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Abstract

Image super-resolution (SR) has witnessed extensive
neural network designs from CNN to transformer ar-
chitectures. However, prevailing SR models suffer from
prohibitive memory footprint and intensive computations,
which limits further deployment on edge devices. This
work investigates the potential of network pruning for
super-resolution to take advantage of off-the-shelf network
designs and reduce the underlying computational overhead.
Two main challenges remain in applying pruning methods
for SR. First, the widely-used filter pruning technique
reflects limited granularity and restricted adaptability
to diverse network structures. Second, existing pruning
methods generally operate upon a pre-trained network for
the sparse structure determination, hard to get rid of dense
model training in the traditional SR paradigm. To address
these challenges, we adopt unstructured pruning with
sparse models directly trained from scratch. Specifically,
we propose a novel Iterative Soft Shrinkage-Percentage
(ISS-P) method by optimizing the sparse structure of a
randomly initialized network at each iteration and tweaking
unimportant weights with a small amount proportional
to the magnitude scale on-the-fly. We observe that the
proposed ISS-P can dynamically learn sparse structures
adapting to the optimization process and preserve the
sparse model’s trainability by yielding a more regular-
ized gradient throughput. Experiments on benchmark
datasets demonstrate the effectiveness of the proposed
ISS-P over diverse network architectures. Code is avail-
able at https://github.com/Jiamian-Wang/
Iterative-Soft-Shrinkage-SR

1. Introduction
Single image super-resolution [18, 20] aims to recon-

struct the high-resolution (HR) image from a low-resolution
(LR) input. Towards a high-fidelity reconstruction, research
efforts have been made by relying on the strong modeling
capacity of convolutional neural networks [7, 19, 26, 47].
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More recently, advanced Transformer architectures [25, 45,
50] are elaborated, enabling photorealistic restoration. De-
spite the impressive performance, the excessive memory
footprint of existing models has been de facto in the field,
which inevitably prohibits the deployment of advanced SR
models on computational-constrained devices.

To alleviate the computational complexity, we study net-
work pruning, which takes advantage of off-the-shelf ad-
vanced network architectures to realize efficient yet accu-
rate SR models. Network pruning has been long devel-
oped in two mainstream directions. On the one hand, filter
pruning (structured pruning) [23] cuts off the specific filter
of convolutional layers, among which representative prac-
tices in SR is to prune cross-layer filters governed by resid-
ual connections [48, 49]. However, these methods need to
consider the layer-wise topology by posing structural con-
straints, requiring a heuristic design and thus making them
inflexible. Plus, filter pruning inhibits a more fine-grained
manipulation to the network. On the other hand, weight
pruning (unstructured pruning) directly removes weight
scalars across the network, endowed with more flexibility
by accommodating weight discrepancy. Also, the weight
pruning method allows a very high pruning ratio, e.g., a ra-
tio of 99% with competitive performance [10, 11]. To this
end, this work focuses on delivering a highly-adaptive un-
structured pruning solution for diverse SR architectures.

Generally, pruning algorithms are widely recognized to
have three steps: (1) pre-training, (2) sparse structure acqui-
sition, and (3) fine-tuning the sparse network. Among these
steps, the dense network pre-training usually introduces
heavy costs beyond the sparse network optimization. For
example, before obtaining a sparse network, the CAT [50]
network architecture takes 2 days to train its dense coun-
terpart on 4 A100 GPUs. Thus, a natural question arises
to save training time further – can we directly explore the
sparsity of network structures from random initialization?

We start from the baseline method by performing ran-
dom pruning on weights at initialization, whose limitation is
the irrelevance between the sparse structure and the weight
distribution varying to the optimization. Following this line,
we apply the widely-used L1 norm [23, 11] pruning on ran-
domly initialized weights. However, the immutable sparsity
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cannot be well aligned with the optimization, leading to lim-
ited performance. To tackle this problem, we introduce an
iterative hard thresholding [4, 5] method (IHT) stemming
from compressive sensing [6, 8], where the iterative gradi-
ent descent step is regularized by a hard thresholding func-
tion. Unlike previous works, we tailor IHT to iteratively
set unimportant weights as zeros and preserve the impor-
tant weight magnitudes. By this means, the sparse structure
adapts to the weight distribution throughout the training,
which potentially better selects essential weights. However,
the sparse structure alignment in IHT is heavily susceptible
to the magnitude-gradient relationship. The zeroed weight
can be continually trapped as “unimportant” once the scales
of magnitude and gradient are incomparable. Moreover, by
directly zeroing out unimportant weights, IHT blocks the
error back-propagation at each iteration, especially hinder-
ing the optimization in shallow layers.

