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Abstract

This study explores the concept of equivariance in
vision-language foundation models (VLMs), focusing
specifically on the multimodal similarity function that is not
only the major training objective but also the core delivery
to support downstream tasks. Unlike the existing image-text
similarity objective which only categorizes matched pairs
as similar and unmatched pairs as dissimilar, equivariance
also requires similarity to vary faithfully according to the
semantic changes. This allows VLMs to generalize better
to nuanced and unseen multimodal compositions. However,
modeling equivariance is challenging as the ground truth of
semantic change is difficult to collect. For example, given
an image-text pair about a dog, it is unclear to what extent
the similarity changes when the pixel is changed from dog
to cat? To this end, we propose EQSIM, a regularization
loss that can be efficiently calculated from any two matched
training pairs and easily pluggable into existing image-text
retrieval fine-tuning. Meanwhile, to further diagnose the
equivariance of VLMs, we present a new challenging bench-
mark EQBEN. Compared to the existing evaluation sets,
EQBEN is the first to focus on “visual-minimal change”.
Extensive experiments show the lack of equivariance in cur-
rent VLMs1 and validate the effectiveness of EQSIM2.

1. Introduction
Vision-language (VL) training is all about learning

“good” features for each modality, such that the fea-
tures should faithfully represent the underlying semantics.
Thanks to the large-scale image-text pairs on the Web, we
have abundant multimodal supervision for the two features
with the same semantic meaning [60, 35, 48, 27]—each
matched image-text pair should have “similar” visual and
textual features, and each unmatched pair should have “dis-
similar” ones. Thus, the image-text similarity plays a cru-
cial role to define the feature quality in training VL founda-

1We also include results of Multimodal LLM in Appendix A.4.
2Code is available at https://github.com/Wangt-CN/EqBen
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Figure 1: (a) Comparison between oracle and the latest SoTA
VLM FIBER [13] similarity measure by ranking the candidate im-
ages with the given query texts. Check Appendix for full ranking
results. (b) Measuring the similarity score change (number in ■)
of FIBER [13] and our proposed EQSIM by applying a slight text
change (“2”↔“3”). Darker color indicates larger similarity.

tion models (VLMs) [68, 74, 35, 48, 27, 14, 13, 34].
Has the prevailing “matched vs. unmatched” similarity

fulfilled its duty? Yes and no. On the one hand, recent
VLMs [51, 68, 13, 48, 74, 49] have demonstrated impres-
sive results in various downstream VL tasks such as image-
text retrieval. However, on the other hand, it is acknowl-
edged by the community that the VLMs still fall short in nu-
anced and complex semantic compositions [49, 9, 44, 62].
In this regard, we present a text-to-image retrieval exam-
ple on LAION400M [54] with the most recent SOTA VLM
FIBER [13]. As shown in Figure 1(a), given the query text
“the house on the right side of the road”, we first invite 5
graduate students to rank 25 candidate images from most
similar to least similar. The continuously decreasing rank-
ing from human judges ( ) is served as the oracle semantic
similarity measure. We then compared this ranking with the
ones from FIBER [13] ( ). Although FIBER correctly re-
trieved the top-1 image (image#1, ranks 1), some semanti-
cally incorrect images (e.g., image#25, ranks 17) are falsely
ranked higher than the correct ones (e.g., image#2, ranks
20). Furthermore, when modifying the query text with a
slight semantic change (“right” → “left”), the rankings re-
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Figure 2: The illustration of the core idea in EQSIM. Besides
the two matched pairs {I1, T1} and {I2, T2}, we don’t need extra
annotation such as the middle pair.

main almost the same. Clearly, the similarity changes in
FIBER do not faithfully reflect the semantic changes in im-
ages (#1 → #25) or text queries (“right” → “left”).

To quantitatively measure the above inconsistency be-
tween semantic and similarity score changes, we consider
two matched image-text pairs {I1, T1} and {I2, T2} that
are semantically similar but only different in the number
of clocks in Figure 1 (b). With a slight change of clock
counts in caption (“2”→“3”), FIBER mistakenly assigns
a higher similarity score to {I1, T2} rather than {I1, T1}
(3.83 v.s. 3.79). Furthermore, the changes in similarity
scores guided by the semantic change (“2”↔“3”) are highly
inconsistent (+0.04 v.s. −1.81). Ideally, an equivariant
image-text similarity measure should faithfully reflect the
semantic change, i.e., the same semantic changes should
lead to a similar amount of similarity changes (e.g., −0.22
v.s. −0.17 of ours in Figure 1(b)).
Equivariance Loss. To address this non-equivariance is-
sue, we propose Equivariant Similarity Learning (EQSIM),
which imposes additional equivariance regularization on
image-text pairs for VLM learning without additional su-
pervision. Figure 2 illustrates the underlying semantics per-
ceived by human, where each matched pair demonstrates
the image and text corresponding to the underlying seman-
tic. Given two matched image-text pairs {I1, T1} as seman-
tic 1 and {I2, T2} as semantic 2, we can obtain four simi-
larity scores s11, s12, s22, and s21. We define Equivariant
Similarity to be an image-text similarity function, whose
output value should correspond to the underlying semantic
change, which can be measured by text or image change.

Definition 1 (Equivariant Similarity) The similarity s be-
tween image and text is equivariant if and only if the fol-
lowing equations hold:

s11 − s12 =
∑T2

T1

µ(T )︸ ︷︷ ︸, s22 − s21 =
∑T1

T2

µ(T )︸ ︷︷ ︸, (1)

Semantic Change Measured by Text Change

s11 − s21 =
∑I2

I1
µ(I)︸ ︷︷ ︸, s22 − s12 =

∑I1

I2
µ(I)︸ ︷︷ ︸, (2)

