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Abstract

This paper focuses on model transferability estimation,
i.e., assessing the performance of pre-trained models on
a downstream task without performing fine-tuning. Moti-
vated by neural collapse (NC) [25] that reveals particular
feature geometry at the terminal stage of training, we con-
sider model transferability as how far the target activations
obtained by pre-trained models are from their hypothetical
state in the terminal phase of the model fine-tuned on the
target domain. We propose a metric that measures this prox-
imity based on three phenomena of NC: within-class vari-
ability collapse, simplex encoded label interpolation geom-
etry structure is formed, and the nearest center classifier
becomes optimal on training data. Through experiments
on 11 datasets, we confirm none of the three NC proxies
are dispensable, which allows us to obtain very competi-
tive transferability estimation accuracy with approximately
10× wall-clock time speed up compared to state-of-the-art
approaches.

1. Introduction

The past decade has witnessed a surge in the availabil-
ity of off-the-shelf pre-trained models in public reposito-
ries. They are adapted and re-tuned to facilitate new tasks,
which has become a standard practice [12]. Nevertheless,
this approach raises an important practical question of how
to effectively select the best pre-trained model from a large
model pool to be carried onto a downstream task.

While precise ranking of these pre-trained models on a
new task can be obtained by a greedy approach of fine-
turning each model and comparing the test accuracy, it
is often prohibitive as it requires a vast amount of com-
puting resources. Therefore, an early line of research
has been developed referred to as transferability estima-
tion [22, 41, 24, 29], where the aim is to design efficient
methods for ranking the performances of pre-trained mod-
els on a downstream task without fine-tuning. Existing
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Figure 1: Illustration of the transferability estimation prob-
lem. Given a pool of pre-trained models and labeled target
data, the objective of transferability estimation is to predict
which models can achieve higher performance on the target
data after fine-tuning. This task is much more time efficient
than fine-tuning the models to obtain ground truth rankings.

approaches in transferability estimation typically consider
the current status of the pre-trained models (w.r.t the target
task) and can be generally categorized into two streams of
probabilistic-based [22, 36, 41, 1] and feature distribution-
based techniques [24, 29]. Approaches from the former
category model the expected conditional probability of tar-
get labels given the extracted target features [41, 20] or pre-
dictions [36, 22]. The latter category models transferability
as the class-wise separation of features, in which Pandey et
al. [24] employed the Bhattacharyya coefficient to approx-
imate the overlap between class distributions.

From a different viewpoint for transferability estimation,
this paper measures the difference between the current sta-
tus and the hypothetical terminal status of pre-trained mod-
els after fine-tuning. The latter status refers to neural col-
lapse (NC) [25, 33] on the target domain, which commonly
occurs when the training loss approaches zero. Specifically,
there are three distinct characteristics of NC: 1) the within-
class feature variability drops towards zero; 2) class means
gradually converge to a simplex encoded label interpolation
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(SELI) geometry (def. in Sec.3); and 3) the behavior of the
final classifier layer is similar to the nearest centroid classi-
fier. Meanwhile, it is empirically demonstrated in [25] that
stopping training at the terminal phase achieves higher test
performance compared to the models that stop at an earlier
stage (i.e., zero prediction error).

Motivated by these interesting findings, we formalize a
transferability metric based on the observations of NC dis-
cussed above. The metric measures how close the geome-
try of the target features is to their hypothetical state in the
terminal stage of the fine-tuned model. Specifically, we an-
alyze the spectral property of the class-wise feature matrix
to understand to what extent the current status is from zero
within-class variation. Secondly, we assess the gap between
the features extracted by the pre-trained model and SELI
geometry with the rank of the feature matrix. Thirdly, we
calculate the difference between the hypothetical classifier
layer and the nearest neighbor classifier w.r.t. the empiri-
cal class-conditional distribution. Collectively, these three
different measurements allow us to understand how far the
pre-trained models are from NC on the target domain. On
a series of standard benchmarks, we demonstrate that the
metric exhibits a strong correlation with the transferability
of supervised and self-supervised pre-trained models and
thus is a very useful transferability estimator. Compared
with the state-of-the-art, our method gives stronger correla-
tions while being computationally efficient. We summarize
our main contributions below.