To address the aforementioned negative effects, we in-
troduce a more flexible thresholding function for an expres-
sive treatment of unimportant weights. A natural tuning
approach is to softly shrink the weights rather than hard
threshold. We first explore the soft shrinkage by a growing
regularization method [49], namely ISS-R. Per each itera-
tion, the proposed ISS-R constrains weight magnitudes with
a gradually increasing weighted L2 regularization, to avoid
the conflict between network pruning and smooth sparse
network optimization. However, the growing regularization
schedule involves a number of hyperparameter tuning, re-
quiring cumbersome manual efforts. Notably, the L2 reg-
ularization shrinkage inside ISS-R is, in essence, propor-
tional to the weight magnitude. Based on this insight, we
propose a new iterative soft shrinkage function to simplify
the regularization by equivalently shrinking the weight with
a percentage (ISS-P). It turns out that ISS-P not only en-
courages dynamic network sparsity, but also preserves the
sparse network trainability, resulting in better convergence.
We summarize the contributions of this work as follows:

• We introduce a novel unstructured pruning method,
namely iterative soft shrinkage-percentage (ISS-P),
which is compatible with diverse SR network designs.
Unlike existing pruning strategies for SR, the proposed
method trains the sparse network from scratch, provid-
ing a practical solution for sparse network acquisition
under computational budget constraints.

• We explore pruning behaviors by interpreting the train-
ability of sparse networks. The proposed ISS-P enjoys
a more promising gradient convergence and enables
dynamic sparse structures in the training process, of-
fering new insights to design pruning methods for SR.

• Extensive experimental results on benchmark testing
datasets at different pruning ratios and scales demon-
strate the effectiveness of the proposed method com-
pared with state-of-the-art pruning solutions.

2. Related Work

Single Image Super-Resolution. The task of single im-
age super-resolution has been developed with remark-
able progress since the first convolutional network of SR-
CNN [7] was introduced. By taking advantage of the
residual structure [12], VDSR [19] further encourages fine-
grained reconstruction at rich textured areas. Based on it,
EDSR [26] witnessed a promotion by empowering the re-
gression with deeper network depth and a simplified struc-
ture. Besides, RCAN [47] outperforms its counterparts by
incorporating channel attention into the residual structure.
HPUN [36] proposes a downsampling module for a efficient
modeling. More recently, transformer [9, 39] has become a
prevailing option due to its long-range dependency model-
ing capacity. SwinIR [25] equips attention with spatial lo-
cality and translation invariance properties. Another design
of CAT [50] exploiting the power of the transformer by de-
veloping a flexible window interaction. However, advanced
SR models are characterized by rising computational over-
head and growing storage costs.
Neural Network Pruning in SR. Neural network prun-
ing [33, 37] compresses and accelerates the network by re-
moving redundant parameters. It has been developed in two
categories: (1) Structured pruning, which mainly refers to
the filter pruning [13, 14, 15, 22, 23, 24, 27, 44], removes
the redundant filters for a sparsity pattern exploitation. Re-
cently, two novel works discussed the filter pruning spe-
cialized for SR models. ASSL [48] handles the residual
network by regularizing the pruned filter locations of dif-
ferent layers upon an alignment penalty. GASSL [42] ex-
pands the ASSL by a Hessian-Aided Regularization. Later,
SRP [49] makes a step further by simplifying the determina-
tion of pruned filter indices and yields a state-of-the-art per-
formance. However, both of them require heuristic design
for the pruning schedule, hard to extend to diverse neural ar-
chitectures. (2) Unstructured pruning (weight pruning) [11]
directly manipulates the weights for the sparsity determina-
tion. Despite the flexibility, there lacks an effective pruning
strategy proposed to broadly handle advanced SR networks.
Our work is to deliver a more generalized solution for dif-
ferent architectures. Besides our setting, another emerging
trend is to develop fine-grained pruning upon N:M spar-
sity [17, 30]. Among them, SLS [31] adapts the layer-wise
sparsity level upon the trade-off between the computational
cost and performance for the convolutional network prun-
ing. Yet, the effectiveness of this method toward novel neu-
ral architectures, e.g., Transformers, has not been explored.

3. Method

We give the background of SR in Section 3.1 and pruning
prerequisites in Section 3.2. We then tailor the classic prun-
ing method to SR by iterative hard thresholding (IHT) in
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Section 3.3. We develop our method of iterative soft shrink-
age by percentage (ISS-P) in Section 3.4.

3.1. Single Image Super-resolution

The task of single image super-resolution is to restore
the high-resolution (HR) image IHR upon the low-resolution
(LR) counterpart ILR as IHR = F (Θ; ILR), where F (·) is the
SR network and Θ denotes all of the learnable parameters in
the network. Given a training dataset D, privileging prac-
tice is to formulate the SR as a pixel-wise reconstruction
problem and solve it with the MSE loss by

J(Θ;D) =
1

|D|
∑
D

||F (Θ; ILR)− IHR)||2, (1)

where ILR, IHR ∈ D. While existing deep SR networks have
achieved an impressive photorealistic performance, their
cumbersome computation inhibits further deployment on
edge devices. In this work, we propose a generalized prun-
ing method for off-the-shelf network designs. We introduce
the prerequisites for pruning in the following.

