of the method
in various modality-missing patterns. Visualization re-
sults demonstrate that distribution gaps between recov-
ered and missing modalities are obviously reduced.

2. Related Works

2.1. Incomplete multimodal learning

Learning from incomplete multimodal data is an essen-
tial research topic in machine learning, which allows trained
models to be robust to inevitable modality-missing envi-
ronments in real-world scenarios. Depending on whether
to recover incomplete multimodal data, current methods
can be divided into two categories: non-recovery methods
[29, 11, 5] and recovery methods [19, 32, 20].

The non-recovery methods can be roughly classified into
grouping strategy-based, correlation maximization-based,
and knowledge distillation-based. The grouping strategy-
based methods aim to split incomplete multimodal data into
multiple complete subgroups and perform feature learn-
ing for each subgroup individually [29]. The correlation
maximization-based methods aim to maximize the correla-
tion between modalities and constrain different modalities
to have correlated low-dimensional representations [11, 17].
The knowledge distillation-based methods learn a separate
prediction model for each modality, and then distill knowl-
edge between modalities, using the model of the partial
modality for prediction in the inference phase [5, 18].

The basic principle of the recovery methods is to esti-
mate and reconstruct the data of the missing modalities ex-
plicitly from the data of available modalities. The represen-
tative methods include zero-based recovery [19], average-
based recovery [32], and deep learning-based recovery [20].
Among them, the zero and average-based recovery methods
still cause a considerable gap between the recovered data
and the true data because they do not utilize any supervision
information. In contrast, deep learning-based methods can
better estimate missing modalities by leveraging their pow-
erful feature representation capabilities. For example, Tran
et al. [23] proposed a cascaded residual autoencoder for
the imputation of missing modalities. Pham et al. [20] and
Zhao et al. [34] combined autoencoder with cycle consis-
tency loss for modality reconstruction. Lian et al. [16] uti-
lized graph neural networks to recover missing modalities to
further improve the performance of downstream tasks. Our
method has an essential difference from previous methods
because we recover the missing modality from the perspec-
tive of data distribution, maintaining the distribution consis-
tency and discriminability of recovered data.

2.2. Flow-based generative model

Normalizing flow is a classical generative probabilistic
model, also known as a flow-based generative model, in-
troduced by Dinh et al. [4] for efficient and exact density
estimation. This model can be seen as a transformation
of a known and tractable distribution pZ(z) (e.g., a Gaus-
sian distribution) into an unknown and arbitrary distribution
pU (u) by a sequence of invertible (i.e., bijective) and differ-
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Figure 2. The framework of DiCMoR. Given the input incomplete multimodal data (here we assume acoustic modality is missing), DiCMoR
encodes X(L) and X(V ) via two exclusive shallow feature extractors (Sec. 3.3). In cross-modal distribution transfer, X(L) and X(V ) are
input to F (L) and F (V ) to obtain latent state Z(L) ∼ N (µc,Σc) and Z(V ) ∼ N (µc,Σc), respectively. Z(L) and Z(V ) are subsequently
averaged to sample and generate a latent acoustic state Z̃(A) ← (Z(L) +Z(V ))/2 ∼ N (µc,Σc). To mimic acoustic modality distribution,
we inject Z̃(A) to (F (A))−1 to generate X̃(A). Further, X̃(A) is fed into the acoustic-specific reconstruction module D(A) to faithfully
recover X̂(A) (Sec. 3.4). Ultimately, the fusion of features from X̂(A) with those of X(L) and X(V ) is conducted for emotion prediction
(Sec. 3.5).

entiable mappings, and vice versa.
The generative process is defined as u = G(z), where

z ∼ pZ(z) is a sample usually from standard MVG (multi-
variate Gaussian) distribution, u ∼ pU (u) is a true sample.
As the u is observed during the training phase, the z can be
obtained by z = F(u) = G−1(u) ,F is the inverse function
of G, and z is called a latent variable. F is composed of N
invertible transformations: F = f1 ◦f2 ◦ · · ·◦fN , the trans-
formation between u and z is u

f1↔ h1
f2↔ h2 · · ·

fN↔ z, such
a sequence of invertible transformations is called a normal-
izing flow. Then, the log-likelihood of any u ∈ U can be
estimated by

log pU (u) = log pZ(z) + log |det(
∂z

∂u
)|

= log pZ(z) +

N∑
i=1

log |det(
∂hi

∂hi−1
)|,

(1)

where log |det(∂hi/∂hi−1)| denotes the log-determinant
of the Jacobian matrix (∂hi/∂hi−1) and this value is the
change in log-density when going from hi−1 to hi under
transformation fi. By maximizing log pU (u), the function
F can be optimized to transfer pU (u) into pZ(z), and the
pU (u) can be transferred from pZ(z) by F−1 (i.e., G).