Semantic Change Measured by Image Change

where µ(I) (µ(T )) denotes the measure [52] in image
(text) space, i.e., an infinitesimal unit of visual (textual)
change. Based on Definition 1, we formally derive EQSIM,
an equivariance loss for a hybrid learning strategy on both
semantically close and distant training pairs (Section 3).
Specifically, EQSIM directly enforces s11−s12 = s22−s21
and s11 − s21 = s22 − s12 for semantically close samples;
while for semantically distant samples, we derive a simpli-
fied formulation of s12 = s21. We show that adding EQSIM
as a regularization term improves existing similarity train-
ing objectives significantly on challenging datasets (e.g.,
over 4% on Winoground [62]) and tricky tasks (e.g., around
30% on VALSE [44]). EQSIM can also retain or even im-
prove retrieval performance on Flickr30K [46] dataset.
Equivariance Benchmark. To further facilitate the proper
evaluation of equivariance in VL community, we present
a novel evaluation benchmark dubbed EQBEN (Section 4).
Motivated by the examples in Figure 1(b), EQBEN fea-
tures “slightly” mis-matched pairs with a minimal semantic
drift from the matched pairs, as opposed to “very different”
matched and unmatched pairs that are easily distinguish-
able by both non-equivariant and equivariant similarities.
Unlike recent efforts [44, 62] focusing on minimal seman-
tic changes in captions, EQBEN pivots on diverse visual-
minimal changes, automatically curated from time-varying
visual contents in natural videos and synthetic engines with
more precise control. We benchmark a full spectrum of
VLMs on EQBEN, and reveal that the non-equivariant sim-
ilarity in existing VLMs fails easily. On this new test bed,
EQSIM can serve as a remedy and bring a large performance
gain of ∼3% on average.

Our contributions are summarized as follows: (1) We
comprehensively study the problem of similarity equivari-
ance in VLMs. We propose EQSIM for equivariant train-
ing and EQBEN for diagnostic evaluation; (2) EQSIM is
not only theoretically grounded but also simple, effective
and easily pluggable; and (3) EQBEN clearly diagnoses that
conventional evaluation is not responsive to equivariance.
Furthermore, EQSIM can significantly improve VLMs on
EQBEN, as well as other challenging benchmarks.

2. Related Work
Pre-training VL Models. Early object detector (OD)-
based methods [8, 78, 38, 37, 41, 15, 60] utilized the of-
fline image region features from a pre-trained object de-
tector [50]. More recent methods mainly learn from im-
age pixels directly in an end-to-end manner [71, 27, 69, 58,
34, 65, 74, 1]. Researchers [16] further categorize VLMs
into (1) Dual-Encoder (e.g., CLIP [48] and ALIGN [35])
and (2) Fusion-Encoder (e.g., METER [14], FIBER [13],
and ALBEF [35]). It is worth noting that our proposed
EQSIM is model-agnostic, and can be easily plugged into
the image-text alignment objectives such as Image-Text
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Matching (ITM) and Image-Text Contrastive (ITC) loss.
Diagnosing VL Models. Years of VL research have
spawned a series of VL evaluation kits, from classical VL
tasks [77, 64, 76, 46] (e.g., VQA [2] and image caption-
ing [7]), to more complex contexts, such as adversarial ex-
amples [36, 6], robustness [21, 5, 66, 61, 28] and counter-
factual reasoning [56, 23, 25, 42]. However, these bench-
marks require manual annotation and their evaluation re-
lies on task-specific model fine-tuning. Another line of
work [62, 44, 79] probe VLMs on similarity measure with
minimal caption semantic changes while keeping images
intact. While our EQBEN tries to test whether the inherent
image-text similarity measure in existing VLMs is sensi-
tive to visual semantic changes. The most relevant work
is ImageCoDe [32] which leverages video frames toward
fine-grained image-text retrieval. However, ImageCoDe re-
quires additional human crowdsourcing and is limited to
real-world video sources. In contrast, EQBEN explores both
natural and synthetic ways to generate image pairs with
minimal semantic change, making the data generation pro-
cess inclusive, automatic, and extensive.
Equivariance Learning. Unlike the wide usage of invari-
ance in deep neural networks (e.g., shift invariance achieved
by convolutional layers), strict group equivariance [11, 10,
72, 4] is hard to apply in practice. However, the equivari-
ance property still plays an important role in various fields,
such as self-supervised learning [12, 73, 67, 45, 22], rep-
resentation learning [47], and language understanding [19].
In this paper, we point out the significance of the equivari-
ant similarity measure in VLMs. Based on this, we further
propose a novel loss EQSIM for the regularization of equiv-
ariance, as well as a new challenging benchmark EQBEN to
diagnose the equivariance of existing VLMs. We notice that
the recent CyCLIP [17] delivers a similar idea but with dif-
ferent motivation, implementation and evaluation settings.
In Table 6, we compare with CyCLIP-equivalent baseline as
EQSIMv1. Check more detailed comparison in Appendix.

3. Improving VLMs with EQSIM
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Definition 2 Let I and T be two continuous feature spaces.
Let G be a group whose group action on I is defined by
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ϕ : I → T is an equivariant feature map if and only if
g′ ·ϕ(I) = ϕ(g · I) for all the group actions and I ∈ I. The
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Figure 4: Illustration of EQSIM given a similarity matrix during
training. Darker color indicates higher similarity.

commutativity for ϕ, g and g′ is shown in Figure 3.

In Definition 1, the measure µ can be considered as the se-
mantic group acting on an infinitesimal region in image or
text space. Thus, by applying the commutativity of Defini-
tion 2 in Definition 1 to change the sum from image space
to text space. Without loss of generality, we only show the
results of sum 1 → 2:∑T2

T1

µ(T ) =
∑ϕ(I2)

ϕ(I1)
µ(ϕ(I)) =

∑ϕ(I2)

ϕ(I1)
ϕ(µ(I)). (3)

This implies that the equivariant map establishes an isome-
try for the measure µ(I) in image space and ϕ(µ(I)) in text
space. Thus, they only differ by a constant scale C > 0,
i.e., ϕ(µ(I)) = Cµ(I):∑ϕ(I2)

ϕ(I1)
ϕ(µ(I)) = C

∑I2

I1
µ(I). (4)

By combining Eq. (1), (2), (3), and (4), we have the follow-
ing ratio equality as our EQSIM constraint:

s11 − s12
s11 − s21

=
s22 − s21
s22 − s12

= C = 1. (5)

Note that C = 1 can be derived by using the fact that s11 >
s12 and s22 > s21. By simplifying Eq. (5) further, we have
the following two regularizations:

EQSIMv1 : s12 = s21

EQSIMv2 : s11−s12 = s22−s21, s11−s21 = s22−s12.
(6)

Note that the viable space of EQSIMv2 is a subset of
EQSIMv1, because EQSIMv1 is exactly equivalent to Eq. (5)
while EQSIMv2 further requires s11 = s22. Empirically,
we find that EQSIMv2 is more suitable to the semantically
close pairs (I1, T1) and (I2, T2); and EQSIMv1 to distant
pairs. Figure 4 illustrates such hybrid training loss within
a training batch. Semantically “close” and “distant” are de-
termined by the similarity score s, where we regard samples
with top-k s as “close” samples. For dual encoder VLMs
with ITC loss, s is the cosine similarity between image and
text features. For fusion encoder VLMs with ITM, s is the
scoring output from the ITM head.

