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Abstract

We are concerned with a challenging scenario in un-
paired multiview video learning. In this case, the model
aims to learn comprehensive multiview representations
while the cross-view semantic information exhibits varia-
tions. We propose Semantics-based Unpaired Multiview
Learning (SUM-L) to tackle this unpaired multiview learn-
ing problem. The key idea is to build cross-view pseudo-
pairs and do view-invariant alignment by leveraging the
semantic information of videos. To facilitate the data effi-
ciency of multiview learning, we further perform video-text
alignment for first-person and third-person videos, to fully
leverage the semantic knowledge to improve video repre-
sentations. Extensive experiments on multiple benchmark
datasets verify the effectiveness of our framework. Our
method also outperforms multiple existing view-alignment
methods, under the more challenging scenario than typ-
ical paired or unpaired multimodal or multiview learn-
ing. Our code is available at https://github.com/
wqtwjt1996/SUM-L.

1. Introduction

Recent years have witnessed a tremendous increase in
the research regarding egocentric video understanding and
learning [22, 26, 20, 41, 29, 30, 14, 42, 7, 31, 46, 9]. In
parallel, a recent study [22] verifies that the activity of third-
person videos in fact positively inform first-person video
learning. Early works [39, 51] of egocentric video learning
and understanding pay a lot of attention to paired multiview
data representation learning. However, synchronized first-
person and third-person video pairs are difficult to collect.
This severely limits the data scale and scope of multiview
learning for egocentric data.

Recently, egocentric video datasets [4, 5, 10] with larger
scale have become available. However, since head-mounted
cameras were not available until recent years, very few
first-person videos have paired third-person videos [15].
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Figure 1. (a) The typical multiview video learning method learns
view-invariant representations from paired first-person and third-
person videos. (b) Recent multimodal study [19] is interested in
the alignment between unpaired samples which share identical se-
mantics. In this paper, we study a more challenging scenario than
existing works: unpaired multiview samples alignment with par-
tially similar semantics, such as videos with (c) the same verb only,
or (d) the same object only. The verb-object phrases above the
video clips denote the semantic information of videos.

Fortunately, there exist third-person videos from different
datasets [12, 16]. It is worth noting that unpaired third-
person videos are relatively easier to capture and obtain
compared with paired ones. Therefore, in this paper, we
study an interesting yet seldom investigated problem: how
to leverage unpaired third-person videos to help egocentric
video learning?

Unpaired multiview learning is rarely studied. While re-
cent works [28, 27, 38, 53] study the scenario where paired
modalities are missing. But they do not leverage the po-
tential of unpaired data from diverse datasets. Moreover, to
align the unpaired multimodal samples, Kundu et al. [19]
propose one relation distillation method to align the un-
paired samples. They assume that unpaired data need to
share identical semantic information. However, in the un-
paired first-person and third-person video learning scenario,
for the vast majority of egocentric videos, it is almost im-
possible to mine the third-person samples with identical
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Figure 2. Statistics of semantic similarities between the first-person samples in [39, 4, 5] and the most similar single-agent third-person
samples they can find from the LEMMA [15] dataset. The semantic similarity is the cosine distance between textual phrase vectors of
videos encoded by a large language model [34]. Each bar in the figure represents the percentage of action classes that fall within one
semantic similarity range (e.g., [0.8, 1.0]) in an egocentric dataset compared to all action classes in this dataset. In all of the three popular
egocentric datasets, very few first-person videos are able to find third-person videos with identical semantics. For reference, in the studies
for paired multiview data [43, 39, 51, 54], all the semantic similarities of cross-view data pairs are (or very close to) “1.0”.

semantics. The only alternatives are partially semantics-
similar unpaired third-person videos. For example, for one
egocentric video clip with “cut watermelon” semantics, the
most similar third-person video is those with “cut lemon”
(same verb) or “eat watermelon” (same object) semantics.
Examples and comparisons between our scenario and typi-
cal paired or unpaired multiview or multimodal learning are
shown in Figure I, and we display comprehensive seman-
tics similarity statistics of multiview data studied in this pa-
per (see Figure 2). Therefore, how to employ the unpaired
and partially semantics-similar third-person views to help
first-person view learning is an open problem. Intuitively,
compared with previous research, our setting is more chal-
lenging since most of the first-person videos only share par-
tially similar semantics with third-person views.

