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Abstract

Scene flow estimation, which predicts the 3D displace-
ments of point clouds, is a fundamental task in autonomous
driving. Most methods have adopted a coarse-to-fine struc-
ture to balance computational efficiency with accuracy, par-
ticularly when handling large displacements. However, in-
accuracies in the initial coarse layer’s scene flow estimates
may accumulate, leading to incorrect final estimates. To al-
leviate this, we introduce a novel Iterative Hierarchical Net-
work——IHNet. This approach circulates high-resolution
estimated information (scene flow and feature) from the pre-
ceding iteration back to the low-resolution layer of the cur-
rent iteration. Serving as a guide, the high-resolution es-
timated scene flow, instead of initializing the scene flow
from zero, provides a more precise center for low-resolution
layer to identify matches. Meanwhile, the decoder’s fea-
ture at the high-resolution layer can contribute essential
movement information. Furthermore, based on the recur-
rent structure, we design a resampling scheme to enhance
the correspondence between points across two consecutive
frames. By employing the previous estimated scene flow
to fine-tune the target frame’s coordinates, we can sig-
nificantly reduce the correspondence discrepancy between
two frame points, a problem often caused by point spar-
sity. Following this adjustment, we continue to estimate
the scene flow using the newly updated coordinates, along
with the reencoded feature. Our approach outperforms the
recent state-of-the-art method WSAFlowNet by 20.1% on
FlyingThings3D and 56.0% on KITTI scene flow datasets
according to EPE3D metric. The code is available at
https://github.com/wangyunlhr/IHNet.

1. Introduction
Scene flow estimation on point clouds, which predicts

point-wise 3D motions from two consecutive point clouds,

∗ Equal contribution. B Corresponding author.

is a fundamental task in autonomous driving applications
and robotics. It supplies spatiotemporal motion and match-
ing information for a range of high-level tasks such as
multi-object tracking [36, 30], pose estimation [2], mo-
tion segmentation [20, 5, 4], etc. In recent years, due
to advancements in deep learning, neural networks have
emerged as a popular method for processing point clouds.
FlowNet3D [16] proposed an end-to-end scene flow esti-
mation approach that leveraged PointNet++ [22] and intro-
duced two new learnable layers, namely flow embedding
layer and set upconv layer. However, the capacity of the
flow embedding layer (cost volume) is determined by the
matching search region, which is constrained to a single res-
olution level due to the computational cost.

To strike a balance between accuracy and computational
efficiency while accounting for large displacements, numer-
ous methods employed a coarse-to-fine structure for the
scene flow estimation task, such as PointPWC-Net [35] and
HALFlow [29]. The coarse-to-fine structure is a classical
“encoder-decoder” architecture, consisting of multiple lay-
ers. The pipeline first constructs feature pyramid by en-
coding the input and estimates at the coarsest resolution to
capture large displacements. Layer-by-layer refinement is
then performed from the coarser to finer level. During the
refinement stage, once the scene flow has been estimated at
a coarser level, it is up-sampled and then passed to the finer
level by warping. That is, the search center for matching is
determined based on the previous estimated results. What’s
more, the estimated information from coarser level will be
used to estimate scene flow for finer level.

However, early estimation can lead to errors and result in
the search area missing the true matching point, yielding in-
accurate scene flow estimation. To address this, we propose
an Iterative Hierarchical Network (IHNet) based on the ob-
servation that the accuracy of downsampled estimation re-
sults from finer to coarser level is significantly higher than
that of original coarser level results (initialized from zero),
This is shown in Fig. 1. IHNet aims to mitigate the error
caused by mismatching in coarser resolution by propagating
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the high-resolution estimated information from the previous
iteration to low-resolution levels of the current iteration. In
this way, IHNet leverages higher accuracy results from the
finer level at the previous iteration, improving performance
through each iteration.