Based on the above principles, various methods had been
proposed. For example, Dinh et al. [4] proposed a real-
valued non-volume preserving flow that combined multi-
scale architecture with coupling layers. Kingma and Dhari-
wal [10] designed an invertible 1 × 1 convolution layer to
construct normalizing flow. Further, many applications are

use normalizing flow including image generation [7], video
generation [12], audio generation [21], word embedding en-
hancement [13], anomaly detection [6], etc.

3. The Proposed Method
In this section, we first give the basic formulation to il-

lustrate our main idea, then introduce the designed network,
followed by three crucial modules.

3.1. Problem Formulation

Let a tuple (X(1), X(2), · · · , X(M)) denotes M het-
erogenous modalities of an example, where X(m) is the in-
put of the m-th modality. In the complete case, all modal-
ities are observed and easily fused to feed the downstream
tasks. But in many limited scenes, some modalities could
not be observed and need to be recovered for better fusion.
For simplification, we introduce an indicator λ ∈ {0, 1} to
denote with λm = 0 if the m-th modality is missing, other-
wise λm = 1. In the incomplete case, thus, the target is to
recover those unobserved modalities Imiss = {m|λm = 0}
based on those observed ones Iobs = {m|λm = 1}. It
is worth noting that the missing modalities need not to be
consistent for the testing examples.

Our main idea is to transfer the distributions from ob-
served modalities to missing ones through cross flows, and
generate more confident prediction with high distribution
consistency as shown in Fig. 1 (b). Concretely, we assume
all modalities of one-class examples could be embedded
into a latent space with Gaussian distributions. Due to the
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powerful transfer ability, the normalizing flow is used as the
embedding function, formally,

Z(m) = F (m)(X(m)) ∼ N (µc,Σc),m ∈ Iobs, (2)

where Z(m) is the latent state of the m-th modality, F (m) is
the corresponding forward flow function, and c is the class
label of the input sample X . According to the known latent
states, we infer each missing modality X̃(k)(k ∈ Imiss) as
follows:

Z̃(k) ← ψ({Z(m)|m ∈ Iobs}) ∼ N (µc,Σc), (3)

X̃(k) = (F (k))−1(Z̃(k)) ∼ pX(X(k)), (4)

where the estimated latent state Z̃(k) is sampled from the
Gaussian distribution of class c according to the observation
on those existing modalities. In virtue of the invertibility of
flow, we can infer the missing modality X̃(k), abided by its
original distribution pX(X(k)).

Although the estimated X̃(k) follows the original distri-
bution, it would deviate from the ground truth when the
scatter degree of intra-class samples is large. Thus, we
can further refine it with a light-weight decoder D, i.e.,
X̂(k) = D(k)(X̃(k)). At the training stage, we minimize
the reconstruction error between X̂(k) and X(k). And, we
find such a refinement step could improve the performance
as shown in the experiment part.

3.2. Network Overview

The framework of our DiCMoR is illustrated in Fig. 2. It
mainly consists of three parts: shallow feature extractor,
cross-modal distribution transfer (CMDT), and multi-
modal fusion and prediction. Considering the difference
in the original dimensional space between modalities, we
first extract multimodal shallow features and align the di-
mension of each modality to facilitate subsequent distribu-
tion transformation and modality recovery. To mitigate the
distribution gap between recovered data and true data, we
next build a CMDT network to learn the latent distribution
space of each modality, and conduct cross-modal distribu-
tion transformation to estimate the distribution of missing
modality, and finally recover the missing data by a decoder.
To perform the classification task, in the end, the multi-
modal fusion and prediction part receives recovered com-
plete multimodal data and uses multimodal transformers to
fuse multimodal representation for label regression. The de-
tail is introduced in the next subsections.

3.3. Shallow Feature Extractor

We consider three modalities: language (L), visual (V )
and acoustic (A). Since the original dimensional spaces
of the three modalities are often distinct, they are not suit-
able to be used directly for cross-modal transformations. To

solve this problem, we design a shallow feature extractor
that contains three independent temporal convolutional lay-
ers to extract the shallow features of three modalities and
project them into the same dimensional space. Hence, the
subsequent recovery task aims to estimate the shallow fea-
tures of missing modalities from that of available modali-
ties.

