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Abstract

We generalize the class vectors found in neural networks
to linear subspaces (i.e., points in the Grassmann manifold)
and show that the Grassmann Class Representation (GCR)
enables simultaneous improvement in accuracy and feature
transferability. In GCR, each class is a subspace, and the
logit is defined as the norm of the projection of a feature
onto the class subspace. We integrate Riemannian SGD into
deep learning frameworks such that class subspaces in a
Grassmannian are jointly optimized with the rest model pa-
rameters. Compared to the vector form, the representative
capability of subspaces is more powerful. We show that on
ImageNet-1K, the top-1 errors of ResNet50-D, ResNeXt50,
Swin-T, and Deit3-S are reduced by 5.6%, 4.5%, 3.0%, and
3.5%, respectively. Subspaces also provide freedom for fea-
tures to vary, and we observed that the intra-class feature
variability grows when the subspace dimension increases.
Consequently, we found the quality of GCR features is better
for downstream tasks. For ResNet50-D, the average linear
transfer accuracy across 6 datasets improves from 77.98% to
79.70% compared to the strong baseline of vanilla softmax.
For Swin-T, it improves from 81.5% to 83.4% and for Deit3,
it improves from 73.8% to 81.4%. With these encouraging
results, we believe that more applications could benefit from
the Grassmann class representation. Code is released at
https://github.com/innerlee/GCR.

1. Introduction
The scheme deep feature→fully-connected

→softmax→cross-entropy loss has been the
standard practice in deep classification networks. Columns
of the weight parameter in the fully-connected layer are the
class representative vectors and serve as the prototype for
classes. The vector class representation has achieved huge
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success, yet it is not without imperfections. In the study
of transferable features, researchers noticed a dilemma that
representations with higher classification accuracy lead to
less transferable features for downstream tasks [19]. This
is connected to the fact that they tend to collapse intra-class
variability of features, resulting in loss of information in the
logits about the resemblances between instances of different
classes [29]. The neural collapse phenomenon [34] indicates
that as training progresses, the intra-class variation becomes
negligible, and features collapse to their class means. As
such, this dilemma inherently originates from the practice of
representing classes by a single vector. This motivates us to
study representing classes by high-dimensional subspaces.

Representing classes as subspaces in machine learning
can be dated back, at least, to 1973 [49]. This core idea is re-
emerging recently in various contexts such as clustering [54],
few-shot classification [12, 41] and out-of-distribution detec-
tion [47], albeit in each case a different concrete instantiation
was proposed. However, very few works study the subspace
representation in large-scale classification, a fundamental
computer vision task that benefits numerous downstream
tasks. We propose the Grassmann Class Representation
(GCR) to fill this gap and study its impact on classification
and feature transferability via extensive experiments. To be
specific, each class i is associated with a linear subspace Si,
and for any feature vector x, the i-th logit li is defined as the
norm of its projection onto the subspace Si,

li :=
∥∥projSi

x
∥∥ . (1)

In the following, we answer the two critical questions,

1. How to effectively optimize the subspaces in training?
2. Is Grassmann class representation useful?

Several drawbacks and important differences in previous
works make their methodologies hard to generalize to the
large-scale classification problem. Firstly, their subspaces
might be not learnable. In ViM [47], DSN [41] and the
SVD formulation of [54], subspaces are obtained post hoc
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by PCA-like operation on feature matrices without explicit
parametrization and learning. Secondly, for works with
learnable subspaces, their learning procedure for subspaces
might not apply. For example, in RegressionNet [12], the
loss involves pairwise subspace orthogonalization, which
does not scale when the number of classes is large because
the computational cost will soon be infeasible. And thirdly,
the objective of [54] is unsupervised subspace clustering,
which needs substantial changes to adapt to classification.

It is well known that the set of k-dimensional linear sub-
spaces form a Grassmann manifold, so finding the optimal
subspace representation for classes is to optimize on the
Grassmannian. Therefore, a natural solution to Question 1
is to use geometric optimization [13], which optimizes the
objective function under the constraint of a given manifold.
Points being optimized are moving along geodesics instead
of following the direction of Euclidean gradients. We imple-
mented an efficient Riemannian SGD for optimization in the
Grassmann manifold in Algorithm 1, which integrates the
geometric optimization into deep learning frameworks so
that the subspaces in Grassmannian and the model weights
in Euclidean are jointly optimized.

The Grassmann class representation sheds light on the
incompatibility issue between accuracy and transferability.
Features can vary in a high-dimensional subspace without
harming the accuracy. We empirically verify this specula-
tion in Section 5, which involves both CNNs (ResNet [16],
ResNet-D [17], ResNeXt [52], VGG13-BN [42]) and vision
transformers (Swin [26] and Deit3 [45]). We found that
with larger subspace dimensions k, the intra-class variation
increase, and the feature transferability improve. The classi-
fication performance of GCR is also superior to the vector
form. For example, on ImageNet-1K, the top-1 error rates of
ResNet50-D, ResNeXt50, Swin-T and Deit3-S are reduced
relatively by 5.6%, 4.5%, 3.0%, and 3.5%, respectively.