Another significant challenge in scene flow estimation
task is the issue of poor correspondence between two con-
secutive frames, stemming from the inherent sparsity of
point clouds. Due to the absence of an exact point-to-point
correspondence, matching errors arise, ultimately resulting
in inaccurate scene flow estimation. To address this issue,
some methods [3, 1] designed novel cost volumes, such as
point-to-patch, patch-to-patch cost volume. By matching
larger regions (i.e. patches) instead of individual points, the
influence of this challenge can be mitigated to a certain ex-
tent. Focusing on the irregular data structure, RCP [9] de-
signed a two-stage recurrent network. They first utilized a
point-wise optimization to extract the regular information.
Subsequently, the information was input into a recurrent
network based on GRU [23] for further regularization.

To address poor correspondence problem, we adopt an-
other solution, which is to adjust the point coordinates.
Based on the iterative hierarchical structure, we propose
a novel resampling scheme to modify the coordinates of
the points applied to the second iteration and beyond. We
first use the estimated scene flow to warp the source frame
points, and then find the nearest neighbor of warped points
in the target frame to regard as the new target frame point
coordinates. Subsequent processing is performed based on
the features encoded from the new points. The resampling
scheme is effective because it eliminates the points in the
target frame that are not particularly relevant to the source
frame.

In summary, the main contributions as follows:

• We design an iterative hierarchical network guided
by high-resolution estimated information based on a
coarse-to-fine structure WSAFlowNet [32]. It lever-
ages the high accuracy estimated information and im-
proves the performance during each iteration.

• To address the problem of poor correspondence be-
tween two adjacent frames, we propose a resampling
scheme to adjust point clouds’ coordinates and recode
the features as the input.

• Our proposed network achieves state-of-the-art per-
formance on the FlyingThings3D and KITTI bench-
marks.

2. Related work
Deep learning on Point Clouds. Recently, deep learning
methods have been heavily employed on point cloud data.

Figure 1. Downsampled vs. Original scene flow. We select two
coarse-to-fine methods, PointPWC-Net [35] and 3DFlow [27], for
demonstration. ”Down” represents the downsampled scene flow
results from level l0 estimation to the corresponding resolution,
while ”Ori” represents the original results obtained at each resolu-
tion during the layer-by-layer estimation process. (Lower EPE3D
means higher accuracy.)

Some recent works [1, 15, 28, 11] have directly used raw
point clouds as network inputs. Certain works can be cate-
gorized as convolution-based methods. For instance, Point-
Conv [34] proposed a 3D convolution kernel comprised of
inverse density and weight functions in the local region,
meaning that the non-uniformly sampled point clouds were
re-weighted using an inverse density function. Other works
can be described as Point-wise methods, using Multi-Layer
Perceptron(MLP) and Maxpooling to extract the features of
point clouds. For example, PointNet++ [22] introduced a
hierarchical structure of set abstraction, and improved the
robustness of feature learning on non-uniform density point
clouds through a density-adaptive PointNet layer. This pa-
per uses PointNet++ to obtain an excellent point cloud fea-
ture representation.
Point-based Scene Flow estimation. The concept of 3D
scene flow was initially introduced by [26]. Since then, nu-
merous works have focused on estimating scene flow using
point cloud data. Some studies [6, 24, 25] have introduced
traditional methods, such as those based on energy mini-
mization. Conversely, other works [31, 16, 13, 8, 7] have
taken an end-to-end learning approach to estimate scene
flow. For instance, FlowNet3D [16] introduced a flow em-
bedding layer to encode the motion of point clouds, where
the scene flow can be learned. In cases of large displace-
ment scenarios, coarse-to-fine network architectures[35, 3,
32] are indispensable. PointPWC-Net [35] proposed a novel
patch-to-patch cost volume to gain a more robust and sta-
ble cost volume. Bi-PointFlowNet [3] used a bidirectional
flow embedding layer to learn features of both forward and
backward flows simultaneously, with the aim of leverag-
ing contextual information for more accurate estimation.
WSAFlowNet [32] proposed a weight-sharing aggregation
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Figure 2. IHNet Architecture. (1) In the first iteration, the feature encoder (depicted blue and green) extracts multi-level features from the
original point clouds P and Q. Subsequently, scene flow estimation (indicated in purple) is performed on these features, with refinement
conducted at each layer up to the l1 level. (2) In each subsequent iteration, the previously estimated scene flow sk−1