In our implementation, we adopt Mean Square Error
(MSE) loss to regularize the equation of similarities. In
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Figure 5: Overview of the proposed benchmark EQBEN, which consists of 5 sub-datasets and can be categorized to natural and synthetic.
Act., Obj., Attr. denote action, object and attribute, respectively.

addition, motivated by the hinge loss [3, 63], we utilize a
margin parameter α to control the strength of regulariza-
tion. EQSIMv1 can be written as [||s12−s21||22−α]+, where
[x]+ = max(x, 0) and || · ||2 denotes the L2 norm. EQSIMv2
can be implemented similarly. In practice, given a retrieval
fine-tuning objective LRet, the final loss can be written as:
L = LRet + βLEQ, where LEQ is EQSIMv1 (EQSIMv2)
for semantically distant (close) samples, β is the balancing
factor. Experiments in Section 5.4 validate that the hybrid
training is better than only using EQSIMv1.

4. Diagnosing VLMs with EQBEN

We argue that standard VL evaluation kits [46, 39] are
too coarse to evaluate the equivariance of VLMs similarity.
Existing VLMs can easily distinguish most samples in con-
ventional retrieval benchmarks, e.g., images of a group of
people against those with cars, given a caption of “people
standing on the street”. Therefore, we propose EQBEN to
focus on visual minimal semantic changes to check whether
VLMs can faithfully respond, i.e., the equivariance of the
similarity measure in VLMs. Specifically, EQBEN con-
tains 5 sub-datasets, covering diverse image domains, from
real-life scenarios to synthetic well-controlled scenes. And
it is designed to stress test VLMs with accurate seman-
tic changes in action, location, and attribution (e.g., color,
count and size). Figure 5 presents an overview of EQBEN.

Next, we introduce our design principle for construct-
ing EQBEN. Each sample in EQBEN consists of a pair of

images (I1, I2) and a pair of captions (T1, T2). A valid
EQBEN sample must satisfy: (1) Ti is preferred to be
used as the description for Ii; (2) I1 and I2 are visual-
minimally different. The former one requires that {I1, T1}
and {I2, T2} should be semantically distinguishable with-
out confusion, while the latter one limits the extent of the
distinction – “visual-minimal change”. Previous work [62]
defines “minimal” semantic change in the caption space as
the same words but in a different order. However, due to the
continuity and entanglement of image pixels, “minimal” se-
mantic change in visual space is hard to determine. In this
paper, we roughly define it as changes in the foreground
(e.g., attribute, action, location, etc.) while sharing the same
scene and background.

In practice, we source image pairs with “visual-minimal
change” in two ways: (1) from natural videos and (2) from
synthetic engines, where we adopt different construction
pipelines, as shown at the bottom of Figure 5. For the
former one, we directly leverage the continuity of scene
changes along the temporal dimension in natural videos,
which can provide massive image pairs with minimal vi-
sual changes. Specifically, we leverage the existing video-
language datasets [80, 26, 70] to construct EQBEN samples.
To more precisely control the varying component in im-
ages, we further explore the photo-realistic scene generator
(Kubric [20]) and the open-source diffusion model (Stable
Diffusion [51, 24]) to synthetically generate pairs of images
by providing two captions that are minimally different from
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each other. In what follows, we introduce the construction
pipeline for each sub-dataset in detail.

4.1. Construction from Natural Video

Let’s define a video with caption annotations as V =
{Ii, Ti}Ni=1, where N is the number of sampled frames. We
assume the “visual-minimal change” is naturally guaranteed
between any two frames Ii and Ij ideally, where Ii, Ij ∈ V ,
i ̸= j, as we limit the source video to be either short seg-
ment [70, 26] or capturing a fixed scene [80]. However,
we find that it is hard to ensure the validity of all the video
frame pairs in practice. Therefore, we utilize a frame fil-
ter to filter out invalid samples automatically for different
video sources. Below, we briefly introduce the dataset con-
struction process and delay the details to Appendix.

We construct three sub-datasets based on real images
from natural videos, including EQ-AG, EQ-GEBC and
EQ-YOUCOOK2. We construct EQ-AG by leveraging the
scene graph annotations from Action Genome (AG) [26],
which capture detailed changes between objects and their
pairwise relationships while action occurs. We first use a
slot-filling template to translate scene graphs to captions.
As videos usually come with redundant frames, we avoid
the nearly duplicated frames by sampling frames Ii and Ij
if and only if at least 2 of 3 pairwise relationships are dif-
ferent. Furthermore, if Ij is chosen for previous samples,
we empirically skip the subsequent 2 frames to Ij+2. EQ-
GEBC is built on GEBC [70] that contains captions de-
scribing the event before and after an event boundary. We
adopt the frames before and after the boundary as our visual
minimally different images. Similarly, we avoid temporal
redundancy via sparse sampling across multiple boundaries.
We construct EQ-YOUCOOK2 based on YouCook2 [80],
which is sparsely annotated with captions for each cook-
ing step. We construct the dataset by sampling the middle
frame of a short video segment as Ii with its annotated cap-
tion as Ti. We then apply off-the-shelf object detectors to
filter scene changes. Please note that EQBEN can be easily
extended to other video-language datasets by applying the
same construction pipeline.

4.2. Construction from Synthetic Engine

Synthetic engine may provide more precise and control-
lable visual changes in the generated images, to allow more
accurate diagnosis in terms of model failure when evaluat-
ing with EQBEN. We assume that a synthetic engine can
faithfully generate images based on a text prompt describ-
ing the image content. Based on this assumption, given a
pair of semantic-minimally different captions Ti and Tj ,
we expect the generated Ii and Ij to be correspondingly
visual-minimally different. In the following, we briefly in-
troduce the utilized engine and how to construct semantic-
minimally different captions for each sub-dataset and leave

Dataset
# Testing
Samples

Visual Semantic
Change Pairwise Domain

Diversity Scalability

Flickr30K [46] 1K % % % !

COCO [7] 1/5K % % % !

VALSE [44] 6795 % ! ! !