To summarize, our contributions are three folds. (1) We
propose the Grassmann class representation and learn the
subspaces jointly with other network parameters with the
help of Riemannian SGD. (2) We showed its superior accu-
racy on large-scale classification both for CNNs and vision
transformers. (3) We showed that features learned by the
Grassmann class representation have better transferability.

2. Related Work
Geometric Optimization [13] developed the geometric
Newton and conjugate gradient algorithms on the Grassmann
and Stiefel manifolds in their seminal paper. Riemannian
SGD was introduced in [6] with an analysis on convergence
and there are variants such as Riemannian SGD with mo-
mentum [40] or adaptive [18]. Other popular Euclidean
optimization methods such as Adam are also studied in the
Riemannian manifold context [4]. [23] study the special case
of SO(n) and U(n) and uses the exponential map to enable

Euclidean optimization methods for Lie groups. The idea
was generalized into trivialization in [22]. Our Riemannian
SGD Algorithm 1 is tailored for Grassmannian, so we use the
closed-form equation for geodesics. Applications of geomet-
ric optimization include matrix completion [27, 25, 24, 32],
hyperbolic taxonomy embedding [30], to name a few. [14]
proposed the Grassmann discriminant analysis, in which
features are modeled as linear subspaces.

Orthogonal Constraints Geometric optimization in deep
learning is mainly used for providing orthogonal constraints
in the design of network structure [15, 33], aiming to mitigate
the gradient vanishing or exploding problems. Orthogonal-
ity are also enforced via regularizations [2, 51, 3, 37, 48].
Contrastingly, we do not change the network structures, and
focus ourselves on the subspace form of classes. SiNN [39]
uses the Stiefel manifold to construct Mahalanobis distance
matrices in Siamese networks to improve embeddings in
metric learning. It does not have the concept of classes.

Improving Feature Diversity Our GCR favors the intra-
class feature variation by providing a subspace to vary. There
are other efforts to encourage feature diversity. SoftTriplet
loss [38] and SubCenterArcFace [10] model each class as
local clusters with several centers or sub-centers. [55] uses
a global orthogonal regularization to drive local descriptors
spread out in the features space. [53] proposes to learn
low-dimensional structures from the maximal coding rate
reduction principle. The subspaces are estimated using PCA
on feature vectors after the training.

Classes as Subspaces ViM [47] uses a subspace to denote
the out-of-distribution class, which is obtained via PCA-like
postprocessing after training. kSCN [54] uses subspaces
to model clusters in unsupervised learning. Parameters of
models and subspaces are optimized alternatively in a wake-
and-sleep fashion. CosineSoftmax [19] defines logits via
the inner product between the feature and normalized class
vector. Since the class vector is normalized to be unit length,
it is regarded as representing the class as a 1-dimensional
subspace. ArcFace [11] improves over cosine softmax by
adding angular margins to the loss. RegressionNet [12] uses
the subspace spanned by the K feature vectors of each class
in the N -way K-shot classification. The computational cost
of its pairwise subspace orthogonalization loss is quadratic
w.r.t. the number of classes and becomes infeasible when
the number of classes is large. DSN [41] for few-shot learn-
ing computed subspaces from the data matrix rather than
parametrized and learned, and its loss also involves pair-
wise class comparison which does not scale. Different from
these formulations, we explicitly parametrize classes as high-
dimensional subspaces and use geometric optimization to
learn them in supervised learning.
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3. Preliminaries
In this section, we briefly review the essential concepts

in geometric optimization. Detailed exposition can be found
in [13, 1]. Given an n-dimensional Euclidean space Rn,
the set of k-dimensional linear subspaces forms the Grass-
mann manifold G(k, n). A computational-friendly represen-
tation for subspace S ∈ G(k, n) is an orthonormal matrix
S ∈ Rn×k, where STS = Ik and Ik is the k × k identity
matrix. Columns of the matrix S can be interpreted as an
orthonormal basis for the subspace S. The matrix form is not
unique, as right multiplying an orthonormal matrix will pro-
duce a new matrix representing the same subspace. Formally,
Grassmannian is a quotient space of the Stiefel manifold
and the orthogonal group G(k, n) = St(k, n)/O(k), where
St(k, n) = {X ∈ Rn×k|XTX = Ik} and O(k) = {X ∈
Rk×k|XTX = Ik}. When the context is clear, we use the
space S and one of its matrix forms S interchangeably.