Given an input example of the class c, we can obtain
the shallow features, X = {X(m)},X(m) ∈ RT×d, where
m ∈ {L, V,A}, T and d indicate the sequence length
and the feature dimensionality. In the incomplete multi-
modal case, some modalities are missing either fixedly or
randomly by guaranteeing at least one modality is avail-
able in X . For the three modalities mentioned above, a
total of seven missing combinational cases are included,
which are reported in Tab. 1. For a convenient statement
but without loss of generality, below we estimate the miss-
ing acoustic modality X(A) from the other two modalities
Xobs = {X(L),X(V )}, as shown in the exhibition of Fig. 2.

3.4. Cross-Modal Distribution Transfer

Let F (m) denotes a normalizing flow model of modal-
ity m and (F (m))−1 for its inverse transformation. Each
normalizing flow model receives the shallow features X(m)

of that modality respectively and outputs multimodal latent
states with the same Gaussian distribution, represented as
Z(m) = F (m)(X(m)). At the same time, Z(m) can be in-
put to (F (m))−1 to generate a sample X̃(m) with the true
distribution, X̃(m) ∼ pX(m) . Taking the example that the
language and visual modalities are available, the acoustic
modality is missing, as shown in Fig. 2, X(L) and X(V )

can be input to F (L) and F (V ) to obtain Z(L) and Z(V ), re-
spectively. As Z(L) ∼ N (µc,Σc) and Z(V ) ∼ N (µc,Σc),
we simply perform an average operation on them to sam-
ple a latent acoustic state Z̃(A) ← (Z(L) + Z(V ))/2 ∼
N (µc,Σc). Then it is injected to (F (A))−1 to generate
sample X̃(A) with the acoustic modality distribution. For-
mally,

X̃(A) = (F (A))−1([F (L)(X(L)) + F (V )(X(V ))]/2). (5)

Subsequently, X̃(A) is fed into the reconstruction module
of acoustic modality to obtain the final recovered features:
X̂(A) = D(A)(X̃(A)), where D(A) denotes the feature re-
construction module of the acoustic modality. We stack sev-
eral residual channel attention blocks [27] to build a recon-
struction module for each modality, where the 2D convolu-
tional layers are replaced with 1D convolution to fit the tem-
poral features. For any missing patterns, the set of recovered
features can be denoted as X̂miss = {X̂(m)|m ∈ Imiss}, thus
the reconstruction loss Lrec is denoted as:

Lrec =
∑

m∈Imiss

∥X̂(m) −X(m)∥2F . (6)
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Table 1. Comparison on fixed missing protocol. The values reported in each cell denote ACC2/F1/ACC7. Bold is the best.
Datasets Available DCCA [1] DCCAE [26] MCTN [20] MMIN [34] GCNet [16] DiCMoR (Ours)

CMU-MOSI

{L} 73.6 / 73.8 / 30.2 76.4 / 76.5 / 28.3 79.1 / 79.2 / 41.0 83.8 / 83.8 / 41.6 83.7 / 83.6 / 42.3 84.5 / 84.4 / 44.3
{V } 47.7 / 41.5 / 16.6 52.6 / 51.1 / 17.1 55.0 / 54.4 / 16.3 57.0 / 54.0 / 15.5 56.1 / 55.7 / 16.9 62.2 / 60.2 / 20.9
{A} 50.5 / 46.1 / 16.3 48.8 / 42.1 / 16.9 56.1 / 54.5 / 16.5 55.3 / 51.5 / 15.5 56.1 / 54.5 / 16.6 60.5 / 60.8 / 20.9
{L, V } 74.9 / 75.0 / 30.3 76.7 / 76.8 / 30.0 81.1 / 81.2 / 42.1 83.8 / 83.9 / 42.0 84.3 / 84.2 / 43.4 85.5 / 85.4 / 45.2
{L,A} 74.7 / 74.8 / 29.7 77.0 / 77.0 / 30.2 81.0 / 81.0 / 43.2 84.0 / 84.0 / 42.3 84.5 / 84.4 / 43.4 85.5 / 85.5 / 44.6
{V,A} 50.8 / 46.4 / 16.6 54.0 / 52.5 / 17.4 57.5 / 57.4 / 16.8 60.4 / 58.5 / 19.5 62.0 / 61.9 / 17.2 64.0 / 63.5 / 21.9
{L, V,A} 75.3 / 75.4 / 30.5 77.3 / 77.4 / 31.2 81.4 / 81.5 / 43.4 84.6 / 84.4 / 44.8 85.2 / 85.1 / 44.9 85.7 / 85.6 / 45.3
Average 63.9 / 61.9 / 20.0 66.1 / 64.8 / 24.4 70.2 / 69.9 / 31.3 72.7 / 71.4 / 31.6 73.1 / 72.8 / 32.1 75.4 / 75.1 / 34.7