• We propose the neural collapse transferability index
(NCTI) for the transferability estimation. NCTI approxi-
mately measures the model w.r.t the three prominent char-
acteristics of NC, which can be efficiently computed.

• Experimental results on 11 datasets demonstrate strong
correlations between NCTI and the transferability of
models to the target dataset, which outperforms existing
transferability estimation methods.

• We give interesting insights when the NC components are
computed on a subset of the pre-training dataset. Our
findings suggest a potential for an unsupervised trans-
ferability estimation metric, solely based on measuring
within-class variability collapse of the source features.

2. Related Work
Neural collapse. Initially observed empirically by Pa-

pyan et. al [25], the phenomenon of neural collapse has
garnered significant research attention within a short time
frame. Neural collapse shows that at the terminal phase of
deep network training (i.e., driving the training loss towards
zero), the last layer activations have the following four prop-
erties: 1) the variation of activation drop to neglectable; 2)
the class mean of activation converge to simplex Equian-
gular Tight Frame (ETF); 3) the weight of linear classifier

and class means converge to a dual-vector space; and 4) the
final linear classifier behaves similar to a nearest class cen-
ter classifier. Recent follow-up works focus on using the
unconstrained feature model with cross-entropy [44, 9] or
square loss [43, 35] training to theoretically analyze the NC
phenomenon. [33, 8] extend the NC phenomenon from a
class-balanced scenario to an imbalanced one. Particularly,
Thrampoulidis et. al [33] demonstrated a more generalized
geometry than simplex ETF, named simplex encoded labels
interpolation (SELI). SELI shows the invariant property on
balanced datasets, as well as imbalanced datasets. The au-
thors also proved that SELI recovers the ETF geometry for
the balanced dataset.

Transferability estimation. Early works [36, 1, 22] aim
to assess the transferability of pre-trained models by cal-
culating the expected conditional distribution of the target
label space given the target prediction obtained from the
pre-trained classifier. Specifically, [36] leverages negative
conditional entropy to evaluate the amount of information
shared by pre-training label space and the target task. [22]
computes the empirical conditional distribution from the
joint distribution of the target task and the pre-training task.
Since the early methods heavily rely on the pre-trained pre-
dictor to obtain dummy source label distribution of target
samples, they cannot directly evaluate the transferability of
unsupervised or self-supervised models, where no classifier
is available to predict dummy source label distributions.

Recent transferability estimation methods broaden the
applicability by nullifying the dependency on the classi-
fier of the pre-training task. In order to achieve this,
NLEEP [20] substitutes the output layer with a Gaussian
mixture model. LogME [41] formalizes the transferability
estimation as the maximum label marginalized likelihood
and adopts a directed graphical model to solve it. Huang et.
al [15] proposed to approximate transferability with the mu-
tual information between the pre-trained model extracted
features and the corresponding label. On par with the met-
rics the probabilistic point of view, [29, 24] take the class
separability into consideration for the transferability estima-
tion metric. Particularly, Shao et. al [29] incorporates the
self-challenge noise augmentation to encourage the classi-
fier to discriminate the hard samples. However, none of the
existing works model the transferability as the gap between
the current target feature geometry and the hypothetical tar-
get feature geometry at the terminal stage of the fine-tuning.

3. Methodology
Transferability estimation is defined as ranking a set

of M pre-trained models {ϕm(·)}Mm=1 given a labeled tar-
get dataset D = {X,Y} = {(xi, yi)}Ni=1 with N be-
ing the number of samples. An evaluation metric (accu-
racy, mAP, etc.) is associated with the dataset, which mea-
sures the ground-truth performance Tm of the m-th pre-
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trained model ϕm(·) after fine-tuning. The feature extracted
by the m-th pre-trained model ϕm(·) is denoted as Hm,
where Hm = ϕm(X) ∈ RN×d and d is the feature dimen-
sion. With the objective of truly reflecting the ground truth
model ranking, transferability estimation methods calculate
a score Sm for each pre-trained model ϕm(·). Ideally, the
calculated scores {Sm}Mm=1 are supposed to be highly cor-
related with the ground truth performance {Tm}Mm=1, and
able to determine the best pre-trained model to be fine-tuned
on the target data.