Given a function f : G(k, n) → R defined on the
Grassmann manifold, the Riemannian gradient of f at point
S ∈ G(k, n) is given by [13, Equ. (2.70)],

∇f(S) = fS − SST fS , (2)

where fS is the Euclidean gradient with elements (fS)ij =
∂f

∂Sij
. When performing gradient descend on the Grassmann

manifold, and suppose the current point is S and the current
Riemannian gradient is G, then the next point is the endpoint
of S moving along the geodesic toward the tangent G with
step size t. The geodesic is computed by [13, Equ. (2.65)],

S(t) = (SV cos(tΣ) +U sin(tΣ))V T , (3)

where UΣV T = G is the thin SVD of G.

4. Learning Grassmann Class Representation
Denote the weight of the last fully-connected (fc) layer

in a classification network by W ∈ Rn×C and the bias by
b ∈ RC , where n is the dimension of features and C is the
number of classes. The i-th column vector wi of W is called
the i-th class representative vector. The i-th logit is computed
as the inner product between a feature x and the class vector
(and optionally offset by a bias bi), namely wT

i x+ bi. We
extend this well-established formula to a multi-dimensional
subspace form li :=

∥∥projSi
x
∥∥ where Si ∈ G(k, n) is a

k-dimensional subspace in the n-dimensional feature space.
We call Si the i-th class representative space, or class space
in short. Comparing the new logit to the standard one, the
inner product of feature x with class vector is replaced by the
norm of the subspace projection projSi

x and the bias term
is omitted. We found that normalizing features to a constant
length γ improves training. Incorporating this, Equ. (1)
becomes

li :=

∥∥∥∥projSi

γx

∥x∥

∥∥∥∥ . (4)

We assume x has been properly normalized throughout this
paper so that we can simply use Equ. (1) in the discussion.
We call this formulation of classes and logits the Grassmann
Class Representation (GCR).

The subspace class formulation requires two changes to
an existing network. Firstly, the last fc layer is replaced
by the Grassmann fully-connected layer, which transforms
features to logits using Equ. (4). Details can be found in
Section 4.1. Secondly, the optimizer is extended to process
the new geometric layer, which is explained in Section 4.2.
Ultimately, parameters of the geometric layer are optimized
using Riemannian SGD, while other parameters are simulta-
neously optimized using SGD, AdamW, or Lamb, etc.

4.1. Grassmann Class Representation

Suppose for class i ∈ {1, 2, . . . , C}, its subspace rep-
resentation is Si ∈ G(ki, n), where the dimension ki is a
hyperparameter and is fixed during training. The tuple of
subspaces (S1, S2, . . . , SC) will be optimized in the product
space G(k1, n)×G(k2, n)×· · ·×G(kC , n). Denote a matrix
instantiation of Si as Si ∈ Rn×k, where the column vectors
form an orthonormal basis of Si, then we concatenate these
matrices into a big matrix

S = [S1 S2 · · · SC ] ∈ Rn×(k1+k2+···+kC). (5)

The matrix S consists of the parameters that are optimized
numerically. For a feature x, the product ST

i x gives the
coordinate of projSi

x under the orthonormal basis formed
by the columns of Si. By definition in Equ. (1), the logit for
class i and the (normalized) feature x is

li =
∥∥projSi

x
∥∥ =

∥∥ST
i x

∥∥ . (6)

Grassmann Fully-Connected Layer We implement the
geometric fully-connected layer using the plain old fc layer.
The shape of the weight S is n× (k1 + k2 + · · ·+ kC), as
shown in Equ. (5). In the forward pass, the input feature is
multiplied with the weight matrix to get a temporary vector
t = STx, then the first element of the output is the norm of
the sub-vector (t1, . . . , tk1

), and the second element of the
output is the norm of (tk1+1, tk1+2, . . . , tk1+k2), and so on.
If all ki’s be the same value k, as in our experiments, then
the computation can be conveniently paralleled in one batch
using tensor computation libraries.

Parameter Initialization Each matrix instantiation of the
subspace should be initialized as an orthonormal matrix. To
be specific, each block Si of the weight S in Equ. (5) is
orthonormal, while the matrix S needs not be orthonormal.
For each block Si, we first fill them with standard Gaussian
noises and then use qf(Si), namely the Q factor of its QR
decomposition, to transform it to an orthonormal matrix.
The geometric optimization Algorithm 1 will ensure their
orthonormality during training.
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Figure 1: Geometric optimization in Grassmann manifold G(1, 2).
Each point (e.g. wt) in the black circle represent the 1-dimensional
linear subspace S passing through it. The goal is to learn a subspace
S to maximize ∥projSx0∥. g is the Riemannian gradient obtained
by the projection of Euclidean gradient d. wt moves along the
geodesic towards the direction g to a new point wt+1.