In this paper, we are interested in view-invariant align-
ment in the partially semantics-similar pseudo-pair setting.
We propose Semantics-based Unpaired Multiview Learning
(SUM-L), where multiview pseudo-pairs with high simi-
larities are aligned in a semantics-aware manner. In our
method, we also employ video-text alignment to permit all
first-person videos to obtain knowledge from samples with
different views or modalities. We highlight that our SUM-L
employs the large language model [34] to help align cross-
view and cross-modality data. This is different from [22],
which proposes to distill beneficial knowledge from un-
paired third-person videos [16], mostly with the help of the
off-the-shelf image recognition model [6] and hand-object
detector [37]. Moreover, our method is better than exist-
ing view-invariant alignment methods, such as typical con-
trastive learning [44, 43, 50, 54] and triplet loss based learn-
ing [35, 51] in the new setting, since they naively reduce
multiview feature distance, which leads to learning subop-
timal first-person representations.

To summarize, our contribution is three-fold:

* We study a new problem: in the partially semantics-
similar multiview setting, how to leverage unpaired
third-person videos to help first-person video learning.

* We propose SUM-L for this new problem, which is
more effective than existing view-alignment methods
in our unpaired multiview learning scenario.

* Experiments in standard benchmark datasets includ-
ing Charades-Ego [39], EPIC-Kitchens [4], and EPIC-
Kitchens-100 [5] validate the competitive performance
of our methods over existing view-alignment methods
including typical contrastive learning and triplet loss
based learning.

2. Related Work
2.1. Egocentric Video Learning

The study of egocentric video learning has attracted a
large volume of attention in recent years. To verify the
quality of model learning, there are multiple egocentric-
related tasks, including action recognition [29, 42, 46],
video summarization [26, 20], engagement detection [41],
scene affordance [30], gaze prediction [14], video question
answering [7], and activity anticipation [31, 9]. Neverthe-
less, aforementioned studies utilize knowledge from first-
person videos only [26, 20, 41, 14, 42, 31, 9], or make
use of extra supervision from off-the-shelf models [29, 30],
or naively pretrain on large-scale datasets [7, 46]. More
specifically, these methods do not consider tackling the do-
main mismatch between different multiview datasets or ab-
staining from extra supervision. Recently, Li et al. [22] try
to discover latent signals in the third-person videos which
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are predictive of key egocentric-specific properties. Simi-
lar to [29, 30], however, this method heavily relies on the
knowledge of off-the-shelf image or video models.

2.2. First-person Video Representation Learning
with Joint Third-person Videos

The paired first-person and third-person videos, as de-
scriptions of the same actions from different perspectives,
are potential to provide beneficial knowledge to each other,
yielding more generalizable joint representations. Recent
studies [39, 40] propose paired first-person and third-person
datasets and learn joint representations of multiview videos.
They show the potential of transferring knowledge from
third-person videos to first-person videos. In order to ex-
tract more useful joint knowledge, Yu et al. [52] make
use of the shared attention regions between different views
with spatial constraints, in a self-supervised and simulta-
neous manner. However, nowadays very few first-person
videos have paired third-person videos [15]. Moreover, we
find that existing multiview methods [44, 43, 35, 51] learn
suboptimal first-person representations from unpaired third-
person videos, that are relatively easier to capture and ob-
tain compared with paired data. Instead, our methodology
can better distill unpaired third-person video knowledge to
first-person videos, and it is more efficient and applicable
than existing view-alignment methods [44, 43, 35, 51].

2.3. Unpaired Multimodal Learning

Due to the relatively difficult acquisition of paired multi-
modal samples and the limited number of them, unpaired
multimodal learning recently has attracted the interest of
some researchers. Kundu et al. [19] treat unpaired 3D pose
learning as a self-supervised adaptation problem that aims
to transfer the task knowledge from a labeled paired source
domain to a completely unpaired target domain. Next, it
proposes the relation distillation method to align the un-
paired target videos and unpaired 3D pose sequences. How-
ever, this work makes the assumption that there exist se-
mantically identical cross-modal data in the unpaired tar-
get domain, which is almost unavailable in unpaired first-
and third-person video representation learning. Therefore,
in this paper, we study a more challenging problem: how
to make unpaired multiview alignment in an incompletely
semantics-similar situation.