The central idea of our proposed method is to employ
neural collapse phenomena to assess the proximity of the
current state of a pre-trained model ϕm(·) to its terminal
stage of fine-tuning on the target. Particularly, the proximity
is measured from three dimensions, which are: 1) distance
of within-class variability of features from zero; 2) simplic-
ity for the pre-trained model to produce simplex encoded
labels interpolation (SELI) geometry structure [33]; and 3)
the applicability of the nearest centroid classifier. The final
metric jointly considers these three terms, with each term
contributing equally to the overall transferability score.

The subsequent sections elaborate on each of these three
perspectives in detail. Here, we start with two definitions
that will be used in the sections: the simplex encoded label
(SEL) matrix, and the corresponding simplex encoded label
interpolation (SELI) geometry structure.

Definition 3.1 (Simplex Encoded Label (SEL) Matrix [33])
The SEL matrix Ẑ ∈ RC×N is defined as,

Ẑ[c, i] =

{
1− 1/C , c = yi

−1/C , c ̸= yi
. (1)

Here, c ∈ [C] and i ∈ [N ] denote the c-th class and i-th
observation, respectively. C is the number of classes. Note
that Ẑ⊤1 = 0.

From the definition of SEL matrix Ẑ, we can observe
that the matrix is almost a full rank matrix (rank(Ẑ) =
min(C,N)− 1).

Definition 3.2 (SEL Interpolation (SELI) Geometry [33])
The embeddings H ∈ Rd×N and classifier weight ma-
trices W ∈ Rd×C follow the simplex-encoded-labels
interpolation geometry when for some scaling α > 0:

W⊤W = αVΛV⊤,H⊤H = αUΛU⊤, andW⊤H = αẐ,
(2)

where Ẑ = VΛU⊤ is the SEL matrix. U and V denote the
left and right singular vector matrix of Ẑ. Λ represents the
diagonal singular value matrix.

3.1. Within-class Variability Collapse

As described in the neural collapse phenomenon, at the
terminal stage of training, the variability of within-class
features becomes neglectable and the features collapse to-
wards the corresponding class mean. Motivated by this,
we develop a score function Svc to track the within-class
variability of features, which indicates how close a pre-
trained model is to the neural collapse state. Specifically,
the within-class covariance Σc of c-th class is denoted as:

Σc =
1

nc
(Hc − µc)

⊤(Hc − µc), (3)

where Σc ∈ Rd×d, and Hc ∈ RNc×d consists Nc features
that belong to c-th class. µc denotes the mean of c-th class.
By applying singular value decomposition of (Hc − µc) =
UΛVT , the covariance matrix can be written as:

Σc = VΛU⊤UΛV⊤ = VΛ2V. (4)

Here, U and V represent the left and right singular vector
matrices. Λ denotes the diagonal singular value matrix.

From Eq. 4, we observe that larger singular values mean
higher within-class variability. Since SVD is computation-
ally prohibitive on large matrices, it motivates us to use the
nuclear norm, which calculates the sum of singular values
of a matrix with lower time complexity. Meanwhile, as fea-
ture space is usually with high dimensionality, there might
exist noises that are easily mitigated by fine-tuning but neg-
atively affects variability calculation. Therefore, we com-
pute the feature variability by substituting Hm

c into class-
wise logits Zm

c . We define the within-class variability score
of Svc using the nuclear norm as follows:

Sm
vc(H

m) = −
C∑

c=1

||Zm
c ||∗, (5)

where Zm
c denotes the logits of c-th class extracted by the

m-th model. We defer the formulation of zi,c to section 3.3.
Since Sm

vc directly reflects the within-class variability, when
a pre-trained model ϕm(·) is close to the terminal stage of
the fine-tuning, a larger Sm

vc should be achieved.