4.2. Optimize the Subspaces

Geometric optimization is to optimize functions defined
on manifolds. The key is to find the Riemannian gradient
w.r.t. the loss function and then descend along the geodesic.
Here the manifold in concern is the Grassmannian G(k, n).
As an intuitive example, G(1, 2), composed of all lines pass-
ing through the origin in a two-dimensional plane, can be
pictured as a unit circle where each point on it denotes the
line passing through that point. Antipodal points represent
the same line. To illustrate how geometric optimization
works, we define a toy problem on G(1, 2) that maximizes
the norm of the projection of a fixed vector x0 onto a line
through the origin, namely maxS∈G(1,2) ∥projSx0∥.

As shown in Fig. 1, we represent S with a unit vector
w ∈ S. Suppose at step t, the current point is w(t), then
it is easy to compute that the Euclidean gradient at w(t) is
d = x0, and the Riemannian gradient g is the Euclidean
gradient d projected to the tangent space of G(1, 2) at point
w(t). The next iterative point w(t+1) is to move w(t) along
the geodesic toward the direction g. Without geometric
optimization, the next iterative point would have lied at
w(t) + γd, jumping outside of the manifold.

The following proposition computes the Riemannian gra-
dient for the subspace in Equ. (1).

Proposition 1. Let S ∈ Rn×k be a matrix instantia-
tion of subspace S ∈ G(k, n), and x ∈ Rn is a vector
in Euclidean space, then the Riemannian gradient G of
l(S,x) = ∥projSx∥ w.r.t. S is

G =
1

l
(In − SST )xxTS. (7)

Proof. Rewrite ∥projSx∥ =
√
xTSSTx, and compute the

Euclidean derivatives as

∂l

∂S
=

1

l
xxTS,

∂l

∂x
=

1

l
SSTx. (8)

Then Equ. (7) follows from Equ. (2).

Algorithm 1 An Iteration of the Riemannian SGD with
Momentum for Grassmannian at Iteration t

Input: Learning rate τ > 0, momentum µ ∈ [0, 1), Grass-
mannian weight matrix S(t) ∈ Rn×k, momentum buffer
M (t−1) ∈ Rn×k, Euclidean gradient D ∈ Rn×k.

1: Riemannian gradient by Equ. (2), G← (In − SST )D.
2: Approximately parallel transport M to the tangent space

of current point S(t) by projection

M ← (In − SST )M (t−1). (10)

3: Update momentum M (t) ← µM +G.
4: Move along geodesic using Equ. (3). If UΣV T =

M (t) is the thin SVD, then

S(t+1) ←
(
S(t)V cos(τΣ) +U sin(τΣ)

)
V T .

5: (Optional) Orthogonalization S(t+1) ← qf(S(t+1)).

We give a geometric interpretation of Proposition 1. Let
w1 be the unit vector along direction projSx, then expand it
to an orthonormal basis of S, say {w1,w2, . . . ,wk}. Since
the Riemannian gradient is invariant to matrix instantiation,
we can set S = [w1 w2 · · · wk]. Then Equ. (7) becomes

G =
[
(In − SST )x 0 · · · 0

]
, (9)

since wi ⊥ x, i = 2, 3, . . . , k and wT
1 x = l. Equ. (9) shows

that in the single-sample case, only one basis vector w1, the
unit vector in S that is closest to x, needs to be rotated
towards vector x.

Riemannian SGD Parameters of non-geometric layers
are optimized as usual using traditional optimizers such as
SGD, AdamW, or Lamb during training. For the geometric
Grassmann fc layer, its parameters are optimized using the
Riemannian SGD (RSGD) algorithm. The pseudo-code of
our implementation of RSGD with momentum is described
in Algorithm 1. We only show the code for the single-sample,
single Grassmannian case. It is trivial to extend them to the
batch version and the product of Grassmannians. In step 2,
we use projection to approximate the parallel translation of
momentum, and the momentum update formula in step 3 is
adapted from the official PyTorch implementation of SGD.
Weight decay does not apply here since spaces are scaleless.
Note that step 5 is optional since S(t+1) in theory should
be orthonormal. In practice, to suppress the accumulation
of numerical inaccuracies, we do an extra orthogonalization
step using qf(·) every 5 iterations. Algorithm 1 works seam-
lessly with traditional Euclidean optimizers and converts
the gradient from Euclidean to Riemannian on-the-fly for
geometric parameters.
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5. Experiment

In this section, we empirically study the influence of the
Grassmann class representation under different settings. In
Section 5.1, GCR demonstrates superior performance on
the large-scale ImageNet-1K classification, a fundamental
vision task. We experimented with both CNNs and vision
transformers and observed consistent improvements. Then,
in Section 5.2, we show that GCR improves the feature
transferability by allowing larger intra-class variation. The
choice of hyper-parameters and design decisions are studied
in Section 5.3. Extra supportive experiments are presented
in the supplementary material.