3.2. Prerequisites for Pruning

Pruning Granularity. Pruning granularity refers to the ba-
sic weight group to be removed from the network. In un-
structured (weight) pruning, weight scalars are taken as ma-
nipulation units, which allows different treatment toward
the neighbored weights. Besides, recent SR models have
been advanced with diverse operators and structures, e.g.,
convolution, multi-head self-attention, residual blocks, etc.
Unstructured pruning can be flexibly incorporated into di-
verse structures without additional constraints.
Pruning Schedule. The prevailing pruning schedule is
widely recognized as three steps: (1) pre-training a dense
network, (2) pruning, and (3) fine-tuning the sparse net-
work for performance compensation. However, training a
dense SR network in step (1) from scratch already intro-
duces heavy costs beyond the sparse network optimization
in step (2∼3). To alleviate this problem, in this work, we ex-
ploit the sparse network acquisition schedule directly from
networks at random initialization and get rid of the first step.
Baseline Methods. Bearing with above considerations,
we firstly apply several baseline pruning methods to ran-
domly initialized SR networks, including 1) directly train-
ing a sparse network with a random sparse structure, namely
scratch, and 2) L1 norm pruning (dubbed as L1-norm) [23].
These two baselines, Sctrach and L1-norm, are widely used
in mainstream pruning literature. However, they both fail to
adjust the sparse structure adapting to the weight magnitude
fluctuation incurred by gradient descent – initially unimpor-
tant weights with small magnitude can be finally preserved
due to negligible gradient at certain iterations of backprop-
agation, while initially important weights (large magnitude)
with prominent gradients can be eliminated.

Notations. Let k ∈ K be the training iterations, where K
is consistent among different pruning methods. Pruning is
conducted in a layer-wise manner in each iteration. Given
a network with L layers, we define θ

[k]
l ∈ Θ as an arbitrary

weight magnitude in the l-th layer at k-th iteration. Without
losing the generality, we will present pruning by taking the
θ
[k]
l as an example throughout the methodology.

3.3. Iterative Hard Thresholding
To better capture essential network weights during the

optimization, we introduce an iterative hard thresholding
(IHT) method in light of compressive sensing (CS) [6, 8].
Typically, IHT operates on the iterative gradient descent
with a hard thresholding function, serving as a widely-used
method for L0-norm-based non-convex optimization prob-
lems [5]. Unlike the IHT practices in CS, we develop a hard
thresholding function H(·) to adjust the weight magnitudes,
which takes effect at each forward propagation by

θ
[k]
l =H(θ

[k]
l ) where H(θ

[k]
l )=

{
θ
[k]
l , if θ[k]l ≥ τ

[k]
l ,

0, if θ[k]l < τ
[k]
l ,

(2)

where τ [k]l denotes the threshold magnitude of the l-th layer
at k-th iteration, determined by an L1-norm sorting of the
l-th layer weights with a given pruning ratio r. We define
pruning iterations as Kp, after which we freeze the sparsity
pattern by exchanging τ

[k]
l with τ

[Kp]
l , and continually fine-

tune the model for another KFT iterations for performance
compensation. Note that we have K = Kp + KFT, where
the total training iterations K equals to the sum of pruning
iterations Kp and the fine-tuning ones KFT. There are no
modifications to the backpropagation in training.

Different from the static mask determination, the sparse
structure of IHT changes during the optimization on-the-
fly, which allocates more flexibility for fitting the optimal
sparse pattern. However, several limitations still exist. The
first is a network throughput blocking effect. Consider the
back-propagated errors between hidden layers in a neural
network, δl = [ΘT

l+1δl+1] ⊙ σ′(zl), where δl presents the
error propagated to the l-th layer, Θl+1 denotes the weight
matrix of the (l + 1)-th layer, and σ′(zl) computes the
derivative of the activation σ(·) with the hidden represen-
tation zl. Due to the iterative hard thresholding operation
H(·), there will be a certain amount of weights becomes
zero, which further suspends the error transmission to the l-
th layer, thus hindering the update of shallow weights. Sec-
ondly, the sparse structure of the IHT is largely susceptible
to the relationship between the weight magnitude and gra-
dient. The zeroed weights are vulnerable to being trapped
as the “unimportant” category when the gradient is unex-
pectedly large, leading to a static sparsity during the train-
ing. Additionally, the hard thresholding operator uniformly
forces all the unimportant weight to be zeros, neglecting the
inherent difference between the magnitudes.
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Figure 1. Training pipeline of the proposed Iterative Soft Shrinkage-Percentage (ISS-P), which is exampled by l-th learnable layer of the
network at k-th training iteration. In the pruning stage (k ≤ Kp), ISS-P selectively attenuates the unimportant weight and keeps the
essential ones upon L1-norm sorting at the forward propagation. In the fine-tuning stage (Kp≤k≤Kp+KFT), the mask is frozen asM[Kp]

l

and repeatedly applied at each forward propagation. We perform a standard backpropagation in each iteration. The proposed method can
flexibly prune different types of layers (i.e., convolution, linear, etc.) and directly train a sparse network from the random initialization.