3. Methodology

In the following sections, we first describe our pseudo-
pair construction method (Sec. 3.1). Then we introduce the
traditional contrastive framework for paired multiview or
multimodal data (Sec. 3.2). Next, we introduce our pro-
posed cross-view and cross-modal methods (Sec. 3.3). Fi-
nally, we present our full training and evaluation pipeline in
Sec. 3.4.

3.1. Semantics-based Pseudo-pair Mining

Different from the previous joint multiview learning ap-
proaches [39, 40, 51], first-person and third-person videos
are not automatically paired in the cross-dataset setting.
Hence, before model training, it is essential to construct
pseudo multiview pairs.

Every first-person and third-person video has one unique
textual narration, which describes the key semantic infor-
mation of it. Therefore, we employ the large language
model [34] to encode textual narrations of multiview videos
to vectors. Then for each first-person video, we mine the
third-person video with the highest textual semantic similar-
ity from the third-person video pool to construct the pseudo-
pair. We compute the cosine distance between cross-view
video textual narrations as the criterion of semantic similar-
ity between first-person and third-person video clips:

de - dg

A ey
el - [|de

Sim(zfvzt) =
where df and dy denote textual narration vectors of first-
person and third-person videos, respectively.

3.2. Typical Multiview Alignment

Existing contrastive-based multiview [43, 25, 54] or
multimodal [21, 49, 32, 48] methods propose to learn the
view-invariant representations via the alignment of the fea-
tures. Specifically, they learn to align features between dif-
ferent views or modalities by minimizing the distance be-
tween paired samples and maximizing the distance between
negative (unpaired) samples.

Given a batch of N normalized first-person features
{z},...,zY} and third-person features {z{,...,z] }, these
methods calculate the contrastive multiview Info-NCE [43,
33] loss as:

Le=LUY 4+ L&D 2)

N . .
1 exp ((2,,2%,) /7)
L(vl’v2) = —— l ] 1 2 ’
¢ N; og exp(<z§,1,zi,2>/7)+5i 5

S; = Z exp (<z1,1 , z{,2> /7') , ()
JEM,N],j#i
where vy and v are two views and 7 is the temperature.
For an input video clip Xy, , its normalized feature rep-
resentation is extracted by the encoder f,, (-) following the

projection network h.,, (+) as:

— h'Uk (AUgPOOl (ka (Xvk)))
“ |, (AvgPool (fu, (xv))lly

The optimization of contrastive learning methods is of-
ten computationally expensive, which requires large batch
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Figure 3. Illustration of our framework. First, one batch (batch size = 4) of multiview pseudo-pairs is built from unpaired first-person
and third-person videos. The pseudo-pairs are built based on mining the most semantics-similar third-person video for every first-person
video. During training, the global features for multiview alignment (zy, 2;) are extracted by their corresponding encoders following the
projection networks (h ¢, h¢). In addition, textual features (dy, d¢) are extracted by a large language model [34] from textual narrations of
first-person and third-person videos. The semantic similarity between d and d; is calculated to filter out the multiview pseudo-pairs with
low semantic similarity. Then the multiview pairs with high semantic similarity are employed to learn the view-invariant representations
with the contrastive learning method. To further improve data efficiency, we employ all the first-person and third-person videos in the batch
to learn contrastive multimodal relations. Finally, the task-specific heads (g, g¢) for both first-person and third-person videos are trained
to make predictions for their corresponding downstream tasks. During testing, we only use the first-person encoder and task-specific head

(g7) to make first-person video predictions.

sizes and a large volume of training epochs. To tackle this
issue, Yeh et al. [50] refine the InfoNCE loss by removing
the positive term from the denominator in Equation 3 and
significantly improve the learning efficiency. To be specific,
it rewrites Equation 3 as:

N
V1,V2 1 i i
Lyt = =53 log [eap (7. 24,) /7) /1]
=1
(©)

In the context of our unpaired multiview learning, we
argue that directly employing the above vanilla contrastive
learning method is an obstacle that hinders further acquiring
knowledge from third-person videos. On the one hand, in
the unpaired first-person and third-person video multiview
representation learning, very few first-person views have the
third-person views which share the same semantics. On
the other hand, typical contrastive multiview representa-
tion learning is designed to minimize the feature distance
between samples with identical semantics, e.g., recordings
from camera views for the same objects [18], images with
different visuals belonging to the same class [17], one im-
age applying multiple independent [2] or asymmetric [11]

data augmentations, efc. Naively reducing multiview fea-
ture distances in our unpaired multiview learning will lead
to learning suboptimal first-person video representations.