CMU-MOSEI

{L} 78.5 / 78.7 / 46.7 79.7 / 79.5 / 47.0 82.6 / 82.8 / 50.2 82.3 / 82.4 / 51.4 83.0 / 83.2 / 51.2 84.2 / 84.3 / 52.4
{V } 61.9 / 55.7 / 41.3 61.1 / 57.2 / 40.1 62.6 / 57.1 / 41.6 59.3 / 60.0 / 40.7 61.9 / 61.6 / 41.7 63.6 / 63.6 / 42.0
{A} 62.0 / 50.2 / 41.1 61.4 / 53.8 / 40.9 62.7 / 54.5 / 41.4 58.9 / 59.5 / 40.4 60.2 / 60.3 / 41.1 62.9 / 60.4 / 41.4
{L, V } 80.3 / 79.7 / 46.6 80.4 / 80.4 / 47.1 83.2 / 83.2 / 50.4 83.8 / 83.4 / 51.2 84.3 / 84.4 / 51.1 84.9 / 84.9 / 53.0
{L,A} 79.5 / 79.2 / 46.7 80.0 / 80.0 / 47.4 83.5 / 83.3 / 50.7 83.7 / 83.3 / 52.0 84.3 / 84.4 / 51.3 85.0 / 84.9 / 52.7
{V,A} 63.4 / 56.9 / 41.5 62.7 / 59.2 / 41.6 63.7 / 62.7 / 42.1 63.5 / 61.9 / 41.8 64.1 / 57.2 / 42.0 65.2 / 64.4 / 42.4
{L, V,A} 80.7 / 80.9 / 47.7 81.2 / 81.2 / 48.2 84.2 / 84.2 / 51.2 84.3 / 84.2 / 52.4 85.2 / 85.1 / 51.5 85.1 / 85.1 / 53.4
Average 72.3 / 68.8 / 44.5 72.4 / 70.2 / 44.6 74.6 / 72.5 / 46.8 73.7 / 73.5 / 47.1 74.7 / 73.7 / 47.1 75.8 / 75.4 / 48.2

Class-specific flows. To optimize normalizing flows, the
objective is typically to make all Z(m) with the same stan-
dard MVG distribution (i.e., Z(m) ∼ N (0, I)), but this may
lead to loss of discriminability for different classes of sam-
ples. To address this issue, we introduce labels to adap-
tively learn class-specific Gaussian distributions, so that the
latent states of different classes with different Gaussian dis-
tributions, thereby enhancing the discriminability. Given a
sample X of class c, formally, according to Eq. (1), the loss
function Lcdt of cross-modal distribution transfer can be de-
fined as:

Lcdt = −
∑

m∈Iobs

[log pZ(m)(Z(m)|y = c) + log |det( ∂Z
(m)

∂X(m)
)|]

(7)
where the first term denotes the log-density of Zm on the
condition of its own category, and the second term denotes
the log-determinant of normalizing flow model for modality
m. In detail, pZ(m)(Z(m)|y = c) ∼ N (µc,Σc), thus the
terms can be further formulated as:

log pZ(m)(Z
(m)) =

log (2π)−
d
2 det(Σc)

− 1
2 − 1

2
(Z(m)−µc)

TΣ−1
c (Z(m)−µc), (8)

log |det( ∂Z
(m)

∂X(m)
)| =

N∑
i=1

log |det(s(m)
i )|, (9)

where log |det(s(m)
i )| denotes the log-determinant of ith

affine coupling layer for normalizing flow of modality m,
as used in [10].