Winoground [62] 400 % ! % %

EQBEN (Ours) 250K ! ! ! !

Table 1: Comparison between EQBEN and related benchmarks.

more details to Appendix.
EQ-KUBRIC takes advantages of Kubric [20], an open-

source graphics engine to generate photo-realistic scenes.
Here we adopt Google Scanned Objects (GSO) for scene
construction and categorize caption change into three as-
pects: attribute, counting, and location. For each aspect, we
construct 2000 image-text pairs by intervening correspond-
ing phrases of sentences while leaving other words un-
changed. EQ-SD is inspired by the recent advances in dif-
fusion models for text-to-image generation [49, 53, 75]. We
utilize the open-source checkpoint v1.4 of Stable Diffusion
(SD) with prompt-to-prompt image editing framework [24]
to translate two semantic-minimally different captions to a
pair of images. Specifically, we elaborately design a set
of textual semantic-minimal editing: 1) object change (e.g.,
“dog”→“cat”); 2) scene change (e.g., + “in the winter”); 3)
attribute change (e.g., + “with a sunglasses”). Finally, we
perform a human evaluation to filter out poor-quality gener-
ations. Notably, we can adopt more rendered objects (e.g.,
rendered animals) and various synthetic engine (e.g., better
generative models) to further extend our EQBEN following
the proposed pipeline.

4.3. Comparisons with Other Datasets

In Table 1, we conduct a direct comparison of
EQBEN against two widely adopted retrieval bench-
marks (Flickr30K [46] and COCO [7]) and two recent
datasets with textual-minimal change (VALSE [44] and
Winoground [62]) from four aspects. 1) On the dataset
characteristics, to the best of our knowledge, EQBEN is the
first diagnosing benchmark to examine the equivariance of
VLMs in terms of minimal visual semantic change. 2)
For evaluation setting, pairwise setting asks VLMs to se-
lect the correct counterpart within a pair of slightly different
samples rather than thousands of very different samples in
conventional retrieval datasets. The minimal semantic drift
between the pair of samples makes the evaluation of equiv-
ariant similarity measure more effective. 3) For domain di-
versity, our EQBEN contains rich visual contents collected
from different video domains as well as synthetic domains,
as opposed to the common image-text datasets which exist-
ing diagnosing kits are built upon. 4) In terms of scalabil-
ity, EQBEN is highly scalable as our automatic pipeline can
be easily applied to other video-language datasets and syn-
thetic engines, as opposed to manual annotation for building
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Method
Winoground VALSE F30K Text-to-image Ret. F30K Image-to-text Ret.

Text Image Group min(pc,pf ) acc R@1 R@5 R@10 R@1 R@5 R@10
METER [14] 39.25 15.75 11.99 25.43 54.01 79.60 94.96 97.28 90.90 98.30 99.50
+ FT (F30K) [14] 43.50 20.75 14.75 22.41 53.06 82.22 96.34 98.36 94.30 99.60 99.90
+ EQSIM 44.99 22.75 18.75 30.08 53.38 82.16 94.70 96.64 95.30 99.60 99.90
FIBER [13] 46.25 25.75 22.24 11.42 51.76 79.26 95.70 97.92 91.60 99.50 99.80
+ FT (F30K) [13] 51.24 26.49 23.00 20.78 54.90 81.44 96.72 98.48 92.90 99.50 99.90
+ EQSIM 51.49 31.49 27.50 52.42 58.06 83.56 96.78 98.28 96.00 99.60 99.90

Table 2: Results of EQSIM on the challenging Winoground [62], VALSE [44] benchmark and Flickr-30K (F30K) [46] test split for image-
text retrieval. FT and Ret. are short for fine-tuning and retrieval.

traditional retrieval datasets. While VALSE only focuses
on linguistic editing of the captions, EQBEN can be further
scale up with more diverse visual contents.

5. Experiments
We first introduce our experimental setting in Sec-

tion 5.1, followed by evaluation of EQSIM on existing
benchmarks in Section 5.2. Section 5.3 benchmarks SOTA
VLMs on EQBEN to show their insensitivity to minimal vi-
sual semantic changes, and we further validate EQSIM on
EQBEN. Section 5.4 presents additional ablation studies to
examine the design of EQSIM.

5.1. Experimental Setting

Training Details. Recent efforts on diagnosing bench-
marks [62, 44] only provide testing data and directly eval-
uate models after VL pre-training. The low performance
reported on these benchmarks can mainly be attributed to
two factors: 1) the inherent weaknesses of VLMs, e.g.,
non-equivariant similarity measure; and 2) the domain gap
between training and testing. To better validate the effec-
tiveness of our method, we fine-tune the VLMs on lim-
ited image-text pairs from conventional retrieval dataset
Flickr30K [46] with or without the regularization term of
EQSIM, and then test the fine-tuned VLMs on the challeng-
ing Winoground [62], VALSE [44] and our EQBEN. Un-
der a fair comparison, we argue that the absolute perfor-
mance improvements from EQSIM thus would suggest that
the gain is entirely from the remedy of model weaknesses.

To validate the effectiveness and genraliazability of our
proposed method, we apply EQSIM to two SOTA end-
to-end methods with different architectures and retrieval
losses. Specifically, FIBER [13] supports the dual encoder
with ITC loss for fast retrieval, which computes similari-
ties for N2 image-text pairs with only O(N) forwarding.
In contrast, the SOTA fusion-encoder model METER [14],
optimized with ITM task during pre-training, computes the
similarity by forwarding the concatenation of each pair of
image and text, resulting in O(N2) time complexity. Fine-
tuning details for each model can be found in Appendix.
Evaluation Metric. On Winoground [62], given two
image-text pairs {I1, T1} and {I2, T2}, a VLM mea-

sures similarity sij between image Ii and text Tj (i, j ∈
{0, 1}, i ̸= j). Three metrics are computed based on sij : 1)
Text score measures whether the model can select the cor-
rect text for a given image. The model wins one point if
sii > sij . 2) Image score evaluates if VLMs can select
the correct image for a given text and the model wins one
point when sii > sji. 3) Group score combines the previ-
ous two, such that the VLMs win one point if and only if
both text score and image score are 1, meaning the follow-
ing condition must be satisfied: sii > sij and sii > sji.
On VALSE [44], the two image-text pairs share a common
image, i.e., {I1, T1} (correct) and {I1, T2} (foil). We fol-
low [44] to report the following metrics: 1) acc is the over-
all accuracy on both correct and foil image-text pairs; and 2)
min(pc, pf ) is the minimum of precision pc and foil preci-
sion pf , where pc (pf ) measures how well models identify
the correct (foil) pair. We also report performance on the
conventional image-text retrieval task, where recall R@K
(K=1,5,10) is used as the evaluation metric.