3.2. Simplex Encoded Labels Interpolation (SELI)

Thrampoulidis et al. [33] proposed SELI as a general-
ized geometry structure version of the simplex equiangular
tight frame (ETF) that is defined in the neural collapse phe-
nomenon. While the simplex ETF geometry observed in
neural collapse applies only to balanced datasets, SELI can
be established in both balanced and imbalanced datasets at
the neural collapse state. As such, we propose a score func-
tion Sm

seli to assess the SELI geometry structure of the target
features extracted from the m-th pre-training model. In the
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Figure 2: TSNE visualization of feature distributions produced by four pre-trained models with CIFAR-10 as the downstream
task. Different colors mean different classes in CIFAR-10. From left to right, target recognition accuracy (or transferability)
decreases. At the same time, the proposed three scores, i.e., Svc, Sseli, and Sncc also decrease.

rest of this section, we first review the role of SELI geom-
etry in cross-entropy minimization, followed by discussing
our SELI-based metric.

Under the unconstrained feature (UF) model [44],
Thrampoulidis et al. shows that minimizing the cross-
entropy loss converges to a KKT point of the SVM classi-
fier, where the global minimizer of this optimization prob-
lem is the SEL matrix.

Theorem 1 (Structure of the UF-SVM minimizers) [33] Let
(Ŵ, Ĥ) be any solution and p∗ be the optimal cost of the
following unconstrained feature SVM (UF-SVM) classifier:

(Ŵ, Ĥ) ∈ argmin
W,H

||W||2F /2 + ||H||2F /2,

s.t. (wyi
− wc)

Thi ≥ 1, i ∈ [n], c ̸= yi.

Since Ẑ = Ŵ⊤Ĥ holds for optimal logits, the optimal cost
can be obtained as p∗ = ||Ẑ||∗ = ||Ĥ||2F = ||Ŵ||2F .

A straightforward way to assess the SELI geometry
structure of the target features is to compute the differ-
ence between logits Zm extracted from m-th pre-trained
model and the optimal logits Ẑ. However, since the source
and target data might not share similar classes, we cannot
directly obtain the logits Zm without the time-consuming
fine-tuning process on the target dataset. Therefore, we ex-
tract features Hm of the model and measure its discrepancy
to form the SELI structure.

Specifically, we use the proven fact that, at the terminal
stage of the fine-tuning where the model achieves the opti-
mal cost p∗, we have ||Ẑ||∗ = ||Ĥ||2F [33]. Therefore, we
approximate the complexity of achieving the optimal log-
its Ẑ via features Hm extracted from the pre-trained model
ϕm(X) as:

Sm
seli(H

m) = ||Hm||∗. (6)

Since the nuclear norm is the upper bound of || · ||2F and is
the convex envelope for rank(), a higher Sm

seli indicates a
higher rank of the feature matrix Hm, which makes Z closer
to a full rank matrix.

3.3. Simplicity to Nearest Centroid Classifier

Based on the neural collapse phenomenon shown in [25],
at the terminal stage of training, the linear classifier be-
haves similarly to the nearest centroid classifier. Therefore,
a score function Sm

ncc is proposed to measure the applicabil-
ity of the nearest centroid classifier on the m-th pre-trained
model. We start with defining the nearest centroid classifier
as [28]:

ŷ = argmax
c∈[C]

cos(µc, x), (7)

where ŷ is the assigned class label to a sample x, and cos
indicates the cosine similarity.

In the neural collapse state, the nearest centroid classifier
can achieve the optimal classification performance on the
training set. However, in transferability estimation, where
there is no actual fine-tuning on the target dataset, directly
comparing the performance of applying the nearest centroid
classifier to the extracted feature with that of the optimal
solution can lead to inaccurate estimation results. To mit-
igate this issue, we consider two relaxations to the near-
est centroid classifier: Instead of using cosine similarity
which only involves the mean of the classes, we adopt Ma-
halanobis distance as the nearest centroid classifier that fur-
ther involves the correlation between the classes. Moreover,
we leverage the expected conditional distribution of labels
given input to replace the hard label. Under a mild assump-
tion, the class distribution follows a multivariate Gaussian
distribution, thus, we can obtain the following posterior by
applying Bayes’ Rules:

logP (y = c|h) = 1

2
(hi−µc)

⊤Σ(hj−µc)+logP (y = c).

(8)
Here, logP (y = c) denotes the prior probability of class c,
which can be computed as Nc/N . Nc represents the num-
ber of samples belonging to class c.