1 at the l1 level is
used to modify the coordinates Q via a resampling scheme (elaborated in § 3.3 and Fig. 3). Following this, features are extracted from the
adjusted coordinates Q̂, and scene flow estimation is conducted based on P and Q̂. (3) Additionally, the estimated scene flow sk−1

1 and
feature fk−1

1 from the previous iteration are down-sampled and employed as a guide for the current iteration, named guided refinement.

method at the level of feature and scene flow, which made
full use of the local rigidity. In this paper, we also adopt the
coarse-to-fine structure, incorporating a recurrent scheme to
utilize refined flow information at a high resolution.
Correspondence on Point Cloud. Due to the sparsity of
points, the correspondence between two consecutive frames
is poor, leading researches to devote efforts to finding a soft
correspondence. Previous work [9] demonstrated that accu-
rate correspondence within two frames point clouds could
lead to higher precision in scene flow estimation. 3DFlow
[27] achieved more reliable matching by proposing a re-
verse reliability layer, which jointly learned backward con-
straints and an all-to-all flow embedding. FLOT [21] pre-
sented a method that utilized an optimal transmission tool
to find the corresponding relationships in graph matching.
RCP [9] employed a GRU iteration to detect soft correspon-
dence in the target region. Different from these approaches,
this paper introduces a new resampling method to enhance
the correlation between the local areas of the source and
target point clouds by reducing the number of mismatched
points.

3. Method
3.1. Problem definition

Our objective is to estimate the scene flow between
two consecutive frames of point clouds, denoted as the
source frame P =

{
pi ∈ R3

}N1

i=1
at time t and the tar-

get frame Q =
{
qi ∈ R3

}N2

i=1
at time t + 1. The scene

flow for each point pi ∈ P is estimated, denoted by
S =

{
s(pi) ∈ R3

}N1

i=1
. The correspondence between point

clouds P and Q is poor because of the inherent sparsity of
the point clouds, which leads to errors for matching.

We introduce an Iterative Hierarchical Network, which
employs both iterative and hierarchical refinement. To sim-
plify the notation, we define that the superscript will denote
the iteration number, while the subscript will refer to the hi-
erarchy level for both feature and scene flow representation.

3.2. Iterative Hierarchical Network

We propose IHNet, a novel iterative hierarchical net-
work, inspired by the discernible fact that the accuracy of
estimations in high-resolution layers surpasses that low-
resolution layers, owing to the layer-by-layer refinement.
Consequently, to achieve good performance, we propagate
high-resolution estimated information in the preceding it-
eration to low-resolution layer in the current iteration. Uti-
lizing state-of-the-art coarse-to-fine structure WSAFlowNet
[32] as the baseline, we proceed to construct the iterative
network. A detailed explanation of our approach is pro-
vided in the following part.
Baseline. WSAFlowNet is a coarse-to-fine structure that
is equipped with the Weight-Sharing Aggregation module
(WSA) and the Deformation Degree (DD) module. It be-
gins by utilizing Farthest Point Sampling for downsam-
pling, followed by the construction of a feature pyramid
based on PointNet++ [22]. The pyramid comprises five
levels, denoted as {l0 − l4} ,with l0 representing the high-