3.4. Iterative Soft Shrinkage

Iterative Soft Shrinkage-Regularization (ISS-R). To ad-
dress the challenges posed by the IHT, we further tai-
lor the hard thresholding function by offering a more
expressive and flexible shrinkage function toward unim-
portant weights, rather than solely zero-out. Accord-
ingly, we propose a soft shrinkage function S(·) to fa-
cilitate the sparse network training. We first propose a
regularization-driven method by introducing an L2-norm
regularization on weight magnitudes and implement a
growing regularization [41, 2] schedule to encourage het-
erogeneity among unimportant weights, namely iterative
soft shrinkage-regularization (ISS-R).

Specifically, given a network with randomly initialized
weights, we perform L1-norm sorting to the weight magni-
tudes for the significant weight selection. We then include
the unimportant ones into the regularization and impose an
l2 penalty in the backpropagation of each iteration k ∈ Kp.
Different from IHT, ISS-R naturally integrates the penaliza-
tion on unimportant weights into optimization. The back-
propagation of ISS-R at the pruning stage is given as

θ
[k+1]
l ←

{
θ
[k]
l − γ∇J(θ[k]l ;D), if θ[k]l ≥ τ

[k]
l ,

θ
[k]
l −γ∇J(θ

[k]
l ;D)−2ηθ[k]l , if θ[k]l <τ

[k]
l ,

(3)

where γ is the learning rate, η denotes the L2 regularization
penalization scale governed by a gradually growing sched-
ule, i.e., η = η + δη for every Kη iterations, and δ controls
the growing ratio of η. However, although ISS-R bypasses
some limitations of the IHT, it requires tedious hyperparam-
eter tuning (e.g., η, δ, Kη , etc). Also, it is non-trivial to
explain the effect of regularization toward the weight mag-
nitude, leading to a sub-optimal control over the pruning.
Therefore, we focus more on aligning weights with magni-

tude controlling and propose a novel iterative soft shrinkage
by percentage in the following.
Iterative Soft Shrinkage-Percentage (ISS-P). Recall that
we shrink the weight magnitude with the L2 regulariza-
tion in ISS-R, where the penalty intensity is proportional
to the weight magnitude (see Eq. (3)). Accordingly, we can
achieve a similar ISS effect by directly imposing a percent-
age function on weights, namely ISS-P. As shown in Fig. 1,
the training pipeline of ISS-P can be divided into two stages:
1) pruning and 2) fine-tuning. In the pruning stage, i.e.,
k ≤ Kp, the weight magnitude of the selected unimportant
weights shrinks by a specific ratio. Given the l-th layer of
the network, the soft shrinkage in forward propagation at
the k-th iteration is formulated as

θ
[k]
l =m

[k]
l θ

[k]
l where m

[k]
l =

{
1, if θ[k]l ≥ τ

[k]
l ,

α, if θ[k]l < τ
[k]
l ,

(4)

where we define a mask m
[k]
l ∈ M[k]

l accounting for the
weight penalization of the layer. The soft shrinkage func-
tion can be defined as S(·) := m

[k]
l θ

[k]
l . The α ∈ (0, 1)

represents the magnitude attenuation, which plays a similar
role as the η in ISS-R. The schedule of the α could be cus-
tomized by referring to different layers and iterations. In
this work, we empirically find that setting α as a constant
value yields a promising performance.

In the fine-tuning stage k > Kp, we fix the sparse struc-
ture and fine-tune the network for the performance compen-
sation, following the same procedure as IHT and ISS-R:

θ
[k]
l =m

[Kp]
l θ

[k]
l where m

[Kp]
l =

{
1, if θ[k]l ≥ τ

[k]
l ,

0, if θ[k]l < τ
[k]
l .