Another question is how to learn {µc,Σc} for differ-
ence classes. Let’s take class c as an example, we first
construct two tensors filled with the scalar value zero and
two convolutional layers initialized with zero, and the
two convolutional layers are denoted as ZeroConvc

µ(·) and
ZeroConvc

Σ(·). Then, two zero tensors are injected into two
convolution layers to obtain the initialized mean µc and log

covariance matrix logΣc of the Gaussian distribution for
class c respectively, represented as µc = ZeroConvcµ(0)
and logΣc = ZeroConvcΣ(0). Therefore, in the initializa-
tion phase, the Gaussian distribution of class c is initialized
to have a mean µc = 0 and a covariance Σc = I. During
the training process, µc and logΣc of Gaussian distribution
are changed additively as the bias of the convolution lay-
ers is updated, thereby adaptively fitting the class-specific
Gaussian distributions based on different classes of training
samples.

3.5. Multimodal Fusion and Prediction

The recovered data X̂miss = {X̂(m)|m ∈ Imiss} and the
input available data Xobs = {X(m)|m ∈ Iobs} are com-
bined as the complete multimodal data for downstream mul-
timodal fusion and prediction tasks. We employ multimodal
transformers [24] to fuse multimodal features X̂miss ∪ Xobs,
and the fused feature is used to predict results by fully con-
nected layers. We integrate the above losses to reach the full
optimization objective:

Ltotal = Ltask + β(Lcdt + Lrec), (10)

where Ltask is the task-specific loss that is defined as mean
absolute error in our experiments, β controls the importance
of different loss functions. The entire optimization is imple-
mented in an end-to-end manner, and the concrete training
about the configuration of incomplete modalities could be
found in the experiment part.

4. Experiments
4.1. Datasets and Implementation Details

Datasets. To verify the effectiveness of DiCMoR, we
conduct experiments on two standard multimodal video
understanding datasets, including CMU-MOSI [30] and
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Table 2. Comparison on random missing protocol. The values reported in each cell denote ACC2/F1/ACC7. Bold is the best.
Datasets MR DCCA [1] DCCAE [26] MCTN [20] MMIN [34] GCNet [16] DiCMoR (Ours)

CMU-MOSI

0.0 75.3 / 75.4 / 30.5 77.3 / 77.4 / 31.2 81.4 / 81.5 / 43.4 84.6 / 84.4 / 44.8 85.2 / 85.1 / 44.9 85.7 / 85.6 / 45.3
0.1 72.1 / 72.2 / 28.0 74.5 / 74.7 / 28.1 78.4 / 78.5 / 39.8 81.8 / 81.8 / 41.2 82.3 / 82.3 / 42.1 83.9 / 83.9 / 43.6
0.2 69.3 / 69.1 / 26.8 71.8 / 71.9 / 27.6 75.6 / 75.7 / 38.5 79.0 / 79.1 / 38.9 79.4 / 79.5 / 40.0 82.1 / 82.0 / 42.3
0.3 65.4 / 65.2 / 25.7 67.0 / 66.7 / 25.8 71.3 / 71.2 / 35.5 76.1 / 76.2 / 36.9 77.2 / 77.2 / 38.2 80.4 / 80.2 / 40.6
0.4 62.8 / 62.0 / 24.2 63.6 / 62.8 / 24.2 68.0 / 67.6 / 32.9 71.7 / 71.6 / 34.9 74.3 / 74.4 / 36.6 77.9 / 77.7 / 37.6
0.5 60.9 / 59.9 / 21.6 62.0 / 61.3 / 23.0 65.4 / 64.8 / 31.2 67.2 / 66.5 / 32.2 70.0 / 69.8 / 33.9 76.7 / 76.4 / 36.4
0.6 58.6 / 57.3 / 21.2 59.6 / 58.5 / 20.9 63.8 / 62.5 / 29.7 64.9 / 64.0 / 29.1 67.7 / 66.7 / 29.8 73.3 / 73.0 / 32.7
0.7 57.4 / 56.0 / 20.4 58.1 / 57.4 / 20.6 61.2 / 59.0 / 27.5 62.8 / 61.0 / 28.4 65.7 / 65.4 / 28.1 71.1 / 70.8 / 30.0

Average 65.2 / 64.6 / 24.8 66.7 / 66.3 / 25.2 70.6 / 70.1 / 34.8 73.5 / 73.1 / 35.8 75.2 / 75.1 / 36.7 78.9 / 78.7 / 38.5