10075



est resolution. Then scene flow is estimated at the coars-
est level, involving warping layer, cost volume construction
and scene flow estimation. The warping layer serves to ad-
just the search center, using up-sampled estimated scene
flow from the coarser level (the initial scene flow is set to
zero at the coarsest level). Following this, a cost volume
(CV) is built to represent the matching information between
the source point clouds P and the warped target point clouds
Qw = Q − SI , where SI symbolizes the estimated scene
flow based on distance interpolation. Furthermore, a defor-
mation degree module δDD is introduced to measure the
local structure differences between the source P and the
warped source point clouds Pw = P + S. Finally, the
scene flow estimator acts as a decoder to obtain the move-
ment feature and generate the estimated scene flow. Details
of the estimator’s formulation are presented below.

fl−1 = MLP ([f(P),CV, δDD,up (fl) ,up (sl)]) (1)

sl−1 = FC (fl−1) (2)

where fl−1 denotes the output feature of the estimator, cap-
turing the movement information at the l − 1 level. [·, ·] in-
dicates concatenation operation. sl−1 denotes the estimated
scene flow at that level. FC refers to a fully connected
layer.

For refinement, the estimator’s output feature and scene
flow are propagated through WSA up-sampling, from
coarser to finer level. The above processes are carried out
layer by layer, continuing until it reaches the highest reso-
lution level.

Note that, to reduce the computational cost, we have
streamlined some processes in our method (elaborated in
§ 4.4 Baseline-S).
IHNet. There are several iterative refinement network
based on GRU for scene flow estimation task, such as Flow-
step3D [12], PV-RAFT [33]. They take advantage of the
preceding iteration estimated results as the input of cur-
rent iteration updater to refine. However, there are very
few pyramid-based iterative methods. Primarily because a
simple iteration based on the coarse-to-fine structure, where
the output of the previous iteration serves as the input for
the current one, can lead to significant computational over-
head without substantial improvement in accuracy. This is-
sue is verified through our experiments, as shown in Tab. 2.
Hence, based on the observation that the accuracy of high-
resolution estimated results is superior over low-resolution,
we fully incorporate the estimated information of high-
resolution into the design of the iterative network, as shown
in Fig. 2. The details of the entire network are elaborated
below.

To reduce computational costs, the network performs it-
erations between l4 and l1. After obtaining an initial es-
timated scene flow in the first iteration, we down-sample
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Figure 3. Resampling scheme. Using the scene flow S from the
previous iteration, we obtain the warped source frame Pw = P +
S, taking the warped points as centers. We then search for the
nearest neighbors N1() in the target frame Q based on distance,
resulting in the adjusted points Q̂ = N1 (P

w).

the scene flow from high-resolution l1 to low-resolution
levels {l4 − l2}, which are then utilized to operate warp-
ing at each level. The high-resolution scene flow, esti-
mated from the preceding iteration, provides a more accu-
rate matching search center for the low-resolution current
iteration, making the search region more likely to cover
the target matching point. Besides down-sampling scene
flow, we also down-sample the estimator’s output feature
from l1 to {l4 − l2}. These feature, coming from the pre-
vious iteration, are used as input to the estimator at each
level, supplying more comprehensive movement informa-
tion. Therefore, we have made modifications to the estima-
tor, expressed as follows.

fk
l−1 = MLP

([
f(P),CV

[
down

(
sk−1
1

)]
,up

(
fk
l

)
,

down
(
fk−1
1

)
,down

(
sk−1
1

)]) (3)

where fk
l−1 denotes the output feature of the estimator at

the l − 1 level in the k iteration. sk−1
1 denotes the esti-

mated scene at the high-resolution l1 level in the k − 1 iter-
ation. CV

[
down

(
sk−1
1

)]
represents cost volume construc-

tion based on the down-sampled scene flow sk−1
1 . down (),

up () represent down-sampling and up-sampling operations
respectively.