Experiment Settings For baseline methods, unless stated
otherwise, we use the same training protocols (including
the choice of batch size, learning rate policy, augmentation,
optimizer, loss, and epochs) as in their respective papers. The
input size is 224× 224 for all experiments, and checkpoints
with the best validation scores are used. All codes, including
the implementation of our algorithm and re-implementations
of the compared baselines, are implemented based on the
mmclassification [28] package. PyTorch [36] is used as the
training backend and each experiment is run on 8 NVIDIA
Tesla V100 GPUs using distributed training.

Networks for the Grassmann class representation are set
up by the drop-in replacement of the last linear fc layer in
baseline networks with a Grassmann fc layer. The training
protocol is kept the same as the baseline whenever possible.
One necessary exception is to enhance the optimizer (e.g.,
SGD, AdamW or Lamb) with RSGD (i.e., RSGD+SGD,
RSGD+AdamW, RSGD+Lamb) to cope with Grassmannian
layers. To reduce the number of hyper-parameters, we simply
set the subspace dimension k to be the same for all classes
and we use k = 8 throughout this section unless otherwise
specified. Suppose the dimension of feature space is n,
then the Grassmann fully-connected layer has the geometry
of Π1000

i=1 G(8, n). For hyper-parameters, we set γ = 25.
Experiments with varying k’s can be found in Section 5.2
and experiments on tuning γ are discussed in Section 5.3.

5.1. Improvements on Classification Accuracy

We apply Grassmann class representation to the large-
scale classification task. The widely used ImageNet-1K [9]
dataset, containing 1.28M high-resolution training images
and 50K validation images, is used to evaluate classification
performances. Experiments are organized into three groups
which support the following observations. (1) It has superior
performance compared with different ways of representing
classes. (2) Grassmannian improves accuracy on different
network architectures, including CNNs and the latest vision
transformers. (3) It also improves accuracy on different
training strategies for the same architecture.

Table 1: Validation accuracy of ResNet50-D on ImageNet-
1K using different class representations.

Setting Top1 Top5 Class Representation

Softmax [8] 78.04 93.89 vector class representation
CosineSoftmax [19] 78.30 94.07 1-dim subspace
ArcFace [11] 76.66 92.98 1-dim subspace with margin
MultiFC 77.34 93.65 8 fc layers ensembled
SoftTriple [38] 75.55 92.62 8 centers weighted average
SubCenterArcFace [10] 77.10 93.51 8 centers with one activated
GCR (Ours) 79.26 94.44 8-dim subspace with RSGD

On Representing Classes In this group, we compare seven
alternative ways to represent classes. (1) Softmax [8] is the
plain old vector class representation using the fc layer to
get logits. (2) CosineSoftmax [19] represents a class as a
1-dimensional subspace since the class vector is normalized
to be unit length. We set the scale parameter to 25 and do
not add a margin. (3) ArcFace [11] improves over cosine
softmax by adding angular margins to the loss. The default
setting (s = 64,m = 0.5) is used. (4) MultiFC is an
ensemble of independent fc layers. Specifically, we add 8 fc
heads to the network. These fc layers are trained side by side,
and their losses are then averaged. When testing, the logits
are first averaged, and then followed by softmax to output
the ensembled prediction. (5) SoftTriple [38] models each
class by 8 centers. The weighted average of logits computed
from multiple class centers is used as the final logit. We use
the recommended parameters (λ = 20, γ = 0.1, τ = 0.2
and δ = 0.01) from the paper. (6) SubCenterArcFace [10]
improves over ArcFace by using K sub-centers for each
class and in training only the center closest to a sample is
activated. We set K = 8 and do not drop sub-centers or
samples since ImageNet is relatively clean. (7) The last
setting is our GCR with subspace dimension k = 8. For all
seven settings ResNet50-D is used as the backbone network
and all models are trained on ImageNet-1K using the same
training strategy described in the second row of Tab. 2.

Results are listed in Tab. 1, from which we find that the
Grassmann class representation is most effective. Compared
with the vector class representation of vanilla softmax, the
top-1 accuracy improves from 78.04% to 79.26%, which
amounts to 5.6% relative error reduction. Compared with
previous ways of 1-dimensional subspace representation, i.e.
CosineSoftmax and ArcFace, our GCR improves the top-1
accuracy by 0.96% and 2.60%, respectively. Compared with
the ensemble of multiple fc, the top-1 is improved by 1.92%.
Interestingly, simply extending the class representation to
multiple centers such as SoftTriple (75.55%) and SubCen-
terArcFace (77.10%) does not result in good performances
when training from scratch on the ImageNet-1K dataset.
SoftTriple was designed for fine-grained classification and
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Table 2: Comparing Grassmann class representation (k = 8) with vector class representation on different architectures.
Validation accuracy on ImageNet. n is the feature dimension, BS means batch size, WarmCos means using warm up together
with the cosine learning rate decay. CE is cross-entropy, LS is label smoothing, and BCE is binary cross-entropy.