5.2. Evaluation of EQSIM

In Table 2, we compare model performance under three
settings: (i) direct evaluation after pre-training (the first
rows of each block); (ii) standard fine-tuning (FT) on
Flickr30K training data (the second rows of each block);
and (iii) fine-tuning with EQSIM regularization (the third
rows of each block). We observe that standard fine-tuning
can somewhat bring a little performance improvement on
both Winoground and VALSE benchmarks, indicating that
some domain overlap between Flickr30K training data and
testing samples. It is difficult to entirely rule out the domain
influence, but comparing fine-tuning with EQSIM against
standard fine-tuning, our method brings consistent and sig-
nificant performance improvements on both of the challeng-
ing Winoground and VALSE across METER and FIBER
models. Specifically, EQSIM improves the group score
over standard fine-tuning by 4% for METER and 4.5% for
FIBER on Winoground, respectively. While for VALSE,
the performance improvement on min(pc, pf ) is as large as
31.6%, further validating the effectiveness of our EQSIM.
In addition, we observe that the equivariance regularization
from EQSIM does not sacrifice retrieval performance. On
Flickr30K, EQSIM can mostly retain the retrieval perfor-
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Method
Natural Subsets Synthetic Subsets

Avg
EQ-YOUCOOK2 EQ-GEBC EQ-AG EQ-KUBRIC EQ-SD

Text Image Group Text Image Group Text Image Group Text Image Group Text Image Group
LXMERT [60] 13.96 11.98 4.55 13.56 12.73 4.19 18.17 9.02 4.46 18.50 15.35 7.26 11.16 6.15 1.98 10.20
ViLBERT [41] 14.78 12.75 5.18 14.67 12.64 4.82 17.43 8.36 3.89 17.55 18.44 8.13 12.37 7.37 2.78 10.74
CLIP (RN-50) [48] 47.72 47.99 34.05 10.80 18.03 3.97 14.52 10.44 3.50 21.33 21.93 9.75 90.09 85.92 79.11 33.28
CLIP (ViT-B/32) [48] 49.48 51.10 36.50 12.57 20.12 4.47 13.91 8.72 3.32 20.56 21.29 9.66 89.16 86.05 78.98 33.73
FLAVA [59] 51.66 54.78 39.68 12.24 16.81 5.07 6.59 13.47 2.15 28.88 28.18 15.90 79.64 84.47 71.10 34.04
ViLT [30] 44.61 46.69 31.74 14.72 16.70 5.62 15.37 9.89 3.45 31.23 27.00 17.90 80.37 79.04 68.93 32.88
ALBEF [35] 57.01 58.04 44.90 13.56 19.63 5.89 11.28 15.17 3.93 29.87 30.18 18.58 88.96 90.41 83.07 38.03
BLIP [34] 59.22 58.36 46.31 15.87 19.79 7.27 19.76 13.87 6.31 29.38 32.25 18.73 85.39 85.52 77.13 38.34
METER [14] 52.18 49.42 36.81 20.95 18.19 6.95 28.70 15.80 7.88 44.28 35.20 27.26 89.62 84.93 79.44 39.84
+ FT (F30K) [14] 52.68 48.31 36.52 18.08 19.85 7.33 29.50 16.30 8.12 41.11 34.59 24.33 86.64 84.46 77.46 39.02
+ EQSIM 54.12 53.12 40.29 24.20 26.02 11.69 28.85 20.09 10.76 43.68 39.08 28.42 88.04 84.07 77.79 42.28
FIBER [13] 52.04 50.84 38.32 25.19 22.66 11.08 32.49 24.05 13.70 47.94 45.60 33.53 86.05 88.63 79.97 44.86
+ FT (F30K) [13] 57.70 56.46 44.33 18.24 21.33 8.54 26.99 18.69 9.24 50.31 46.06 34.66 90.48 86.64 81.29 43.40
+ EQSIM 58.26 57.10 45.10 21.55 26.07 10.58 29.93 23.42 12.64 51.90 48.40 37.38 90.81 85.98 80.70 45.32

Table 3: Results on EQBEN. Rows highlighted in gray are results with our EQSIM. Numbers in bold, underline respectively represent the
best results and the inferior results compared to pre-training but better than fine-tuning baseline. Avg denotes the average over all scores.

Method EQ-KUBRIC

Location Counting Attribute
LXMERT 2.15 1.89 17.90
ViLBERT [41] 1.98 2.03 20.40
CLIP (RN-50) [48] 1.25 5.20 22.80
CLIP (ViT-B/32) [48] 0.75 5.80 22.44
FLAVA [59] 1.00 7.35 39.35
ViLT [30] 1.95 6.19 45.55
ALBEF [35] 1.25 9.49 44.99
BLIP [34] 1.15 10.60 44.44
METER [14] 3.59 15.29 62.90
+ FT (F30K) [14] 2.40 17.49 53.10
+ EQSIM 3.80 23.85 57.60
FIBER [13] 11.34 19.65 69.59
+ FT (F30K) [13] 8.95 28.49 66.54
+ EQSIM 11.05 30.90 70.20

Table 4: Detailed results on EQ-KUBRIC. We report group
score on three splits of EQ-KUBRIC, capturing the visual semantic
changes in Location, Counting and Attribute.

mance, and sometimes even yield performance gain, e.g.,
3.1% on R@1 for image-to-text retrieval with FIBER.

5.3. Benchmarking VLMs with EQBEN

We evaluate a wide range of VLMs with different con-
figurations on EQBEN in a zero-shot manner, to exam-
ine the equivariance of their similarity measures for dis-
tinguishing visually-minimal different samples. We con-
sider representative VLMs, including (i) LXMERT [60],
ViLBERT [41] for OD-Based models; and (ii) CLIP [48]
variants, FLAVA [58], ViLT [30], ALBEF [35], BLIP [34]
and METER [14] and FIBER [13] as prominent examples
of end-to-end SOTA methods. Full results on more VLMs
can be found in Appendix A.6. For evaluation metrics, we
adopt text score, image score and group score to compare
model performance, similar to Winoground [62].