(5)

Per each iteration, ISS-P handles the unimportant weight
adapting to its magnitude, enabling an intuitive and granular
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Algorithm 1: ISS-P Training
Input: train set D, initialized parameters Θ, pruning

ratio r, total number of learnable layers L,
i.e., l ∈ 1, 2, ..., L. Pruning iterations Kp,
fine tuning iterations KFT, mask M[k]

l = ∅,
magnitude attenuation α, learning rate γ;

Output: Θ
1 for k = 1, ...,Kp do
2 for l = 1, 2, ..., L do
3 Determine the τ

[k]
l by L1-norm sorting;

4 Determine the M[k]
l ;

5 Forward propagation using Eq. (4);
6 end
7 Backpropagation Θ←Θ−γ∇J(Θ;D) with Eq. (1);
8 end
9 for k = Kp + 1,Kp + 2, ...,Kp +KFT do

10 for l = 1, 2, ..., L do
11 Forward propagation using Eq. (5);
12 end
13 Backpropagation Θ←Θ−γ∇J(Θ;D) with Eq. (1);
14 end

manipulation. Besides, by leveraging a percentage-based
soft shrinkage function S(·), the sparse network evolves in
a more active way, which substantially explores more spar-
sity possibilities throughout the optimization. Fig. 2 demon-
strates this point by comparing the mask dynamics of ISS-
P and IHT in the pruning stage, where we count the per-
mille (‰) of the flips between the important/unimportant
magnitudes in M[k]

l , given by two representative layers of
the Transformer backbone SwinIR [25], i.e., 13-th layer and
44-th layer. It can be seen that in each iteration, the num-
ber of flips counted on the IHT is quite small, and in most
situations, are actually zeros. A lot more flips observed in
the training process of ISS-P, e.g., in the 13-th layer, flips
that over 0.5‰ of the total number of the weights are ob-
served during the optimization. Thereby, the sparse struc-
ture of IHT remains static in most situations yet that in ISS-
P moderately changes, which allows a higher possibility to
evade inferior sparse structures. Besides a more dynamical
sparsity, the empirical evidence (see Section 4.2) showcases
that the proposed ISS-P realizes a more favorable trainabil-
ity [34, 40, 1] for the sparse network, which indicates an
easier convergence for the selected sparse network. The
training process of the ISS-P is summarized in Algorithm 1.

4. Experiment

Datasets and Backbones. Following the recent works [48,
49], we use DIV2K [38] and Flickr2K [26] as the train-
ing datasets. Five benchmark datasets are employed for

Figure 2. Sparsity dynamics comparison between the ISS-P and
IHT in the pruning stage. The proposed method allows a more
active sparse pattern exploitation adapting to the optimization. We
choose two representative layers from the SwinIR [25] backbone.

the quantitative comparison and visualization, including
Set5 [3], Set14 [46], B100 [28], Manga109 [29], and Ur-
ban100 [16]. We adopt PSNR and SSIM [43] as evaluation
metrics by referring Y channels in the YCbCr space.

We train and evaluate the proposed method on repre-
sentative backbones that cover convolutional network and
transformer architectures: (1) SwinIR-Lightweight [25],
which takes a sub-pixel convolutional layer [35] for the up-
sampling and a convolutional layer for the final reconstruc-
tion. (2) EDSR-L [26] that consists of 32 residual blocks.
(3) Cross-aggregation transformer [50] with regular rectan-
gle window (CAT-R). We prune all of the learnable layers
of the corresponding backbones from random initialization.
Implementation Details. We conduct the same augmenta-
tion procedure as previous works [48, 49] by implementing
random rotation of 90◦, 180◦, 270◦, and flipping horizon-
tally. For network training, we adopt the image patches of
64 × 64 with a batch size of 32. For computational effi-
ciency, we set the batch size as 16 for the ablation study.
The training is performed upon an Adam [21] optimizer
with β1=0.9, β2=0.999, and ϵ=10−8. The initial learning
rate is 2 × e−4 with a half annealing upon every 2.5×105

iterations. We empirically determine the magnitude atten-
uation as α=0.95. We set the total training iterations as
K=5×105 for benchmark comparison and 3 × 105 for the
ablation study. The pruning stage is Kp=1×105. We imple-
ment the proposed method in PyTorch [32] on an NVIDIA
RTX3090 GPU.
Compared Methods. We compare the proposed method
with the classic baseline methods, i.e., training from scratch
(dubbed as “Scratch”) and L1-norm pruning [23] (denoted
as “L1-norm”), as well as the most recent pruning prac-
tices [48, 49] dedicated to SR models. All the methods are
elaborated under the unstructured pruning, and we have no
pre-trained dense networks at the beginning. For the fair-
ness of the comparison, we facilitate the same backbone
structure, training iterations, neural network initialization,
and pruning ratios for different methods. Among them,
ASSL [48] and SRP [49] are developed to remove the filters,
but both are readily extendable to unstructured pruning.1

1More details could be found in supplementary.
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Methods Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

scratch ×2 37.62 0.9591 33.16 0.9141 31.89 0.8958 30.83 0.9142 37.69 0.9747
L1-norm [23] ×2 37.62 0.9591 33.14 0.9145 31.90 0.8960 30.90 0.9151 37.77 0.9749