By inputting up
(
fk
l

)
into the estimator, we achieve

the cross-level refinement. And through the utilization of
down

(
fk−1
1

)
from the preceding iteration, cross-iteration

refinement is accomplished. The implementation of these
features leads to a larger receptive field and more detailed
information being introduced.
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3.3. Resampling scheme

Due to the sparsity of point cloud data, the correspon-
dence between P and Q is poor, which introduces errors
for matching. And then it results in the incorrect esti-
mated scene flow. To alleviate the problem of poor cor-
respondence, recent methods employ region-based match-
ing rather than point-to-point matching. In this way, they
can find the region that contain the true target point. How-
ever, while constructing the cost volume, all points in the
searching region will be involved in the computation, lead-
ing to introduce errors from irrelevant points. An alternative
approach would be to adjust the coordinates of the input
target point clouds directly. Thanks to the iterative hierar-
chical network, we are allowed for the adjustment of point
coordinates in the current iteration by using the estimated
scene flow from the preceding iteration. Fig. 3 demonstrates
the realization of resampling scheme. The details are intro-
duced as follows.

First, we obtain the warped source point clouds (Pw =
P + S) by using the estimated scene flow at the high-
resolution in the previous iteration. Second, we select the
nearest neighbor points of the warped point clouds in the
target frame and regards them as the new target point clouds
Q̂. Finally, we re-construct feature pyramid f(Q̂) for the
new target point clouds and execute the scene flow estima-
tion between P and Q̂. Beginning with the second iteration,
we modify the point coordinates in every following itera-
tion.

The resampling scheme removes the points of the target
frame that are not particularly relevant to the source frame,
which improves the poor correspondence between two ad-
jacent frames.
Comparison to related work. In the method [19], anchor
points were designed to improve the self-supervised loss
and mitigate the impact of incorrect forward flow predic-
tions on the backward flow estimation. However, this did
not enhance the point correspondence between two con-
secutive raw frames. In contrast, our resampling scheme
adjusts the point coordinates of the raw frame and per-
forms feature extraction from them for the following for-
ward scene flow estimation. This effectively improves
the point-to-point correspondence of two consecutive raw
frames, making the estimated flow more accurate.

3.4. Loss

Following previous methods [35, 32], we adopt multi-
scale loss Lk for each iteration. Lk can be expressed as:

Lk =

L∑
l=0

γl

Nl∑
i=1

∥∥∥ŝkl (pi)− skl (gt)
∥∥∥
2

(4)

where γl represents the weight for each level l. The weights
are set as γ0 = 0.02, γ1 = 0.04, γ2 = 0.08, γ3 = 0.16,

γ4 = 0.16. The predicted scene flow is denoted by ŝkl . And
∥ ∗ ∥2 refers to the L2-norm.

In addition, we supervise the estimated results for each
iteration. The overall loss Lall is a weighted iteration loss,
which the weights increase exponentially with each itera-
tion.

Lall =

M∑
k=1

γM−kLk (5)

Where γ is set to 0.8.

4. Experiments
4.1. Datasets and Evaluation Metrics

Datasets. We assess the performance of our pro-
posed method using both the synthetic dataset FlyingTh-
ings3D [17] and the real scene dataset KITTI Scene Flow
[18] the same as [14, 3, 1, 32]. FlyingThings3D dataset
contains 19,640 pairs in training set and 3,824 pairs in the
test set. Our data preprocessing is based on HPLFlowNet
[10]. We use disparity and optical flow to create point cloud
data and then filter out any points with a depth greater than
35m. KITTI dataset consists of 200 pairs in training set
and 200 pairs in the test set. We also preprocess the dataset
following HPLFlowNet [10] and generate 142 pairs point
clouds in the training set, as the disparity information for
the test set is unavailable. Ground points (height < 0.3m)
are removed.
Evaluation Metrics. For an equitable comparison, we
evaluate the scene flow by following metrics, the same as
[35, 3, 1, 32, 14].
•EPE3D:

∥∥∥Ŝl − Sl
gt

∥∥∥
2

the averaged end point error per
point, in meters.
• Acc3DS: the proportion of points where EPE3D < 0.05m
or relative error < 5%.
• Acc3DR: the proportion of points with EPE3D < 0.1m or
relative error < 10%.
• Outliers3D: the percentage of points where EPE3D>
0.3m or relative error > 10%.
• EPE2D: the average 2D end point error, derived by pro-
jecting onto the image plane.
• Acc2D: the ratio of points where EPE2D < 3px or relative
error < 5%.