Table 3 presents the evaluation results of existing VLMs
on EQBEN and we summarize our observations below.

• Regardless of the subsets, end-to-end VLMs generally
achieve better performance as it is not constrained by the
fixed visual representation from a pre-trained object de-
tector [50], as in OD-based methods.

• Among all subsets, VLMs obtain evidently higher per-
formance on EQ-SD. The stable diffusion model [51] is
pre-trained on similar VL corpus to these VLMs. Hence,
the generated images can be biased towards the same un-
derlying data distribution, much easier for VLMs to tell
the differences. Besides, the generated images maybe vi-
sually minimally different to human eyes, but it is unclear
whether in the pixel space, they are minimally different
w.r.t. the model input. It is worth noting that LXMERT
and ViLBERT are the exception due to the totally differ-
ent distribution with the off-the-shelf object detector.

• Interestingly, a larger pre-training corpus (e.g., CLIP [48]
and FLAVA [58]) does not always guarantee better re-
sults. This implies training loss may be more critical in
learning equivariant similarity measure.

• In Table 4, we further conduct a fine-grained examination
with the synthetic subset EQ-KURIC, where we focus on
specific visual changes in location, counting and attribute.
VLMs fail substantially in terms of location and count-
ing, while being sensitive to attribute changes. Similar
findings are also observed by [62, 44] from the text side.

We again equip the two strong baseline models (METER
and FIBER) with EQSIM and fine-tune on Flickr30K. As
EQBEN covers diverse domains, standard fine-tuning on
Flickr30K can hardly improve or even hurt model perfor-
mance, compared with direct evaluation after pre-training
(with −0.62% and −1.46% performance drop for METER
and FIBER, respectively). However, by enforcing equiv-
ariant constraint with EQSIM, we observe significant per-
formance improvements than standard fine-tuning, with an
absolute gain of 3.26% for METER and 1.92% for FIBER.
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FT Data Method EQ-AG EQ-Y. EQ-G. Wino. Avg

F30K [46]
FT 9.24 44.33 8.54 23.00 21.28
+ EQSIM 12.64 45.10 10.58 27.50 23.96

COCO [7]
FT 10.14 42.90 8.93 21.50 20.87
+ EQSIM 12.52 45.68 9.37 25.75 23.33

F30K + COCO
FT 9.96 43.81 8.93 22.75 21.36
+ EQSIM 11.98 45.80 10.47 26.50 23.69

4M† FT 10.49 40.95 7.49 20.99 19.98
+ EQSIM 12.78 40.96 9.81 21.25 21.20

Table 5: Group accuracy (%) of fine-tuning (FT) and EQSIM

based on FIBER on different FT data corpus. 4M data denotes
the commonly used pre-training data with about 4M images, in-
cluding COCO, Visual Genome [31], Conceptual Captions [55]
and SBU [43]. Y., G., Wino. are the short for YouCook2, GEBC
and Winoground. † The model is fine-tuned for 10K steps.

5.4. Ablation Study

In this section, we conduct ablation studies to validate
the scalability, design and effectiveness of EQSIM in terms
of enforcing equivariant similarity.
Scalability of EQSIM. Table 5 evaluates the scalability
of EQSIM and standard fine-tuning baseline on the natu-
ral subsets of EQBEN and Winoground by gradually in-
cluding more training data. Under the same fine-tuning
data, EQSIM achieves consistent and significant improve-
ments (2% - 3%) over the baseline. Interestingly, there
is no remarkable correlation between the corpus size and
model performance. This may be due to the distribution
of standard VL data is far away from that of EQBEN and
Winoground. Note that for the 4M experiment, we fine-tune
the models for 10K steps due to computational constraints.
Our results demonstrate the potential of EQSIM to benefit
VL pre-training on large-scale data. Additionally, we vali-
date the generalizability of EQSIM in other relevant down-
stream tasks. Further details are provided in Appendix A.7.
Ablation on EQSIM design. Table 6 compares EQSIM
against the four ablated instances on EQ-KUBRIC and
Winoground [62], including 1) fine-tuning with hard neg-
ative sampling (HardNeg); 2) applying EQSIMv1 to all
samples in the training batch (EQSIMv1-all); 3) applying
EQSIMv2 to all samples in the training batch (EQSIMv2-
all); and 4) applying EQSIMv2 for only semantically close
samples (EQSIMv2-close). The final EQSIM is equivalent to
EQSIMv1-all + EQSIMv2-close, which achieves the best per-
formance. Notably, enforcing EQSIMv2 on all (EQSIMv2-
all) even degrades the performance by -0.58% on average,
compared to applying only to semantically close samples
(EQSIMv2-close). This validates our claim in Section 3 that
EQSIMv2 is better suited for semantically close samples.
Validation of equivariance via EQSIM. Given the similar-
ity scores s calculated by a VLM, we can define the equiv-
ariance score as the derivation of EQSIMv2 (headline of Fig-
ure 6) to measure the degree of equivariance (the smaller,
the better). In Figure 6, we plot the distribution of EQSIMv2

Method
EQ-KUBRIC

Wino. Avg
Location Counting Attribute

FT (F30K) 8.95 28.49 66.54 22.24 31.55
+ HardNeg 10.89 29.49 67.69 27.00 33.77
+ EQSIMv1-all 9.79 29.94 68.75 26.49 33.74
+ EQSIMv2-all 10.25 29.05 68.30 25.49 33.27
+ EQSIMv2-close 11.15 29.25 69.25 25.75 33.85
+ EQSIM 11.05 30.90 70.20 27.50 34.91

Table 6: Ablation studies of the loss design for our EQSIM on
EQ-KUBRIC and Winoground (Wino.) using group score (%).