Compared with the discrete output of argmax function
in the nearest centroid classifier formulation, we adopt the
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Figure 3: Strong correlation between the proposed NCTI score and model recognition performance (%) on the target dataset
after fine-tuning. Each marker represents a different pre-trained model. The target domains are (from left to right): Cifar-
100 [17], DTD [6], Food101 [2], Pets [26], SUN397 [39], and VOC2007 [7]. We show Spearman’s coefficient ρ and weighted
Kendall’s τ here. More correlation results are presented in supplementary materials.

softmax function as it preserves the relative order informa-
tion of the prediction. Therefore, even if the corresponding
class of a sample is not assigned with the highest proba-
bility, the probability value still reflects the distance of the
sample to that class. The c-th class normalized posterior
probability of i-th sample can be calculated as follows:

zmi,c =
exp(logP (y = c|hm

i ))∑C
k=1 exp(logP (y = k|hm

i ))
, (9)

As such, we have the score Sm
ncc to describe the dis-

crepancy between the current state of the m-th pre-trained
model ϕm(X) and the optimal nearest centroid classifier as
follows:

Sm
ncc(H

m) =
1

N

N∑
i=1

zmi yi, (10)

where yi denotes the corresponding one-hot ground truth la-
bel of xi and zmi is the C dimensional logits of xi, predicted
by m-th model. A greater Sm

ncc indicates a smaller discrep-
ancy towards an optimal nearest centroid classifier, which
translates to greater transferability on the target dataset.

3.4. Overall Score Function

In this work, we model the transferability of a pre-trained
model as how similar the current state of the network is to
its terminal phase of fine-tuning. Specifically, we expect
the terminal phase of fine-tuning to hold the so-called three
properties of within-class variability, SELI geometry, and
the nearest centroid classifier. Correspondingly, we design
three score functions, which are Svc(·), Sseli(·), and Sncc(·)
to measure the proximity of the state of the pre-trained net-
work applied on the target data versus its optimal state at
the terminal phase. However, since the values of score func-
tions have different scales, summing up the scores may hurt
the transferability estimation performance (e.g. Sseli(·))
can numerically dominate over Sncc(·)). Instead of having
manually defined hyper-parameters to balance the contribu-
tion of each score, we propose to normalize each score into
a unit range (0 to 1) as follows:

Sm
seli ←

Sm
seli −min(Sseli)

max(Sseli)−min(Sseli)
. (11)

Similarly, we can have the normalized score Svc(H
m) and

Sncc(H
m) for the m-th pretrained model. By summing the

normalized scores, we have the final transferability estima-
tion metric:

Sm
total = Sm

vc(H
m) + Sm

seli(H
m) + Sm

ncc(H
m), (12)

where the m-th pre-trained model with a higher overall
score Sm

total indicates a better transferability in the model
pool for the target dataset D.

4. Experiment
4.1. Datasets and Evaluation Metrics

Datasets. We consider a wide range of classification
benchmark datasets, including five fine-grained classifi-
cations (FGVC Aircraft [21], Standford Cars [16], Food-
101 [2], Oxford-IIIT Pets [26], Oxford-102 Flowers [23]),
four coarse-grained classifications (Caltech101 [18],
CIFAR-10 [17], CIFAR-100 [17], VOC2007 [7]), one
scene classification (SUN397 [39]), and one texture clas-
sification (DTD [6]). In total, we adopt 11 benchmark
datasets that are broadly used in transfer learning. A
detailed description of each dataset can be found in the
supplementary material. All models have undergone
pre-training on the ImageNet dataset, and the fine-tuned
performance of the model on target datasets is obtained
from [29]. Without affecting the fine-tuning performance,
we note that only the training and validation splits of the
dataset are used for transferability estimation, and we hold
the test split out of the estimation process.

Correlation measurement. Following the previous
work [41, 24, 29], we adopt weighted Kendall’s τ [37] to
measure the correlation between the estimated model rank-
ing and the ground-truth performance ranking. Each pair-
wise comparison between items in two rankings is assigned
a weight based on the distance between their ranks, whereas
top-ranked items will be assigned with higher weight.