ASSL [48] ×2 37.69 0.9593 33.17 0.9145 31.93 0.8964 30.96 0.9160 37.83 0.9751
SRP [49] ×2 37.66 0.9592 33.20 0.9149 31.94 0.8964 31.01 0.9165 37.88 0.9751

ISS-P (ours) ×2 37.66 0.9593 33.22 0.9146 31.93 0.8963 31.06 0.9169 37.93 0.9753
scratch ×3 33.72 0.9210 29.90 0.8342 28.78 0.7971 27.06 0.8264 32.22 0.9329

L1-norm [23] ×3 33.71 0.9209 29.93 0.8344 28.79 0.7971 27.07 0.8266 32.21 0.9331
ASSL [48] ×3 33.89 0.9223 30.00 0.8355 28.42 0.7985 27.20 0.8305 32.44 0.9355
SRP [49] ×3 33.86 0.9222 29.98 0.8353 28.82 0.7980 27.19 0.8296 32.40 0.9347

ISS-P (ours) ×3 33.85 0.9224 30.00 0.8358 28.84 0.7984 27.26 0.8313 32.48 0.9356
scratch ×4 31.41 0.8821 28.11 0.7700 27.25 0.7255 25.16 0.7530 28.96 0.8847

L1-norm [23] ×4 31.43 0.8822 28.12 0.7700 27.26 0.7256 25.16 0.7530 28.96 0.8849
ASSL [48] ×4 31.50 0.8841 28.19 0.7718 27.31 0.7280 25.26 0.7583 29.20 0.8895
SRP [49] ×4 31.46 0.8833 28.17 0.7713 27.29 0.7269 25.25 0.7568 29.15 0.8879

ISS-P (ours) ×4 31.60 0.8851 28.23 0.7724 27.32 0.7277 25.32 0.7593 29.28 0.8904

Table 1. PSNR/SSIM comparison of the state-of-the-art methods over SwinIR under the pruning ratio of 0.9.

Methods Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

scratch ×2 37.27 0.9575 32.83 0.9106 31.63 0.8923 30.04 0.9040 36.95 0.9720
L1-norm [23] ×2 37.26 0.9574 32.83 0.9107 31.63 0.8924 30.07 0.9044 36.95 0.9721

ASSL [48] ×2 37.39 0.9581 32.92 0.9119 31.73 0.8940 30.29 0.9080 37.21 0.9732
SRP [49] ×2 37.41 0.9582 32.96 0.9124 31.75 0.8941 30.40 0.9091 37.32 0.9734

ISS-P (ours) ×2 37.46 0.9584 33.01 0.9129 31.78 0.8945 30.52 0.9105 37.43 0.9738
scratch ×3 33.13 0.9144 29.52 0.8264 28.52 0.7899 26.40 0.8075 30.98 0.9199

L1-norm [23] ×3 33.14 0.9144 29.51 0.8263 28.52 0.7899 26.39 0.8074 30.97 0.9198
ASSL [48] ×3 33.37 0.9172 29.64 0.8292 28.62 0.7932 26.61 0.8148 31.43 0.9254
SRP [49] ×3 33.33 0.9167 29.65 0.8290 28.61 0.7924 26.59 0.8131 31.36 0.9241

ISS-P (ours) ×3 33.49 0.9185 29.73 0.8306 28.66 0.7939 26.75 0.8182 31.68 0.9277
scratch ×4 30.70 0.8679 27.64 0.7581 26.98 0.7154 24.56 0.7285 27.66 0.8590

L1-norm [23] ×4 30.71 0.8680 27.64 0.7580 26.98 0.7154 24.57 0.7286 27.66 0.8590
ASSL[48] ×4 31.03 0.8748 27.83 0.7628 27.09 0.7195 24.76 0.7373 28.16 0.8701
SRP[49] ×4 30.99 0.8741 27.83 0.7626 27.09 0.7193 24.79 0.7374 28.15 0.8687

ISS-P (ours) ×4 31.16 0.8775 27.93 0.7655 27.14 0.7218 24.91 0.7436 28.44 0.8755

Table 2. PSNR/SSIM comparison of the satate-of-the-art methods over SwinIR under the pruning ratio of 0.95.

We keep the pruning constraints of both methods when op-
erating on different backbones. For the proposed method,
we use ISS-P as our final pruning treatment owing to its
vigorous sparsity dynamics and promising performance.

4.1. Comparison with Advanced Pruning Methods

Performance Comparisons. We conduct a thorough quan-
titative comparison with different pruning ratios, i.e., 0.9,
0.95, and 0.99, under the scale of ×2, ×3, and ×4. As
shown in Table 1∼3, the proposed ISS-P presents a promis-
ing performance by improving existing methods with a con-
siderable margin. Notably, the advantage of the ISS-P is
amplified when the scale or pruning ratio raises. Thanks to
the dedicated design of ISS-P, a more regularized gradient
flow is preserved, leading to better trainability, especially
for sparse networks with larger scale or pruning ratios. We
also provide more analysis on convergence in Section 4.2.