CMU-MOSEI

0.0 80.7 / 80.9 / 47.7 81.2 / 81.2 / 48.2 84.2 / 84.2 / 51.2 84.3 / 84.2 / 52.4 85.2 / 85.1 / 51.5 85.1 / 85.1 / 53.4
0.1 77.4 / 77.3 / 46.2 78.4 / 78.3 / 46.9 81.8 / 81.6 / 49.8 81.9 / 81.3 / 50.6 82.3 / 82.1 / 51.2 83.7 / 83.5 / 52.2
0.2 73.8 / 74.0 / 45.1 75.5 / 75.4 / 46.3 79.0 / 78.7 / 48.6 79.8 / 78.8 / 49.6 80.3 / 79.9 / 50.2 81.8 / 81.5 / 51.4
0.3 71.1 / 71.2 / 43.6 72.3 / 72.2 / 45.6 76.9 / 76.2 / 47.4 77.2 / 75.5 / 48.1 77.5 / 76.8 / 49.2 79.8 / 79.3 / 50.3
0.4 69.5 / 69.4 / 43.1 70.3 / 70.0 / 44.0 74.3 / 74.1 / 45.6 75.2 / 72.6 / 47.5 76.0 / 74.9 / 48.0 78.7 / 77.4 / 48.8
0.5 67.5 / 65.4 / 42.5 69.2 / 66.4 / 43.3 73.6 / 72.6 / 45.1 73.9 / 70.7 / 46.7 74.9 / 73.2 / 46.7 77.7 / 75.8 / 47.7
0.6 66.2 / 63.1 / 42.4 67.6 / 63.2 / 42.9 73.2 / 71.1 / 43.8 73.2 / 70.3 / 45.6 74.1 / 72.1 / 45.1 76.7 / 73.7 / 46.8
0.7 65.6 / 61.0 / 42.1 66.6 / 62.6 / 42.5 72.7 / 70.5 / 43.6 73.1 / 69.5 / 44.8 73.2 / 70.4 / 44.5 75.4 / 72.2 / 46.2

Average 71.5 / 70.3 / 44.1 72.6 / 71.2 / 45.0 77.0 / 76.1 / 46.9 77.3 / 75.4 / 48.2 77.9 / 76.8 / 48.3 79.9 / 78.6 / 49.6

CMU-MOSEI [31]. The above two datasets mainly focus
on human multimodal sentiment analysis. CMU-MOSI
consists of 2,199 short monologue video clips. Among the
samples, 1,284, 229, and 686 samples are used as training,
validation, and testing set. CMU-MOSEI contains 22,856
samples of movie review video clips from YouTube. Ac-
cording to the predetermined protocol, 16,326 samples are
used for training, the remaining 1,871 and 4,659 samples
are used for validation and testing. On the two datasets,
we extract the language features via pre-trained BERT
model [9] and obtain a 768-dimensional hidden state as the
word features. For visual modality, each video frame was
encoded via Facet [8] to represent the presence of the to-
tal 35 facial action units [14]. The acoustic modality was
processed by COVAREP [2] to obtain the 74-dimensional
features. Each sample in CMU-MOSI and CMU-MOSEI
was labeled with a human sentiment score that ranges from
-3 to 3, including highly negative, negative, weakly neg-
ative, neutral, weakly positive, positive, and highly posi-
tive. To make a comprehensive comparison, we evaluate the
performance using the following metrics: 7-class accuracy
(ACC7), binary accuracy (ACC2), and F1 score.

Implementation details. We investigate the perfor-
mance of different methods on multimodal datasets with
two missing protocols, including a fixed missing protocol
and a random missing protocol. For the fixed missing pro-
tocol, we let the missing patterns be consistent for all sam-
ples (i.e., the available modalities are the same for all sam-
ples). Since the three modalities can produce seven different
missing patterns, this protocol contains seven sets of exper-
iments for seven different missing patterns. For the ran-
dom missing protocol, the missing patterns are random-
ized for each sample (i.e., one or two modalities may be
missing for each sample). Here, we use the missing rate

(MR) to measure the overall missingness of the dataset.
The MR is defined as MR = 1 −

∑L
i=1 ai

L×M , where ai de-
notes the number of available modalities for ith sample,
L denotes the total number of samples, and M indicates
the number of modalities. We also ensure that at least
one modality is available for each sample, so ai ≥ 1 and
MR ≤ M−1

M . For three modalities, we choose the MR from
[0.0, 0.1, · · · , 0.7], where 0.7 is an approximation of M−1

M
with the same meaning. We keep the same MR during train-
ing, validation, and testing phases, consistent with previous
work [16]. The detailed neural network configurations are
listed in the supplementary file, including the 1D temporal
convolutions, the normalizing flow models, the reconstruc-
tion modules, and the multimodal transformers. The opti-
mal setting for β is set to 0.1 via the performance on the val-
idation set. We implemented all the experiments using Py-
Torch on a RTX 3090 GPU with 24GB memory. We set the
training batch size as 16 and train DiCMoR for 50 epochs
until convergence. We run each experiment five times and
report the average values on the testing set.