3.3. Semantics-based Multiview Learning

To address the above issue, we propose a representation
learning method, namely Semantics-based Unpaired Multi-
view Learning. We employ contrastive alignment as a tool
to align the unpaired multiview videos. Different from ex-
isting view-alignment methods, our proposed method intro-
duces the following two novel alignments: (1) Semantics-
based Cross-view Alignment, which employs the seman-
tic information from textual narrations of multiview videos
to align high-similar unpaired data; (2) Video-text Modal
Alignment, which permits all first-person video obtaining
knowledge from samples with different views or modalities.
Next, we will introduce our framework step-by-step.

Semantics-based Cross-view Alignment. We believe
that pseudo-pairs with high semantic similarities can better
help learn view-invariant information in first-person videos.
Therefore, given cross-view pseudo-pairs (zg,z¢) in one
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batch, we pick pseudo-pairs (*z¢, *z¢ ) which have relatively
higher textual semantic similarities. Then the first-person
and third-person video alignment loss (L, ) is defined as the
the decoupled contrastive learning loss [50] of high seman-
tic similarity pseudo-pairs:

(*f,71)

L, =1L (7

LG,
Besides, we hypothesize that the employed large lan-
guage model [34] is a strong teacher: by encoding the tex-
tual descriptions of videos into vectors, the similarity be-
tween vectors implicitly provides a reference to measure
the semantic similarity between videos. To make better
use of these textual descriptions of first-person and third-
person videos, inspired by [50], we further introduce a
semantic-based weighting function for the positive pseudo-
pairs. More specifically, we first rewrite our cross-view
video alignment loss L, in Equation 7 as Lg,,, where:

Law=LEEY + LY. ®)
Then given views (*f, *t), we have:

- 1
LU — —
aw N

] =

{log (S;) —w (*dif, *d;) : <*Zifa *Zt> /T}
)

where the definition of .S; is the same as Equation 4. Here
we implement the weighting function as:

ey wgi) P (<*dif’* ;/U>)
L) e o ()]

where the higher textual similarity pseudo-pair has, the
more learning signal the pseudo-pair needs to be provided,
and vice versa. In this case, our multiview alignment is
semantics-aware, which is different from existing multiview
alignment methods [43, 51] that evenly align multiview data
with different semantic similarities.

Video-text Modal Alignment. Until now, although the
above statement provides a seemingly finalized solution in
the case where the multiview pseudo-pair semantic infor-
mation is not exactly the same, it is not data-efficient for
every first-person sample. This is because it cannot help
first-person videos in pseudo-pairs with low semantic simi-
larities gain learning signals from others.

In order to permit all first-person videos to obtain knowl-
edge from samples with different views or modalities, we
employ video-text contrastive alignment to make the model
training more data-efficient. As we mentioned before that
every first-person and third-person video has an accurate
textual description of their semantic information, this mul-
timodal alignment can further help the neural network learn
useful knowledge from these phrases.

=1

(10)

Technically, given a batch of N normalized first-person
and third-person features {z},...,zN} and {z},..,zN},
and their corresponding normalized textual description vec-
tors {d},...,dN} and {d},...,d}, the multimodal con-
trastive alignment loss (L,,) for both first-person videos
and third-person videos is defined as:

L, = L((jzchdf) JrLl(icclﬁzf) + Ll(;t,dt) JrL((jCci:,Z:)' (11)

3.4. Training and Evaluation Pipelines

The two proposed cross-view and cross-modal losses,
along with the task-specific losses for both first-person
videos (L) and third-person videos (L;), are combined to-
gether during the training procedure to construct the final
training loss:

L=L;+w Ly +Waw - Law + Wi - Ly, (12)

Note that our model is trained in multiple stages. First,
both first-person and third-person video encoders are ini-
tialized by weights pretrained on Kinetics-400 [16]. Then
we train the third-person video encoder and task-specific
head on the third-person video dataset with third-person
video task-specific loss (L;) only. Next, we load this trained
weight for the third-person video encoder and task-specific
head and do training for the whole framework with the
overall loss in Equation 12. Finally, we evaluate the first-
person video performance of our method using the first-
person video encoder and task-specific head.