𝑰𝑰 Change: (𝑺𝑺𝟏𝟏𝟏𝟏- 𝑺𝑺𝟏𝟏𝟏𝟏)- (𝑺𝑺𝟏𝟏𝟏𝟏- 𝑺𝑺𝟏𝟏𝟏𝟏) 𝑻𝑻 Change: (𝑺𝑺𝟏𝟏𝟏𝟏- 𝑺𝑺𝟏𝟏𝟏𝟏)- (𝑺𝑺𝟏𝟏𝟏𝟏- 𝑺𝑺𝟏𝟏𝟏𝟏)

PT (38.32%)

Ours (45.10%)

FT (44.33%)

Ours (45.10%)

PT (38.32%)

FT (44.33%)

Figure 6: The equivariant score of three FIBER [13] variant mod-
els: Pre-trained (PT), Fine-tuned (FT) and Ours (EQSIM) on EQ-
YOUCOOK2. The equivariant score is defined by the derivation
of EQSIMv2. The tighter distribution curve, the better equivariant
similarity measure.

values across all samples in EQ-YOUCOOK2 dataset for
FIBER [13] and its variants, attached with their group
scores. A tighter curve indicates smaller derivation, hence
better equivariance similarity measure. Full results on other
EQBEN subset are presented in Appendix A.8. Compared
with pre-training only (PT), fine-tuning on Flickr30K (FT)
can improve the group score while being more equivariant
in the similarity measure. Adding EQSIM (Ours) obtains
additional improvements on both similarity equivariance
and group score, indicating EQSIM indeed enforces equiv-
ariant similarity measure. Additionally, due to the space
limitation, we leave more visualizations in Appendix A.9.

6. Conclusion
In this study, we investigated the non-equivariant sim-

ilarity issue in VLMs, hidden behind their excellent per-
formances on standard evaluation benchmarks. To address
this issue, we proposed Equivariance Similarity Learning
(EQSIM), an elegant and effective regularization method
that can be easily integrated into the fine-tuning process of
existing VLMs. Meanwhile, to better diagnose the equiv-
ariance of VLMs, we further introduced a new challenging
benchmark EQBEN, the first to focus on “visual-minimal
change”. Our proposed EQSIM is backed by the strong re-
sults on both challenging benchmarks (e.g., Winoground,
VALSE, EQBEN) and the conventional Flickr30K dataset.
In future work, we plan to explore the application of EQSIM
in VL pre-training and instruction tuning. Acknowledge-
ment. This work is partly supported by AISG, A*STAR
under its AME YIRG Grant (Project No.A20E6c0101).
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Soljačić. Equivariant contrastive learning. arXiv preprint
arXiv:2111.00899, 2021. 3

[13] Zi-Yi Dou, Aishwarya Kamath, Zhe Gan, Pengchuan Zhang,
Jianfeng Wang, Linjie Li, Zicheng Liu, Ce Liu, Yann Le-
Cun, Nanyun Peng, et al. Coarse-to-fine vision-language
pre-training with fusion in the backbone. arXiv preprint
arXiv:2206.07643, 2022. 1, 2, 6, 7, 8, 12, 15, 17, 20

[14] Zi-Yi Dou, Yichong Xu, Zhe Gan, Jianfeng Wang, Shuohang
Wang, Lijuan Wang, Chenguang Zhu, Pengchuan Zhang, Lu
Yuan, Nanyun Peng, Zicheng Liu, and Michael Zeng. An
empirical study of training end-to-end vision-and-language
transformers. In CVPR, 2022. 1, 2, 6, 7, 15, 20

[15] Zhe Gan, Yen-Chun Chen, Linjie Li, Chen Zhu, Yu Cheng,
and Jingjing Liu. Large-scale adversarial training for vision-
and-language representation learning. In NeurIPS, 2020. 2

[16] Zhe Gan, Linjie Li, Chunyuan Li, Lijuan Wang, Zicheng
Liu, and Jianfeng Gao. Vision-language pre-training: Ba-
sics, recent advances, and future trends. arXiv preprint
arXiv:2210.09263, 2022. 2

[17] Shashank Goel, Hritik Bansal, Sumit Bhatia, Ryan A
Rossi, Vishwa Vinay, and Aditya Grover. Cyclip: Cyclic
contrastive language-image pretraining. arXiv preprint
arXiv:2205.14459, 2022. 3, 14

[18] Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang,
Miao Zheng, Qian Zhao, Kuikun Liu, Wenwei Zhang, Ping
Luo, and Kai Chen. Multimodal-gpt: A vision and lan-
guage model for dialogue with humans. arXiv preprint
arXiv:2305.04790, 2023. 12

[19] Jonathan Gordon, David Lopez-Paz, Marco Baroni, and Di-
ane Bouchacourt. Permutation equivariant models for com-
positional generalization in language. In ICLR, 2019. 3

[20] Klaus Greff, Francois Belletti, Lucas Beyer, Carl Doersch,
Yilun Du, Daniel Duckworth, David J Fleet, Dan Gnanapra-
gasam, Florian Golemo, Charles Herrmann, Thomas Kipf,
Abhijit Kundu, Dmitry Lagun, Issam Laradji, Hsueh-
Ti (Derek) Liu, Henning Meyer, Yishu Miao, Derek
Nowrouzezahrai, Cengiz Oztireli, Etienne Pot, Noha Rad-
wan, Daniel Rebain, Sara Sabour, Mehdi S. M. Sajjadi,
Matan Sela, Vincent Sitzmann, Austin Stone, Deqing Sun,
Suhani Vora, Ziyu Wang, Tianhao Wu, Kwang Moo Yi,
Fangcheng Zhong, and Andrea Tagliasacchi. Kubric: a scal-
able dataset generator. 2022. 4, 5, 18

[21] Tanmay Gupta, Ryan Marten, Aniruddha Kembhavi, and
Derek Hoiem. Grit: General robust image task benchmark.
arXiv preprint arXiv:2204.13653, 2022. 3

[22] Tengda Han, Weidi Xie, and Andrew Zisserman. Self-
supervised co-training for video representation learning. Ad-
vances in Neural Information Processing Systems, 33:5679–
5690, 2020. 3

[23] Lisa Anne Hendricks and Aida Nematzadeh. Probing
image-language transformers for verb understanding. arXiv
preprint arXiv:2106.09141, 2021. 3

[24] Amir Hertz, Ron Mokady, Jay Tenenbaum, Kfir Aberman,
Yael Pritch, and Daniel Cohen-Or. Prompt-to-prompt im-
age editing with cross attention control. arXiv preprint
arXiv:2208.01626, 2022. 4, 5

[25] Hexiang Hu, Ishan Misra, and Laurens van der Maaten. Eval-
uating text-to-image matching using binary image selection
(bison). In ICCV Workshops, pages 0–0, 2019. 3

[26] Jingwei Ji, Ranjay Krishna, Li Fei-Fei, and Juan Carlos
Niebles. Action genome: Actions as compositions of spatio-
temporal scene graphs. In CVPR, pages 10236–10247, 2020.
4, 5, 16

[27] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc V Le, Yunhsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In ICML, 2021. 1, 2