Setting Vector Class Representation Grassmann Class Representation (k = 8)
Architecture n BS Epoch Lr Policy Loss Optimizer Top1 Top5 Loss Optimizer Top1 Top5

ResNet50 [16] 2048 256 100 Step CE SGD 76.58 93.05 CE RSGD+SGD 77.77(↑1.19) 93.67(↑0.62)
ResNet50-D [17] 2048 256 100 Cosine CE SGD 78.04 93.89 CE RSGD+SGD 79.26(↑1.22) 94.44(↑0.55)
ResNet101-D [17] 2048 256 100 Cosine CE SGD 79.32 94.62 CE RSGD+SGD 80.24(↑0.92) 94.95(↑0.33)
ResNet152-D [17] 2048 256 100 Cosine CE SGD 80.00 95.02 CE RSGD+SGD 80.44(↑0.44) 95.21(↑0.19)
ResNeXt50 [52] 2048 256 100 Cosine CE SGD 78.02 93.98 CE RSGD+SGD 79.00(↑0.98) 94.28(↑0.30)
VGG13-BN [42] 4096 256 100 Step CE SGD 72.02 90.79 CE RSGD+SGD 73.40(↑1.38) 91.30(↑0.51)
Swin-T [26] 768 1024 300 WarmCos LS AdamW 81.06 95.51 LS RSGD+AdamW 81.63(↑0.57) 95.77(↑0.26)
Deit3-S [45] 384 2048 800 WarmCos BCE Lamb 81.53 95.21 CE RSGD+Lamb 82.18(↑0.65) 95.73(↑0.52)

SubCenterArcFace was designed for face verification. Their
strong performances in their intended domains do not naively
generalize here. This substantiates that making the subspace
formulation competitive is a non-trivial contribution.

On Different Architectures We apply Grassmann class
representation to eight network architectures, including
six CNNs (ResNet50 [16], ResNet50/101/152-D [17],
ResNetXt50 [52], VGG13-BN [42]) and two transformers
(Swin [26], Deit3 [45]). For each model, we replace the last
fc layer with Grassmannian fc and compare performances
before and after the change. Their training settings together
with validation top-1 and top-5 accuracies are listed in Tab. 2.
The results show that GCR is effective across different model
architectures. For all architectures, the improvement on top-1
is in the range 0.44−1.38%. The improvement is consistent
not only for different architectures, but also across different
optimizers (e.g., SGD, AdamW, Lamb) and different feature
space dimensions (e.g., 2048 for ResNet, 768 for Swin, and
384 for Deit3).

On Different Training Strategies In this group, we train
ResNet50-D with the three training strategies (RSB-A3,
RSB-A2, and RSB-A1) proposed in [50], which aim to push
the performance of ResNets to the extreme. Firstly, we train
ResNet50-D with the original vector class representation
and get top-1 accuracies of 79.36%, 80.29%, and 80.53%,
respectively. Then, we replace the last classification fc with
the Grassmann class representation (k = 8), and their top-1
accuracies improve to 79.88%, 80.74%, and 81.00%, re-
spectively. Finally, we add the FixRes [46] trick to the three
strategies, namely training on 176 × 176 image resolution
and when testing, first resize to 232× 232 and then center
crop to 224 × 224. We get further boost in top-1 which
are 80.20%, 81.04% and 81.29%, respectively. Results are
summarized in Fig. 2.

Figure 2: Validation accuracies of ResNet50-D on ImageNet-1K
under different training strategies (RSB-A3, RSB-A2, and RSB-
A1). Green bars are vector class representations; yellow bars are
Grassmannian with k = 8; blue bars added the FixRes trick when
training Grassmannian. The best top-1 of ResNet50-D is 81.29%.

5.2. Improvements on Feature Transferability

In this section, we study the feature transferability of the
Grassmann class representation. Following [19] on the study
of better losses vs. feature transferability, we compare GCR
with five different losses and regularizations. They are Soft-
max [8], Cosine Softmax [19], Label Smoothing [44] (with
smooth value 0.1), Dropout [43] (with drop ratio 0.3), and the
Sigmoid [5] binary cross-entropy loss. Note that baselines
in Tab. 2 that do not demonstrate competitive classification
performances are not listed here. The feature transfer bench-
mark dataset includes CIFAR-10 [21], CIFAR-100 [21],
Food-101 [7], Oxford-IIIT Pets [35], Stanford Cars [20],
and Oxford 102 Flowers [31]. All models are pre-trained on
the ImageNet-1K dataset with the same training procedure
as shown in the second row of Tab. 2. When testing on the
transferred dataset, features (before the classification fc and
Grassmann fc) of pre-trained networks are extracted. We
fit linear SVMs with the one-vs-rest multi-class policy on
each of the training sets and report their top-1 accuracies or
mean class accuracies (for Pets and Flowers) on their test set.
The regularization parameter for SVM is grid searched with
candidates [0.1, 0.2, 0.5, 1, 2, 5, 10, 15, 20] and determined
by five-fold cross-validation on the training set.