The specific task for both first-person and third-person
videos we discussed in this paper is video classification.
Therefore, both Ly and L, are classification losses; w;,
Wqw, and wy, are the loss weights.

4. Experiments
4.1. Experiment Settings
4.1.1 Dataset

In this section, we introduce the standard benchmarks we
used for evaluation in the experiments.

LEMMA [15] contains 648 third-person videos and 445
first-person videos. Among them, 136 activities were per-
formed in kitchens, and the remaining 188 were in the living
rooms. It contains 25 verb classes, 64 noun classes, and 863
action classes in their action recognition task, and includes
not only single-agent but also multi-agent videos. We uti-
lize single-agent third-person videos only as our unpaired
third-person samples.

Charades-Ego [39, 40] contains 68,536 activity in-
stances in paired 68.8 hours of first-person and third-person
videos. It includes 157 action classes. We only utilize first-
person videos during training and inference.

EPIC-Kitchens [4] is a large-scale egocentric video
benchmark recorded in kitchen environments. It contains
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55 hours of video with a total of 39.6K action segments and
is labeled with 352 object and 125 verb classes.

EPIC-Kitchens-100 [5] extends EPIC-Kitchens [4] to
100 hours and 89,977 action segments. We employ this as
well as EPIC-Kitchens [4] to validate our approach.

4.1.2 Baseline Methods

We compare the proposed approach with the following
baseline methods, including typical multiview representa-
tion learning methods:

FPV Only is trained with first-person (FPV) video data
only. Its framework is composed of first-person video en-
coder and first-person video classification head.

Typical CL is widely employed for view- or modal-
invariant contrastive learning (CL) [43, 54], and vision-
language models [32, 48, 21, 49, 24, 55]. Here we imple-
ment it with the loss function in Equation 6. Similar to our
framework, videos from different views are fed to different
encoders. We employ the same pseudo-pair construction
method and the same inference strategy as our framework
for this baseline method.

Triplet is another widely used multiview representation
learning method [51, 39]. We employ the same implemen-
tation protocol following [51]. Moreover, we leverage this
method to tackle our problem following the same proce-
dures as “Typical CL".

4.1.3 Implementation Details

To ensure fairness, we keep all hyperparameters the ex-
act same for all baselines and our method. For Charades-
Ego [39, 40], we use the base learning rate of 0.25,
batch size of 32 and maximum epoch of 60. For EPIC-
Kitchens [4] and EPIC-Kitchens-100 [5], we use the base
learning rate of 0.01, weight decay of 0.0001, batch size
of 64 and maximum epoch of 30. Following [22], all
models are trained using the stochastic gradient descent
optimizer [1] with the momentum of 0.9. For Charades-
Ego [39, 40], we use the cosine learning rate decay. For
EPIC-Kitchens [4] and EPIC-Kitchens-100 [5], we use se-
quential learning rate decay. The backbones we use are
ResNet-3D-50 [13] and SlowFast [8]. More details about
the implementation of backbones will be provided in the
following experimental sections.

4.2. Validity of Proposed Method

Table | shows the performance of different training
strategies, where all methods are implemented with the
ResNet-3D-50 [13] encoder. Our proposed method outper-
forms the “FPV only” baseline model on both Charades-
Ego and EPIC-Kitchens (+1.6% mAP on Charades-Ego,

Dataset C-Ego EK-55 (Verb) EK-55 (Noun)

. Top-1  Top-5 | Top-1  Top-5

Evaluations | mAP (%) acc. (%) acc. (%) |acc. (%) acc. (%)

FPV Only 24.7 61.1 87.1 45.8 70.4

Typical CL 25.1 60.5 86.2 453 68.6
Triplet 25.2 61.5 86.8 45.7 69.7

SUM-L (Ours) | 26.3 62.3 87.2 47.3 70.9

Table 1. Comparison with baseline methods. The backbone we
use is R3D-50 [13] for all methods. “C-Ego” denotes Charades-
Ego [39] dataset and “EK-55" denotes EPIC-Kitchens [4] dataset.

and +1.2%/+1.5% on EPIC-Kitchens verbs/nouns top-1 ac-
curacies). This demonstrates that under partially similar se-
mantics situations, with our method, the third-person videos
can help to improve first-person video representations.