Implementation details. In order to replicate the fine-
tuning process, our proposed method aims to find a pro-
jection matrix W that maximizes the discriminative power
of the extracted features ϕm(X) from the m-th pre-trained
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Table 1: Method comparison of their correlation strength with target accuracy for supervised models. Weighted Kendall’s
τ on 11 target test sets and their average are shown. For each column, the best, and second-best results are in bold, and
underlined, respectively. Our method achieves the best overall weighted Kendall’s τ .

Aircraft Caltech Cars Cifar10 Cifar100 DTD Flowers Food Pets SUN VOC Average
NCE [36] -0.161 0.465 0.685 0.709 0.723 0.302 -0.482 0.627 0.772 0.760 0.571 0.452
LEEP [22] -0.277 0.605 0.367 0.824 0.677 0.486 -0.291 0.434 0.389 0.658 0.413 0.390
LogME [41] 0.439 0.463 0.605 0.852 0.725 0.700 0.147 0.385 0.411 0.511 0.695 0.539
NLEEP [20] -0.531 0.614 0.489 0.825 0.731 0.820 0.054 0.529 0.955 0.848 0.699 0.548
SFDA [29] 0.614 0.696 0.518 0.949 0.866 0.575 0.514 0.815 0.522 0.558 0.671 0.663
NCTI 0.496 0.679 0.647 0.843 0.879 0.704 0.541 0.773 0.924 0.756 0.741 0.726
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(b) Self-supervised models

Figure 4: Method comparison w.r.t running time (seconds)
vs. average Weighted Kendall’s τ on 11 datasets on (a) su-
pervised and (b) self-supervised models. Our method ob-
tains the highest ranking correlation within a small time
budget.

model. To achieve this, we employ linear discriminant anal-
ysis (LDA) to maximize the separation between the class
means of the projected data. However, LDA can be prone to
overfitting when applied to high-dimensional feature spaces
or when the covariance matrix is singular [40, 42]. To miti-
gate the overfitting issue on high-dimensional feature space,
we follow the previous transferability estimation methods
[20, 24] which incorporate principal component analysis
(PCA) into the framework to project the original features
onto a lower-dimensional subspace. We further address the
singularity issue by shrinking the covariance matrix toward
a full-rank identity matrix as follows:

Σ′
w = (1− α)Σw + αI,where α = exp(

d∗∑
i

λi), (13)

Here, λi denotes the i-th largest eigenvalue of the PCA pro-
jected feature matrix PCA(ϕm(X)). d∗ indicates the num-
ber of eigenvalues to be considered in the calculation. We
set the dimension of the PCA projected subspace as 64 and
set d∗ as 32 throughout all the experiments. α controls the
trade-off between the covariance and the identity matrices.

4.2. Evaluation on Supervised Models

Overview. To initiate our evaluation of transferabil-
ity estimation metrics for ranking supervised models, we
assess the performance of these metrics on 11 widely
adopted models, which are ResNet-34 [13], ResNet-50,
ResNet-101, ResNet-151, DenseNet-121 [14], DenseNet-
169, DenseNet-201, MNet-A1 [32], MobileNet-v2 [27],
GoogleNet [30], and Inception-v3 [31].

Performance comparison. We compare our proposed
NCTI with existing transferability estimation metrics, in-
cluding NCE [36], LEEP [22], LogME [41], NLEEP [20],
and SFDA [29]. The experimental results are shown in
Tab. 1. From the table, we can observe that empirical
conditional probability-based methods (i.e, NCE, LEEP,
and LogME) generally achieve lower ranking correlations
than our method and SFDA, indicating the importance of
modeling the feature space in transferability estimation.
NCTI achieves the best or the second best average weighted
Kendall’s ranking correlation on nine datasets and obtains a
6.9% averaged performance gain compared to the second-
best method SFDA. We argue that while the neural collapse
explicitly reflects the maximum class separation, a feature
space with a high class separation score can not necessar-
ily leads to the neural collapse phenomenon. Therefore,
our method can achieve superior performance than class
separation-based methods.