4.2. Experimental Setup

We conduct experiments using NVIDIA RTX 3090
GPUs. We train the model on the FlyingThings3D train-
ing dataset, and then evaluate on the FlyingThings3D test
dataset and KITTI dataset, to verify the effectiveness and
generalization ability. We unroll k=3 iterations for training
and use as input two adjacent frame point clouds contain-
ing only point coordinates. The input is determined by ran-
domly sampling and the size is set to 8192 points, with a
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Dataset Method EPE3D(m)↓ Acc3D Strict↑ Acc3D Relax↑ Outliers3D↓ EPE2D↓ Acc2D↑

FlyingThings3D [17]

PointPWC-Net[35] 0.0588 0.7379 0.9276 0.3424 3.2390 0.7994
PV-RAFT[33] 0.0461 0.8169 0.9574 0.2924 - -
FlowStep3D[12] 0.0455 0.8162 0.9614 0.2165 - -
RCP[9] 0.0403 0.8567 0.9635 0.1976 - -
Bi-PointFlowNet[3] 0.0280 0.9180 0.9780 0.1430 1.5820 0.9290
3DFlow [27] 0.0281 0.9290 0.9817 0.1458 1.5229 0.9279
WSAFlowNet [32] 0.0239 0.9391 0.9821 0.1103 1.3703 0.9358
Ours 0.0191 0.9601 0.9865 0.0715 1.0918 0.9563

KITTI [18]

PointPWC-Net[35] 0.0694 0.7281 0.8884 0.2648 3.0062 0.7673
PV-RAFT[33] 0.0560 0.8226 0.9372 0.2163 - -
FlowStep3D[12] 0.0546 0.8051 0.9254 0.1492 - -
RCP[9] 0.0481 0.8491 0.9448 0.1228 - -
Bi-PointFlowNet[3] 0.0300 0.9200 0.9600 0.1410 1.0560 0.9490
3DFlow[27] 0.0309 0.9047 0.9580 0.1612 1.1285 0.9451
WSAFlowNet [32] 0.0277 0.9209 0.9613 0.1350 0.9773 0.9574
Ours 0.0122 0.9779 0.9892 0.0913 0.4993 0.9862

Table 1. Quantitative results on FlyingThings3D and KITTI Scene Flow datasets. All listed approaches are only trained on FlyingTh-
ings3D training dataset in a fully-supervised manner. Bold indicates the optimal outcomes.

Baseline-S Basic- Flow- Feature- Resampling EPE3D(m)↓ Acc3D Strict↑ Acc3D Relax↑ Outliers3D↓ EPE2D↓ Acc2D↑ Time(ms)iter guided guided scheme

✓ 0.0272 0.9260 0.9792 0.1379 1.5408 0.9235 70.46
✓ ✓ 0.0265 0.9278 0.9789 0.1317 1.4976 0.9248 106.86
✓ ✓ ✓ 0.0247 0.9392 0.9806 0.1129 1.4198 0.9364 105.77
✓ ✓ ✓ ✓ 0.0200 0.9579 0.9857 0.0823 1.1390 0.9543 110.71
✓ ✓ ✓ ✓ ✓ 0.0191 0.9601 0.9865 0.0715 1.0918 0.9563 130.91

Table 2. Ablation studies on FlyingThings3D dataset. “✓” denotes using this strategy. Bold indicates the optimal outcomes.

batch size of 8. To speed up, we adopt a two-stage train-
ing process. In the first stage, our model is trained on a
quarter of the training set (4910 pairs), with a learning rate
set to 0.001 and a decay rate of 0.7 for every 20 epochs.
This preliminary training phase continues for 100 epochs.
In the second stage, after loading the pre-trained weights,
the model is fine-tuned on the complete training set. The
learning rate is set to 0.00024, and the decay rate is the same
as before. The fine-tuning extends for 160 epochs. The pa-
rameters of Adam optimizer are set to β1 = 0.9, β2 = 0.99,
weight decay = 0.0001. Besides conducting ablation exper-
iments regarding the number of iterations, we evaluate the
results of the experiment with k=3 iterations. And to verify
the generalization ability of our method, we test the model
on the KITTI dataset without fine-tuning.