[28] Carlos E Jimenez, Olga Russakovsky, and Karthik
Narasimhan. Carets: A consistency and robustness evalu-

12006



ative test suite for vqa. arXiv preprint arXiv:2203.07613,
2022. 3

[29] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, et al. The kinetics hu-
man action video dataset. arXiv preprint arXiv:1705.06950,
2017. 16

[30] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-
and-language transformer without convolution or region su-
pervision. In ICML, pages 5583–5594. PMLR, 2021. 7, 15

[31] Ranjay Krishna, Yuke Zhu, Oliver Groth, Justin Johnson,
Kenji Hata, Joshua Kravitz, Stephanie Chen, Yannis Kalan-
tidis, Li-Jia Li, David A Shamma, et al. Visual genome:
Connecting language and vision using crowdsourced dense
image annotations. IJCV, 2017. 8

[32] Benno Krojer, Vaibhav Adlakha, Vibhav Vineet, Yash Goyal,
Edoardo Ponti, and Siva Reddy. Image retrieval from contex-
tual descriptions. In ACL, pages 3426–3440, 2022. 3

[33] Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
Blip-2: Bootstrapping language-image pre-training with
frozen image encoders and large language models. arXiv
preprint arXiv:2301.12597, 2023. 15

[34] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi.
BLIP: Bootstrapping language-image pre-training for uni-
fied vision-language understanding and generation. arXiv
preprint, 2022. 1, 2, 7, 15

[35] Junnan Li, Ramprasaath R Selvaraju, Akhilesh Deepak Got-
mare, Shafiq Joty, Caiming Xiong, and Steven Hoi. Align be-
fore fuse: Vision and language representation learning with
momentum distillation. In NeurIPS, 2021. 1, 2, 7, 15

[36] Linjie Li, Jie Lei, Zhe Gan, and Jingjing Liu. Adversarial
vqa: A new benchmark for evaluating the robustness of vqa
models. In ICCV, pages 2042–2051, 2021. 3

[37] Liunian Harold Li, Mark Yatskar, Da Yin, Cho-Jui Hsieh,
and Kai-Wei Chang. VisualBERT: A simple and performant
baseline for vision and language. arXiv preprint, 2019. 2

[38] Xiujun Li, Xi Yin, Chunyuan Li, Pengchuan Zhang, Xiaowei
Hu, Lei Zhang, Lijuan Wang, Houdong Hu, Li Dong, Furu
Wei, et al. Oscar: Object-semantics aligned pre-training for
vision-language tasks. In ECCV, 2020. 2

[39] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C. Lawrence Zitnick. Microsoft COCO: Common objects
in context. In ECCV, 2014. 4

[40] Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee.
Visual instruction tuning. arXiv preprint arXiv:2304.08485,
2023. 12

[41] Jiasen Lu, Dhruv Batra, Devi Parikh, and Stefan Lee. ViL-
BERT: Pretraining task-agnostic visiolinguistic representa-
tions for vision-and-language tasks. In NeurIPS, 2019. 2, 7,
15

[42] Yulei Niu, Kaihua Tang, Hanwang Zhang, Zhiwu Lu, Xian-
Sheng Hua, and Ji-Rong Wen. Counterfactual vqa: A cause-
effect look at language bias. In CVPR, pages 12700–12710,
2021. 3

[43] Vicente Ordonez, Girish Kulkarni, and Tamara Berg.
Im2Text: Describing images using 1 million captioned pho-
tographs. In NeurIPS, 2011. 8

[44] Letitia Parcalabescu, Michele Cafagna, Lilitta Muradjan,
Anette Frank, Iacer Calixto, and Albert Gatt. Valse: A
task-independent benchmark for vision and language mod-
els centered on linguistic phenomena. arXiv preprint
arXiv:2112.07566, 2021. 1, 2, 3, 5, 6, 7

[45] Mandela Patrick, Po-Yao Huang, Yuki Asano, Florian
Metze, Alexander Hauptmann, Joao Henriques, and Andrea
Vedaldi. Support-set bottlenecks for video-text representa-
tion learning. arXiv preprint arXiv:2010.02824, 2020. 3

[46] Bryan A Plummer, Liwei Wang, Chris M Cervantes,
Juan C Caicedo, Julia Hockenmaier, and Svetlana Lazeb-
nik. Flickr30k entities: Collecting region-to-phrase corre-
spondences for richer image-to-sentence models. In ICCV,
pages 2641–2649, 2015. 2, 3, 4, 5, 6, 8, 14

[47] Guo-Jun Qi, Liheng Zhang, Feng Lin, and Xiao Wang.
Learning generalized transformation equivariant representa-
tions via autoencoding transformations. TPAMI, 2020. 3

[48] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing transferable visual models from natural language super-
vision. In ICML, pages 8748–8763. PMLR, 2021. 1, 2, 3, 7,
15

[49] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu,
and Mark Chen. Hierarchical text-conditional image gen-
eration with clip latents. arXiv preprint arXiv:2204.06125,
2022. 1, 5

[50] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.
Faster R-CNN: Towards real-time object detection with re-
gion proposal networks. TPAMI, 2016. 2, 7

[51] Robin Rombach, Andreas Blattmann, Dominik Lorenz,
Patrick Esser, and Björn Ommer. High-resolution image syn-
thesis with latent diffusion models. In CVPR, pages 10684–
10695, 2022. 1, 4, 7

[52] Halsey Lawrence Royden and Patrick Fitzpatrick. Real anal-
ysis, volume 32. Macmillan New York, 1988. 2

[53] Chitwan Saharia, William Chan, Saurabh Saxena, Lala
Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed
Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi,
Rapha Gontijo Lopes, et al. Photorealistic text-to-image
diffusion models with deep language understanding. arXiv
preprint arXiv:2205.11487, 2022. 5

[54] Christoph Schuhmann, Richard Vencu, Romain Beaumont,
Robert Kaczmarczyk, Clayton Mullis, Aarush Katta, Theo
Coombes, Jenia Jitsev, and Aran Komatsuzaki. Laion-400m:
Open dataset of clip-filtered 400 million image-text pairs.
arXiv preprint arXiv:2111.02114, 2021. 1

[55] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu
Soricut. Conceptual captions: A cleaned, hypernymed, im-
age alt-text dataset for automatic image captioning. In ACL,
2018. 8

[56] Ravi Shekhar, Sandro Pezzelle, Yauhen Klimovich, Aurélie
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