Visual Comparisons. We further visually compare the per-
formance of the sparse networks trained with different prun-
ing methods. In Fig. 3, we present the results at a challeng-
ing scale setting (i.e., ×4) and very high pruning ratio (i.e.,
0.99). By comparison, the proposed ISS-P allows a more
granular reconstruction, especially in textured areas with
detailed visual ingredients, for example, the more clear con-
tours of the buildings. Besides, the proposed method pro-
duces fewer distortions for regions with high gradients, e.g.,
by producing clearer and more consistent edges. These ob-
servations indicate a better modeling capacity, owing to an
appropriate sparse architecture upon active sparse dynamics
of ISS-P and a more promising optimization.

Different Backbones. In Table 4, we present the effec-
tiveness of the proposed pruning method on different back-
bones. The ISS-P works favorably well by outperforming
baseline and prevailing methods for SR, which is consis-
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Methods Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

scratch ×2 35.34 0.9461 31.61 0.8988 30.65 0.8788 28.06 0.8722 32.22 0.9536
L1-norm [23] ×2 35.33 0.9460 31.61 0.8988 30.65 0.8789 28.06 0.8722 33.21 0.9536

ASSL [48] ×2 35.65 0.9486 31.82 0.9007 30.80 0.8808 28.30 0.8760 33.83 0.9571
SRP [49] ×2 35.47 0.9468 31.65 0.8992 30.70 0.8795 28.15 0.8733 33.56 0.9551

ISS-P (ours) ×2 36.36 0.9526 32.19 0.9047 31.13 0.8853 28.89 0.8864 35.13 0.9640
scratch ×3 31.21 0.8822 28.27 0.8001 27.70 0.7670 25.01 0.7600 27.85 0.8690

L1-norm [23] ×3 31.21 0.8821 28.27 0.8001 27.70 0.7669 25.01 0.7600 27.85 0.8690
ASSL [48] ×3 31.73 0.8928 28.62 0.8082 27.90 0.7733 25.29 0.7710 28.54 0.8847
SRP [49] ×3 31.02 0.8779 28.17 0.7968 27.65 0.7644 24.94 0.7567 27.67 0.8630

ISS-P (ours) ×3 32.07 0.8990 28.86 0.8133 28.06 0.7774 25.54 0.7793 29.05 0.8932
scratch ×4 29.00 0.8197 26.48 0.7219 26.29 0.6882 23.51 0.6769 25.43 0.7924

L1-norm [23] ×4 29.00 0.8198 26.48 0.7219 26.29 0.6882 23.51 0.6769 25.42 0.7924
ASSL [48] ×4 29.15 0.8257 26.58 0.7266 26.35 0.6917 23.58 0.6812 25.58 0.7998
SRP [49] ×4 28.78 0.8120 26.33 0.7147 26.21 0.6834 23.43 0.6713 25.18 0.7808

ISS-P (ours) ×4 29.67 0.8419 26.94 0.7373 26.55 0.6988 23.87 0.6951 26.21 0.8205

Table 3. PSNR/SSIM comparison of the state-of-the-art methods over SwinIR under the pruning ratio of 0.99.

Urban100: img 061 (×4)

HR Bicubic L1-norm [23]

ASSL [48] SRP [49] ISS-P (ours)

Urban100: img 012 (×4)

HR Bicubic L1-norm [23]

ASSL [48] SRP [49] ISS-P (ours)
Figure 3. Visualization comparison of different pruning methods on Urban100 [16] dataset. The pruning ratio is 0.99.

tent with the results on SwinIR-Lightweight. Results on
these backbones demonstrate that the proposed method is
network structure-independent, which potentially eases the
deployment of advanced SR networks and is actually an im-
portant property in practice.

4.2. ISS Analysis

Ablation Study. We perform ablation studies of the pro-
posed method under the pruning ratio of 0.9 at different
scales. We specifically compare three ablated pruning meth-
ods, i.e., IHT, ISS-R, and ISS-P, which explore dynamic
sparse structures with different weight annealing opera-

tors at each forward propagation procedure. The SwinIR-
Lightweight [25] is adopted as the backbone. As shown
in Table 5, the ISS-P consistently outperforms on different
testing datasets. For example, the performance gap between
ISS-P and ISS-R remains over 0.2dB under the scale of ×4.
Note that ISS-R is inferior to the IHT at ×2 scale but sur-
passes it at the ×4. This suggests a strong resilience of ISS-
R schedule in trainability preserving albeit a sub-optimal
hyperparameter configuration in the growing regularization.