4.3. Evaluation on Self-supervised Models

Overview. We further evaluate the effectiveness of
NCTI in assessing the transferability of models pre-trained
by self-supervised learning (SSL). We construct a pool
with 10 SSL pre-trained models, including MoCo-v1 [11],
MoCo-v2 [5], PCL-v2 [19], SELA-V2, Deepcluster-v2 [4],
BYOL [10], Infomin [34], SWAV [3], and Insdis [38].

Performance comparison. Since NCE and LEEP re-
quire the classifier on the pre-training task, it is not di-
rectly applicable to self-supervised model ranking tasks.
Therefore, to evaluate the ranking performance of the self-
supervised models, we compare our method with NLEEP,
LogME, and SFDA in Tab. 2. Similarly, we observe that
the average ranking correlation of SFDA and the proposed
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Table 2: Method comparison of their correlation strength with target accuracy for self-supervised models. All the settings
and notations are the same as Table 1. Our method achieves the best overall weighted Kendall’s τ .

Aircraft Caltech Cars Cifar10 Cifar100 DTD Flowers Food Pets SUN VOC Average
NLEEP [20] -0.286 0.662 0.595 0.108 0.374 0.779 0.598 0.716 0.864 0.880 -0.091 0.473
LogME [41] 0.021 0.075 0.627 0.417 0.146 0.743 0.763 0.686 0.738 0.260 0.181 0.423
SFDA [29] 0.167 0.674 0.683 0.846 0.789 0.882 0.897 0.837 0.564 0.831 0.621 0.708
NCTI 0.036 0.811 0.796 0.758 0.811 0.796 0.762 0.945 0.805 0.774 0.606 0.719
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Figure 5: Effectiveness of each individual component in
NCTI. We use the three terms individually or remove them
one at a time from the full system. Results on (a) supervised
and (b) self-supervised models are shown.

method can achieve superior results than that of the con-
ditional probability-based method. NCTI surpasses the
second-best method by 1.5% on average and scores the
highest overall weighted Kendall’s τ , which verifies the ef-
fectiveness of the proposed method.

4.4. Further Analysis

Tranferability estimation with fewer target data. We
test a practical but challenging transferability estimation
scenario, where only limited target data are available for
the estimation. We randomly sample 2 to 500 images per
class from the full SUN397 and examine how limited data
affects the performance of different methods. As we can see
from Fig. 6(d), although fewer data generally trigger perfor-
mance degradation for transferability estimation methods,
our method is able to achieve a larger performance gain un-
der the low shot scheme than using the full dataset. Par-
ticularly, we highlight that our method can achieve SOTA
performance on SUN397 with only 10 samples per class,
which indicates a strong potential for practical applications.

Computational efficiency comparison. We compare
the time efficiency versus ranking correlation of different
transferability estimation metrics in Fig. 4. The x-axis is
the total time cost for estimating transferability over 11
datasets, while the y-axis indicates the average ranking cor-
relation on 11 datasets. We adopt a logarithmic scale for

the x-axis. The figure shows that within a similar time
budget, NCTI can achieve significantly higher ranking cor-
relations compared with empirical conditional probability-
based methods, such as NCE, LEEP, and LogME. SFDA
can achieve a comparable ranking correlation with NCTI on
self-supervised model ranking tasks. However, it consumes
more than 10× more time to estimate the transferability,
showing that it is less efficient than our proposed metric.
Meanwhile, we can observe from the figure that our method
scores the highest ranking correlation to the running time
ratio under both settings, emphasizing the effectiveness and
efficiency of our method.

Ablation study. The NCTI metric proposed in this work
is composed of three terms, each term is designed to de-
scribe a specific aspect of the gap between the current fea-
ture geometry and the geometry of neural collapse. In order
to illustrate the impact of each individual term in NCTI, we
conduct ablation studies to show how each individual term
contributes to the overall metric. The ablation studies are
conducted on both supervised and self-supervision scenar-
ios, and the results are shown in Fig. 5. Among these three
individual terms of NCTI, although Svc can attain a positive
averaged ranking correlation, the contribution towards the
full metric is less than the other two terms. Sseli delivers the
highest average ranking correlation on supervised model es-
timation, while Sncc attains the best-averaged performance
on self-supervised model estimation. We infer this is due to
the difference in the supervision signal. As the label infor-
mation is not available for self-supervised training, the dis-
criminative power of the pre-trained feature is more critical
for the downstream task than that in supervised models. We
also validate the effectiveness of two-term combinations.
As we can see from the figure, the combination between
Sseli and Svc always achieves higher correlations than its
individual component, confirming the terms are comple-
mentary. Although NCTI obtains a slightly lower correla-
tion than w/o Sncc on the supervised models, it achieves
an absolute 4.2% higher averaged correlation of both tasks,
which verifies the importance of Sncc.