22483



Table 3: Linear transfer using SVM for different losses. ResNet50-D is used as the backbone, and model weights are pre-trained
on ImageNet-1K. Variability measures the intra-class variability, and R2 measures class separation.

Setting ImageNet Analysis Linear Transfer (SVM)
Name k Top-1 Top-5 Variability R2 CIFAR10 CIFAR100 Food Pets Cars Flowers Avg.

Softmax [8] 78.04 93.89 60.12 0.495 90.79 67.76 72.13 92.49 51.55 93.17 77.98
CosineSoftmax [19] 78.30 94.07 56.87 0.528 89.34 65.32 64.79 91.68 43.92 87.28 73.72
LabelSmoothing [44] 78.07 94.10 54.79 0.577 89.14 63.22 66.02 91.72 43.58 91.01 74.12
Dropout [43] 77.92 93.80 55.40 0.565 89.27 64.33 66.74 91.38 43.99 88.59 74.05
Sigmoid [5] 78.04 93.81 60.20 0.491 91.09 69.26 71.71 91.98 51.75 92.86 78.11

GCR (Ours)

1 78.42 94.14 56.50 0.534 89.98 66.34 64.34 91.37 42.97 86.85 73.64
4 78.68 94.32 61.48 0.459 90.56 67.45 67.58 91.37 50.24 90.08 76.21
8 79.26 94.44 63.49 0.430 90.13 67.90 70.06 91.85 53.25 92.64 77.64

16 79.21 94.37 65.79 0.395 91.09 69.58 71.28 91.99 55.93 93.80 78.95
32 78.63 94.05 67.74 0.365 91.35 69.49 71.80 92.47 58.05 95.04 79.70

Table 4: Feature transfer using Swin-T and Deit3-S. All
model weights are pre-trained on ImageNet-1K as in Tab. 2.
C10/100 is CIFAR10/100, Flwr is Flowers. Swin-T GCR
and Deit3-S GCR are their Grassmann variants.

Setting Analysis Linear Transfer (SVM)
Architecture Vari. R2 C10 C100 Food Pets Cars Flwr Avg.

Swin-T 60.2 0.48 92.7 69.4 77.5 92.1 61.3 96.0 81.5
Swin-T GCR 62.9 0.40 93.5 71.5 79.8 93.3 65.5 97.0 83.4

Deit3-S 50.6 0.60 89.5 63.7 64.7 91.4 43.1 90.2 73.8
Deit3-S GCR61.5 0.44 93.0 71.9 74.9 92.3 60.7 95.5 81.4

Results The validation accuracies of different models on
ImageNet-1K are listed in the second group of columns in
Tab. 3. All GCR models (k = 1, 4, 8, 16, 32) achieve higher
top-1 and top-5 accuracies than all the baseline methods
with different losses or regularizations. Within a suitable
range, a larger subspace dimension k improves the accuracy
greater. However, when the subspace dimension is beyond
16, the top-1 accuracy begins to decrease. When k = 32, the
top-1 is 78.63%, which is still 0.33% higher than the best
classification baseline CosineSoftmax.

The linear transfer results are listed in the fourth group
of columns in Tab. 3. Among the baseline methods, we find
that Softmax and Sigmoid have the highest average linear
transfer accuracies, which are 77.98% and 78.11%, respec-
tively. Other losses demonstrate worse transfer performance
than Softmax. For the Grassmann class representation, we
observe a monotonic increase in average transfer accuracy
when k increases from 1 to 32. When k = 1, the cosine
softmax and the GCR have both comparable classification
accuracies and comparable transfer performance. This can
attribute to their resemblances in the formula. The transfer
accuracy of GCR (73.64%) is lower than Softmax (77.98%)
at this stage. Nevertheless, when the subspace dimension k

increases, the linear transfer accuracy gradually improves,
and when k = 8, the transfer performance (77.64%) is on par
with the Softmax. When k ≥ 16, the transfer performance
surpasses all the baselines.

In Tab. 4, we show that features of the GCR version of
Swin-T and Deit3 increase the average transfer accuracy by
1.9% and 7.6%, respectively.

Intra-Class Variability Increases with Dimension The
intra-class variability is measured by first computing the
mean pairwise angles (in degrees) between features within
the same class and then averaging over classes. Follow-
ing the convention in the study of neural collapse [34], the
global-centered training features are used. [19] showed that
alternative objectives which may improve accuracy over
Softmax by collapsing the intra-class variability (see the
Variability column in Tab. 3), degrade the quality of features
on downstream tasks. Except for the Sigmoid, which has
a similar intra-class variability (60.20) to Softmax (60.12),
all other losses, including CosineSoftmax, LabelSmoothing,
and Dropout, have smaller feature variability within classes
(in the range from 54.79 to 56.87). However, the above
conclusion does not apply when the classes are modeled by
subspaces. For Grassmann class representation, we observed
that if k is not extremely large, then as k increases, both the
top-1 accuracy and the intra-class variability grow. This
indicates that representing classes as subspaces enables the
simultaneous improvement of inter-class discriminability
and intra-class variability.