Moreover, different from our method, previous multi-
view learning methods (“Typical CL” and “Triplet”) can-
not bring significant and consistent improvement compared
with “FPV only”. For example, “Typical CL” brings only
0.4% improvement on Charades-Ego (far less than ours)
and even deteriorates performance on EPIC-Kitchens. In-
stead, our proposed method outperforms existing align-
ment methods up to +1.2% mAP on Charades-Ego and
+1.8%/+2.0% on EPIC-Kitchens verbs/nouns top-1 accura-
cies. We believe this is due to the following reasons. (1) Our
method semantics-awarely aligns unpaired data, instead of
evenly aligning pseudo-pairs with different semantic simi-
larities. (2) Our method filters the negative effects caused
by multiview pseudo-pairs of low semantic similarity. This
is different from typical multiview methods which naively
align all the pairs. (3) Our method permits all first-person
videos to obtain knowledge from samples with different
views or modalities, which improves data efficiency.

We further verify the effectiveness of our proposed
method with a larger backbone, SlowFast [8], as the en-
coder, and we compare with recent state-of-the-art meth-
ods on three popular egocentric action recognition bench-
marks, Charades-Ego [39], EPIC-Kitchens [4], and EPIC-
Kitchens-100 [5]. Note that evaluation scores of state-of-
the-arts are reported directly from their paper. The ex-
perimental results employing SlowFast [8] encoder recon-
firm the following findings. (1) Our method is effective for
cross-view pseudo-pair alignment when there is only par-
tially same multiview semantics. (2) Compared with exist-
ing multiview alignment methods, the improvement based
on “FPV Only” of our method is still more significant and
consistent. Next, we analyze the important details of the
experiments.

Comparison on Charades-Ego Table 2 demonstrates
the effectiveness of our method for cross-view pseudo-
pair alignment when there is only partially same semantics.
Note that our method and Ego-Exo [22] complement each
other. Thus, we can also incorporate our method into Ego-
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Methodology | mAP (%)
Actor [39] 20.0
SSDA [3] 23.1
state-of-the-arts 13D [22] 25.8
Ego-Exo [22] 28.7
Ego-Exo* [22] 30.1
FPV Only 274
P Typical CL 27.9
wlo "EE ygriplet 28.1
SUM-L (Ours) 28.5
FPV Only 29.5
e Typical CL 29.1
w/EE Triplet 28.6
SUM-L (Ours) 30.7

Table 2. Comparison on Charades-Ego. Our method and all
baseline methods are implemented with SlowFast-R101 [8] back-
bone. “EE” denotes training based on pretrained weights provided
by [22].

Methodology Verb (%) Noun (%)
SlowFast-R50 [8] 64.1 48.6
state-of-the-arts Ego-Exo [22] 66.0 49.4
Ego-Exo* [22] 66.4 49.8
FPV Only 63.1 48.4
I Typical CL 63.9 49.6
wlo "EE yTpriplet 63.9 488
SUM-L (Ours) 65.0 49.5
FPV Only 65.8 49.5
s Typical CL 63.8 48.4
w/"EE y{“)riplet 63.9 496
SUM-L (Ours) 66.7 50.2

Table 3. Comparison on EPIC-Kitchens. The accuracies are mea-
sured by top-1 verb & noun classification accuracies. Our method
and all baseline methods are implemented with SlowFast-R50 [8]
backbone.

Exo [22]. As shown in Table 2, based on pretrained weight
on [22], our proposed method further improves the perfor-
mance of “FPV only” by 1.2% mAP, and achieves a new
state-of-the-art on Charades-Ego [39].