Trainability Analysis. Trainability depicts whether a net-
work is easy to be optimized, which is highly associated to
the sparse structures in the field of pruning. We find that
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Backbones Methods Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

EDSR-L

scratch 29.60 0.8522 26.35 0.7312 25.92 0.7003 23.69 0.7303 27.28 0.8570
L1 norm [23] 29.61 0.8526 26.36 0.7318 25.93 0.7011 23.70 0.7313 27.35 0.8582

ASSL [48] 29.85 0.8568 26.54 0.7368 26.07 0.7064 24.09 0.7461 27.93 0.8690
SRP [49] 29.78 0.8558 26.47 0.7349 26.00 0.7036 23.89 0.7392 27.72 0.8656

ISS-P (ours) 30.23 0.8628 26.74 0.7428 26.21 0.7109 24.43 0.7596 28.51 0.8783

CAT-R

scratch 32.19 0.8940 28.61 0.7816 27.58 0.7367 26.03 0.7846 30.50 0.8902
L1 norm [23] 32.19 0.8940 28.59 0.7814 27.58 0.7368 26.01 0.7842 30.52 0.9083

ASSL [48] 32.08 0.8930 28.53 0.7803 27.54 0.7356 25.90 0.7809 30.35 0.9059
SRP [49] 32.24 0.8950 28.61 0.7827 27.60 0.7382 26.09 0.7871 30.61 0.9096

ISS-P (ours) 32.66 0.9008 28.93 0.7900 27.80 0.7444 26.94 0.8118 31.52 0.9197

Table 4. Performance comparison of different methods upon the representative CNN backbone, EDSR-L [26], and advanced transformer
backbone, CAT-R [50], at the scale of the ×4. The pruning ratio is 0.95.

Methods Scale Set5 Set14 B100 Urban100 Manga109
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM

IHT ×2 37.48 0.9585 33.01 0.9131 31.78 0.8947 30.56 0.9112 37.42 0.9738
ISS-R ×2 37.38 0.9581 32.97 0.9121 31.72 0.8939 30.33 0.9082 37.16 0.9730
ISS-P ×2 37.51 0.9587 33.05 0.9134 31.82 0.8952 30.68 0.9125 37.54 0.9741
IHT ×3 37.04 0.9563 32.64 0.9091 31.49 0.8904 29.72 0.8998 36.47 0.9700

ISS-R ×3 37.07 0.9566 32.66 0.9092 31.50 0.8906 29.70 0.8995 36.51 0.9704
ISS-P ×3 37.31 0.9578 32.84 0.9112 31.66 0.8929 30.14 0.9059 37.00 0.9723
IHT ×4 35.17 0.9448 31.49 0.8978 30.57 0.8781 27.95 0.8740 32.91 0.9519

ISS-R ×4 35.37 0.9462 31.60 0.8983 30.66 0.8790 28.10 0.8730 33.31 0.9543
ISS-P ×4 35.86 0.9496 31.89 0.9015 30.87 0.8819 28.40 0.8777 34.09 0.9584

Table 5. Ablation study of different methods over SwinIR under the pruning ratio of 0.9 at different scales.

module.layers.0.residual group.blocks.2.mlp.fc1

module.conv after body

Figure 4. Trainability comparison of the IHT and ISS-P. The layer-
wise gradient L2-norm and variance in the pruning stage (1×105
iterations) and the first 1×105 iterations of the fine-tuning stage
are plotted. We choose two representative layers, i.e., a fully con-
nected layer (top) and a convolution (bottom) from the SwinIR.

ISS-P better preserves the trainability of the network. Intu-
itively, this is because the ISS-P better retains the network
dynamical isometry [34] by better preserving the weight
connections (dependencies) during the training, compared
with IHT. We verify this point by observing the gradient

L2-norm and variance during the training. In Fig. 4, we find
that the gradient norm of the ISS-P steadily converges in the
pruning stage (Kp < 1 × 105), so that the selected sparse
network (taking effect at Kp = 1 × 105) approaches the
local minimum on the loss landscape at the end. Reversely,
the gradient descent of IHT is still ongoing (i.e., iteration
k = 2× 105), which indicates the network is harder to con-
verge. A similar conclusion is also validated by comparing
more regularized gradient variances of ISS-P against larger
gradient variances of IHT. In addition, ISS-P allows better
trainability throughout the network, regardless of the depth
and layer types, as exampled by a shallow fully connected
layer (11-th) and a deep convolutional layer (101-th).

5. Conclusion
In this work, we have studied the problem of efficient

image super-resolution by the unstructured pruning treat-
ment upon the network with randomly initialized weights.
Specifically, we have proposed Iterative Soft Shrinkage-
Percentage (ISS-P) method to iteratively shrink the weight
with a small amount proportional to the magnitude, which
has not only enabled a more dynamic sparse structure ex-
ploitation but also better retained the trainability of the net-
work. The proposed method has been readily compatible
with the off-the-shelf SR network designs, facilitating the
sparse network acquisition and deployment.
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