4.2. Comparison with the state-of-the-arts

We compare DiCMoR with the current state-of-the-art
incomplete multimodal learning methods, including two
deep learning-based non-recovery methods with canonical
correlation maximization: DCCA [1] and DCCAE [26],
three deep learning-based recovery methods: MCTN [20],
MMIN [34], GCNet [16]. Below, we report the quantitative
and qualitative experimental results.

Quantitative results. Tab. 1 and Tab. 2 illustrate the
comparison of fixed missing protocol and random missing
protocol on two datasets, respectively. From these experi-
mental results, we have the following observations:

1) On average, our method achieves the best perfor-
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Figure 3. Visualization of recovered data and ground truth for different recovery methods under missing patterns with only one modality
available. The distribution of data recovered by DiCMoR is much closer to ground truth than other methods.

mance on all datasets with two missing protocols. Com-
pared with the non-recovery methods, the recovery methods
including our DiCMoR obtain better performance. This is
because the recovery methods can estimate and reconstruct
missing modalities explicitly from the available modalities.
Compared with the recovery methods [20, 34, 16], our pro-
posed DiCMoR obtains consistent improvements, indicat-
ing the superiority of maintaining consistency of distribu-
tion between recovered data and true data. For further in-
vestigation, we will visualize the distribution of recovered
data for different methods in the next part.

2) From the experimental results in Tab. 1, we can ob-
serve that the prediction performance of all methods tend to
be better when the language modality is available, and this
phenomenon also emerged in previous work [20, 34]. The
potential reason is that language modality is a high-level se-
mantic abstraction that contains more discriminative infor-
mation. Therefore, it is crucial to enhance the performance
of missing scenarios without language modality. Compared
with these state-of-the-arts, our DiCMoR consistently ob-
tains better results in missing scenarios without language
modality. This suggests that the distribution transformed
from the weak modality can improve the performance.

3) Experimental results in Tab. 2 show that the perfor-
mance degradation of DiCMoR tends to be smaller than that
of other recovery methods as the MR increases. Taking the
results on the CMU-MOSI dataset as an example, as the
MR increases from 0.0 to 0.7, the ACC2 performance of
other recovery methods declines 19.5% ∼ 21.8% while our
DiCMoR declines 14.6%. Notably, the performance gap be-
tween DiCMoR and other recovery methods becomes more
obvious as the MR increases. For example, compared with
the strongest baseline GCNet on the CMU-MOSI dataset,

Table 3. Ablation study of the key components in DiCMoR under
average random missing protocol.

Dataset F (m) D(m) ACC2 F1 ACC7

CMU-MOSI

✓ ✓ 78.9 78.7 38.5
✓ × 76.1 75.8 36.8
× ✓ 75.8 75.6 36.8
× × 74.5 74.4 36.0

CMU-MOSEI

✓ ✓ 79.9 78.6 49.6
✓ × 78.4 77.2 49.0
× ✓ 78.0 76.9 48.8
× × 76.5 76.0 48.5

the ACC2 performance gap increases from 0.5% to 5.4%
as the MR increases from 0.0 to 0.7. These results demon-
strate that the DiCMoR improves prediction performance in
missing scenarios, especially in severely missing cases.

Qualitative results. Fig. 3 visualize the distribution of
recovered data and ground truth for different recovery meth-
ods when merely one modality remains, we randomly se-
lect 100 samples in the testing set from the CMU-MOSEI
dataset. The features of the selected samples are projected
into a 2D space by t-SNE [25]. From these results, we can
observe that the distribution between true data and recov-
ered data estimated by our DiCMoR is closer than other
methods. The main reason is that DiCMoR explicitly mod-
els and learns the distribution space of different modalities
and has ability to transfer the distribution across modalities.

4.3. Ablation study

Quantitative analysis. We evaluate the effects of key
components for DiCMoR, including distribution transfer
(F (m)) and feature reconstruction (D(m)). The results are
illustrated in Tab. 3, we can draw the following conclu-
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Table 4. Ablation study of F (m) on MCTN under average random
missing protocol.