Hyperparameter analysis. NCTI simplifies the hyper-
parameter tuning process by assigning equal weights to
each term. In order to validate this weight assignment, we
investigate the impact of weight changes on the ranking cor-
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Figure 6: (a)-(c) Hyperparameter analysis of three components in NCTI. We report correlation strength τ computed on 11
downstream datasets against weight values. Impact on both supervised and self-supervised pre-trained models are drawn. We
study each weight by fixing the rest as 1. In this paper, by default, we set the weight to 1 for all components. (d) Influence of
target data size for estimation on the correlation strength. We vary the data size from 2 to 500 samples per class and observe
that our method can achieve a larger performance margin compared with existing methods under the low-shot scenario.
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Figure 7: Effectiveness of the three components computed
on a subset of the pre-training dataset. Average correla-
tion strength (τ ) on 11 target datasets reported. We assess
(a) supervised models, and (b) self-supervised models.

relation. Specifically, we vary the weight of the term of
interest within the range of {0.1, 0.4, 0.8, 1.2, 1.6, 2} while
keeping the weight of the remaining terms fixed at 1. The
experimental results of the hyperparameter analysis are re-
ported in Fig.6 (a)-(c). Our findings indicate that NCTI
achieves high averaged correlations (τ ≥ 0.7) with the
most weight configurations. While we observe different
monotonicity between the correlations of supervised and
self-supervised tasks, the results demonstrate that harmonic
points (i.e., high mean and low variance) are consistently
achieved when all weights are close to 1, thereby confirm-
ing the appropriateness of the equal weight setting.

Analysis of NCTI computed using source features.
The extensive experiments conducted so far have demon-
strated the effectiveness of each individual term in the pro-
posed NCTI metric for transferability estimation. All the
previous experiments have been conducted by using the tar-
get features extracted from the pre-trained models. It re-
mains important to investigate what the properties of neu-
ral collapse on the source (i.e., pre-training) features tell us

about the transferability of a model to a downstream task.
To this end, we measure each individual term in NCTI on a
subset of the source dataset and report the ranking correla-
tion of the supervised model estimation task in Fig.7(a) and
(b). On average, the transferability of a supervised model to
a downstream task is consistently positively related to−Svc

and Sncc on the source dataset on both supervised and self-
supervised, which scores 0.725 and 0.598 weighted Kendall
τ , respectively. While the figure shows Sseli can achieve a
positive correlation on supervised tasks, no significant cor-
relation on Sseli is observed in the supervised transfer es-
timation task. Note that, −Svc achieves the highest rank-
ing correlation on average, which shows that a pre-trained
model with higher within-class variability can better trans-
fer to a new task. This indicates that a fully unsupervised
metric can be designed for transferability estimation which
is solely based on measuring the class-wise compactness of
the source features.

5. Conclusion
How to efficiently choose the optimal pre-trained model

from a vast collection of models to use in a downstream
task? To rank models based on their transferability, we pro-
pose a metric named Neural Collapse informed Transfer-
ability Index (NCTI). Our method models model transfer-
ability as the gap between the current feature geometry and
the geometry at the terminal stage (i.e., neural collapse) af-
ter hypothetical fine-tuning on the downstream task. Specif-
ically, we model the gap from three perspectives, including
the formation of SELI geometry structure, the within-class
variability, and the applicability of the nearest center classi-
fier. We show that our method is light to compute and that
the ranking of model transferability has a very strong corre-
lation with the ground truth ranking and compares favorably
against the state-of-the-art methods.
Acknowledgement This work was partially supported by
ARC DP 230101196
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