4.3. Evaluation on FlyingThings3D and KITTI

As shown in Tab. 1, our method outperforms recent
SOTA work on all evaluation metrics on FlyingThings3D
dataset, thereby demonstrating the effectiveness of our pro-
posed method. Our proposed method achieves a 20.1% im-
provement over recent SOTA method WSAFlowNet [32]
on EPE3D metric. To verify the generalization ability, we
evaluate our model without fine-tuning on KITTI Scene
Flow dataset. Our method outperforms WSAFlowNet by

56.0% on EPE3D metric on KITTI dataset. It proves
that our method is highly effective in real-world scenar-
ios. In summary, utilizing the Guided Refinement and Re-
sampling Scheme achieves great performance on both syn-
thetic and real scene datasets. The visualization results
(Fig. 7) demonstrate that our method achieves higher accu-
racy than recent SOTA methods [32, 3] on FlyingThings3D
and KITTI datasets. We also provide the local details for
easy observation. Despite encountering challenging areas,
we still realize favorable results, as indicated by fewer red
points, which correspond to fewer errors.

4.4. Ablation Studies

Baseline-S. We adopt WSAFlowNet [32] as our baseline.
In order to reduce computational expense, we streamline
certain processing steps. Specifically, the estimator’s Mul-
tilayer Perceptrons (MLPs) have been simplified from an
original configuration of five layers [128, 128, 96, 64, 64]
down to just two layers [96, 64]. Additionally, we remove
one MLP layer within the feature encoder and eliminate the
deformation degree module. The baseline-S (Parameters re-
duced from 3.7M to 2.0M ) experimental results are shown
in Tab. 2.
Basic-iter. We conduct an experiment on a basic iteration
(k=3) that employs Baseline-S structure. It propagates the
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Inputs k=1 k=2 k=3

KITTI

iterations

Figure 4. Visualization results of iteration k. On the left side of the upper part, it shows the original inputs, with blue points representing
the source frame and green points representing the target frame. On the right side of the upper part, it shows the fitting degree between the
warped source frame based on the estimated scene flow and the target frame. The higher the fitting degree, the higher the accuracy of the
estimated scene flow. The lower part shows that as the number of iterations increases, the fitting degree between the warped source frame
and the target frame becomes better and better.

0.1084m

0.1543mgtOriginal Q & QOriginal Q & QgtOriginal Q & Q

gtResampled Q & QResampled Q & QgtResampled Q & Q

Figure 5. Visualization results of resampling scheme. Blue
points is the Qgt , Green points is the original points Q, Deep green

points is the resampled points ̂̂
Q. The average distance between

two sets of points is denoted by the number located in the lower
right corner of each row.

estimated output from the finer layer l1 in the preceding iter-
ation to the coarsest layer l4 in the current iteration. This is
achieved by using the previously estimated scene flow for
warping in the current iteration. As illustrated in the first
and second rows of Tab. 2, this basic cross-iteration refine-
ment leads to a slight improvement in performance, though
it comes at the cost of taking more time.
Flow-guided. We down-sample the estimated scene flow
from the finer layer l1 to the coarser layers {l4 − l2} for

Figure 6. Iteration k. The model is trained on the FlyingThings3D
training set with iteration k=3. We evaluate the model on both
the FlyingThings3D and KITTI test set with different k. As the
iteration number increases, the EPE3D metric gradually decreases.

warping. By doing so, the higher accuracy result informa-
tion is passed to the following iteration. Compared to the
Basic-iter structure, this method outperforms it by 6.8% on
EPE3D metric, without incurring any additional computa-
tional cost. This proves that transmitting high-resolution
estimated information to all low-resolution levels is more
effective.