Methods CMU-MOSI CMU-MOSEI
ACC2 F1 ACC7 ACC2 F1 ACC7

MCTN 70.6 70.1 34.8 77.0 76.1 46.9
MCTN w/ F (m) 72.4 72.4 35.4 78.1 77.0 47.5

MCTN

Avail.: 𝐿𝐿 Miss.: 𝑉𝑉,𝐴𝐴 Avail.:𝑉𝑉 Miss.: 𝐿𝐿,𝐴𝐴 Avail.:𝐴𝐴 Miss.: 𝐿𝐿,𝑉𝑉

MCTN
w/ ℱ(𝑚𝑚)

Ground Truth Recovered

Figure 4. Visualization of recovered data and ground truth for
MCTN and MCTN w/ F (m). Obviously, our method can improve
the distribution consistency of recovered data for MCTN.

sions: 1) feature reconstruction with D(m) or distribution
transfer with F (m) can improve the performance because
both modules can explicitly recover data that can provide
useful complementary information; 2) combing distribution
transfer with feature reconstruction brings further benefits,
which proves that recovering data while maintaining con-
sistent distribution is feasible and effective.

Besides, since the key difference between DiCMoR
and other recovery methods is to a introduce distribution
transfer network constructed by normalizing flow models
F (m), this network should be generalizable to other recov-
ery methods. Thus, we apply this module to the classical
MCTN [20] for further investigation. The results are shown
in Tab. 4, which suggests that this module generalizing to
other methods is feasible and effective. Furthermore, we
visualize the distribution of data in Fig. 4, and we can ob-
serve that the distribution of recovered data of MCTN w/
F (m) is much closer to ground truth.

CMU-MOSI CMU-MOSEI
Figure 5. Visualization of class-specific Gaussian distributions.

Visualization of the class-specific Gaussian distribu-
tions and multimodal latent states. First, we visualize the
class-specific Gaussian distributions learned by CMDT in

L V A

Neutral Weakly PositiveWeakly NegativeHighly Negative Negative Highly PositivePositive

(a) DiCMoR w/ 𝒩𝒩(𝟎𝟎, 𝐈𝐈) (b) DiCMoR w/ 𝒩𝒩(𝜇𝜇𝑐𝑐 ,𝚺𝚺𝑐𝑐)

Figure 6. Visualization of the latent states. DiCMoR w/
N (µc,Σc) shows the promising 7-class separability in (b).

Fig. 5, where we draw the one-dimensional Gaussian distri-
bution curves by averaging the elements of µc and Σc re-
spectively for each class. From this result, we can observe
that the learned Gaussian distributions of different classes
are basically scattered, which indicates that our proposed
CMDT has the ability to adaptively learn Gaussian distribu-
tions with discrimination w.r.t different classes. One ques-
tion arises, can these learned Gaussian distributions help
improve the discriminability of the latent states? We further
visualize the multimodal latent states of different classes
in Fig. 6. Specifically, we randomly select 35 samples
(five samples for each class) in the testing set of the CMU-
MOSEI dataset. The features of the selected samples are
projected into a 2D space by t-SNE [25]. We can discover
that when using a standard Gaussian distribution (DiCMoR
w/N (0, I)) as the objective, different classes of multimodal
latent states suffer from mode collapse due to their sharing
a same Gaussian distribution space. In contrast, when using
class-specific Gaussian distributions as the objective (DiC-
MoR w/N (µc,Σc)), the latent states are distinguishable in
seven classes, indicating that the learned Gaussian distribu-
tions can improve the discriminability of latent states.

5. Conclusion and discussion

In this paper, we have proposed a recovery paradigm
(DiCMoR) for incomplete multimodal learning that trans-
fers the distributions from available modalities to missing
modalities to maintain the distribution consistency. Fur-
ther, we have designed a class-specific flow based modal-
ity recovery paradigm to transform cross-modal distribu-
tions. It facilitates cross-modal distribution transformation
and enables the anticipation of a distribution-consistent la-
tent space for the missing modality. The robustness and ef-
ficacy of DiCMoR are substantiated through extensive eval-
uations. It should be noted, however, that our method ne-
cessitates the availability of labels as a conditioning factor
during its training phase to generate class-associated data.
Under scenarios where unlabeled tasks are encountered, our
method may be susceptible to a decline in performance.
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