This observation is also in line with the class separation
index R2. R2 is defined as one minus the ratio of the average
intra-class cosine distance to the overall average cosine dis-
tance [19, Eq. (11)]. [19] founds that greater class separation
R2 is associated with less transferable features. Tab. 3 shows
that when k increases, the class separation monotonically
decreases, and the transfer performance grows accordingly.
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Table 5: Validation accuracy of Grassmann ResNet50-D on
ImageNet-1K with varying γ.

Setting k γ Top1 Top5

ResNet50-D GCR 8
20 79.11 94.29
25 79.26 94.44
30 78.47 94.07

Table 6: Validation accuracy of Grassmann ResNet50-D on
ImageNet with/without feature normalization.

Setting k Feature Normalize Top1 Top5

ResNet50-D GCR 1
77.91 93.78

✓ 78.42 94.14

ResNet50-D GCR 8
78.12 93.90

✓ 79.26 94.44

5.3. Design Choices and Analyses

In this section, we use experiments to support our design
choices and provide visualizations for the principal angles
between class representative spaces.

Choice of Gamma In Tab. 5, we give more results with
different values of γ when subspace dimension k = 8. We
find γ = 25 has good performance and use it throughout the
paper without further tuning.

Importance of Normalizing Features Normalizing the
feature in Equ. (4) is critical to the effective learning of the
Grassmann class representations. In Tab. 6 we compare
results with/without feature normalization and observed a
significant performance drop without normalization.

Principal Angles Between Class Representative Spaces
When classes are subspaces, relationships between classes
can be measured by k principal angles, which contain richer
information than a single angle between two class vectors.
The principal angles between two k-dimensional subspaces
S and R are recursively defined as,

cos(θi) = max
s∈S

max
r∈R

sTr = sTi ri,

s.t.∥s∥ = ∥r∥ = 1, sTsj = rTrj = 0, j ≤ i− 1,
(11)

for i = 1, . . . , k and θi ∈ [0, π/2]. In Fig. 3, we illustrate
the smallest and largest principal angles between any pair of
classes for a model with k = 8. From the figure, we can see
that the smallest principal angle reflects class similarity, and
the largest principal angle is around π/2. A smaller angle
means the two classes are correlated in some direction, and a
π/2 angle means that some directions in one class subspace
are completely irrelevant (orthogonal) to the other class.

(a) (b) (c)

Figure 3: Each sub-figure is a heatmap of 1000× 1000 grids. The
color at the i-th row and the j-th column represent an angle between
class i and class j in ImageNet-1K. (a) Pairwise angles between
class vectors of the ResNet50-D trained by vanilla softmax. Grids
with red hue is large than 90◦, and blue hue means smaller than 90◦.
(b) Pairwise smallest principal angles between 8-dimensional class
subspaces of a ResNet50-D model. Deeper blue colors indicate
smaller angles. (c) Pairwise largest principal angles of the same
model as in (b). Grayish color means they are close to 90◦. Best
viewed on screen with colors.

Necessity of Geometric Optimization To investigate the
necessity of constraining the subspace parameters to lie in
the Grassmannian, we replace the Riemannian SGD with the
vanilla SGD and compare it with Riemannian SGD. Note
that with SGD, the logit formula ∥ST

i x∥ no longer means
the projection norm because Si is not guaranteed to be or-
thonormal anymore. With vanilla SGD, we get top-1 78.55%
and top-5 94.18% when k = 8. The top-1 is 0.71% lower
than models trained by Riemannian SGD.

6. Limitation and Future Direction
Firstly, a problem that remains open is how to choose

the optimal dimension. Currently, we treat it as a hyper-
parameter and decide it empirically. Secondly, we showed
that the Grassmann class representation allows for greater
intra-class variability. Given this, it is attractive to explore
extensions to explicitly promote intra-class variability. For
example, a promising approach is to combine it with self-
supervised learning. We hope our work would stimulate
progresses in this direction.

7. Conclusion
In this work, we proposed the Grassmann class representa-

tion as a drop-in replacement of the conventional vector class
representation. Classes are represented as high-dimensional
subspaces and the geometric structure of the corresponding
Grassmann fully-connected layer is the product of Grassman-
nians. We optimize the subspaces using the optimization
and provide an efficient Riemannian SGD implementation
tailored for Grassmannians. Extensive experiments demon-
strate that the new Grassmann class representation is able to
improve classification accuracies on large-scale datasets and
boost feature transfer performances at the same time.
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