Feature-guided. The output feature of the estimator,
which represents movement information, is critical for sub-
sequent processes. In addition to flow-guided design, we
introduce feature-guided. We down-sample both the esti-
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KITTI

Bi-PointFlowNet OursWSAFlowNet

Figure 7. Visualization Results on FlyingThings3D and KITTI scene flow datasets. From left to right, it’s Bi-PointFlowNet,
WSAFlowNet, and our approach. The first two rows present the experimental results on the FlyingThings3D dataset, while the last
two rows showcase the results on KITTI dataset. Blue points represent the source points. Green points indicate the warped source points
utilizing the correct predicted scene flow according to the Acc3DS metric. Red points correspond to the warped source points utilizing the
incorrect predicted scene flow according to the Acc3DS metric.

mated feature and scene flow from the finer layer l1 to the
coarser layers {l4 − l2}. The finer layer’s feature can sup-
ply detailed movement information. From the comparison
between rows three and four in Tab. 2, it becomes clear that
the incorporation of feature-guided results in a substantial
improvement in accuracy. It outperforms only flow-guided
by 19.0% on EPE3D metric.

Resampling scheme. To tackle the problem of poor cor-
respondence, we propose a resampling scheme. Utilizing
this scheme, we achieve a certain degree of improvement
even within our outstanding design (incorporates both flow-
guided and feature-guided). Specifically, we see a further
4.5% enhancement on the EPE3D metric, demonstrating the
effectiveness of adjusting target point coordinates based on
the estimated scene flow.

To better illustrate the effectiveness of our resampling

scheme, we provide a visualization of the resampled point
coordinates in Fig. 5. We set Qgt = P + Sgt as the refer-
ence standard, which exactly corresponds to P . The aver-
age distance between the original Q point coordinates and
Qgt is 0.1543m. In contrast, the average distance between

the resampled ̂̂
Q point coordinates and Qgt is reduced to

0.1084m. Thus, our method significantly alleviates the poor
correspondence between the two frame point clouds.

Number of iterations. Although we unroll three iterations
for training, we evaluate the experiments result with dif-
ferent k iterations for testing. As shown in the Fig. 6, the
experimental results on both FlyingThings3D and KITTI
dataset improve with an increasing number of iterations.
After more than three iterations, the degree of improvement
in the experimental results decreases. Therefore, consider-
ing the computational cost and accuracy, we use the experi-

10080



mental model with k=3 iterations as our final model, which
exhibits good performance and generalization ability. As
demonstrated in the Fig. 4, the warped point Pw and Q be-
come progressively more aligned as the number of iterations
increases, which proves the improvement of experimental
performance.

5. Conclusion

We propose an Iterative Hierarchical Network based on
the observation that the accuracy of estimated results in the
finer layer is higher than that in the coarser layer. Conse-
quently, we regard the high-resolution estimated informa-
tion from the preceding iteration as a guide to link the fol-
lowing iteration. We propagate the estimated scene flow
from the finer layer to the coarser layer, aiming to deter-
mine a more accurate matching center, and we also propa-
gate the output feature of the estimator to provide additional
movement information. In this way, the network achieves
cross-layer and cross-iteration refinements. Furthermore,
to address the poor correspondence problem between two
frame input point clouds, we design a resampling scheme.
We use the estimated scene flow to update the target frame’s
point coordinates. Compared to the raw points, the new tar-
get points are more relevant to the source points, thereby
alleviating the errors introduced by the inputs. We then
conduct the estimating operation based the adjusted point
clouds. Extensive experimental results on the FlyingTh-
ings3D and KITTI scene flow datasets demonstrate that our
IHNet achieves state-of-the-art performance.
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