Comparison on EPIC-Kitchens As we can see from
Table 3, our method still brings clear improvement com-
pared with “FPV Only” method (+1.9%/+1.1% verbs/nouns
top-1 accuracies). Furthermore, with the help of pretrained
weights from [22], our method still outperforms most state-
of-the-art methodologies, which indicates the effectiveness
of our method. Last but not least, our method outper-
forms existing alignment methods up to +2.9%/+1.8% of
verbs/nouns top-1 accuracies.

Comparison on EPIC-Kitchens-100 As shown in ta-
ble 4, our method also obtains competitive results on EPIC-
Kitchens-100 [5] dataset when trained based on weights
from [22]. It is worth noting that our method gains the
first place in noun accuracy and third place in verb accu-

Methodology Verb (%)  Noun (%)
TSN [45] 60.2 46.0
TSM [23] 67.9 49.0
TempAgg [36] |  59.9 45.1
state-of-the-arts EgoI-)Efog [22] 67.0 52.9
Ego-Exo*[22] | 67.5 52,9
IPL [47] 68.6 51.2
W/ “EE” SUM-L (Ours) | 67.0 534

Table 4. Comparison on EPIC-Kitchens-100 with state-of-the-arts
that implement CNN backbone. The accuracies are measured
by top-1 verb & noun classification accuracies. We implement
SlowFast-R101 [8] backbone.

L, Ly L, |mAP (%)
X X X 24.7
X v X 25.6
x v Y 26.3
v o ox Vv 26.1

Table 5. Different training task combinations of our proposed
method. Combining semantics-aware unpaired cross-view align-
ment with video-text alignment, our method clearly improves ego-
centric classification performance on the Charades-Ego dataset.

racy compared with state-of-the-art methodologies which
employ convolutional neural network backbones.

4.3. Ablation Studies

In this section, we conduct the ablation studies on
Charades-Ego [39] dataset. The backbone we employ is
ResNet-3D-50 [13].

4.3.1 Impact of Different Alignment Tasks

The experiment results are shown in Table 5. We find
our proposed unpaired cross-view alignment method itself
brings 0.9% mAP improvement comparing with the “FPV
Only” method. It denotes that the method can help learn
useful knowledge from unpaired third-person view samples
when the cross-view semantic information is not identi-
cal. Moreover, our proposed video-text modal alignment
method further boosts first-person performance by 0.7%
mAP compared with implementation with cross-view align-
ment only. We think this is because the proposed video-text
modal alignment ensures the alignment of all first-person
video samples, and further improves the semantics utiliza-
tion for both first-person and third-person videos. Besides,
implementing our cross-view alignment without semantic
weighting causes a slight 0.2% drop, which manifests the
usefulness of knowledge from the large language model.
This knowledge provides a reference to measure the seman-
tic similarity between cross-view videos.
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First-person frame heatmaps from “FPV Only”

First-person frame heatmaps from our method

Third-person frame heatmaps from our method

Figure 4. Comparison of class activation map visualizations between the “FPV Only” method and our method. The cross-view similar
semantics for data in the first row is “holding pan”. The cross-view similar semantics for data in the second and third rows is “take”.

4.3.2 Impact of Third-person View Backbone

The original setup of the third-person video encoder is men-
tioned in Sec. 3.4. Here we study the effect of other in-
tuitively feasible third-person video encoder implementa-
tions. The experiment results are shown in Table 6.

First, we load the pretrained weight of the third-person
video and freeze it during the training process for the whole
framework shown in Figure 3. We find freezing the third-
person video encoder causes a 0.5% mAP drop compared
with the original setup. This indicates that for the pretrained
third-person video encoder, allowing training more param-
eters can better help first-person video learn effective infor-
mation from third-person samples. Moreover, naively em-
ploying shared encoder weights for different views, which
follows [2], can cause clear performance drop (1.0% mAP
drop) to first-person video learning. We think this is due
to the big variances between first-person and third-person
samples. Finally, the same initialization (pretrained on
Kinetics-400 [16]) for both first-person and third-person
video encoders causes a slight 0.2% mAP drop. It indicates
that for the third-person video encoder, employing existing
weights of third-person samples for optimization has a pos-
itive effect on first-person video learning.

Setup mAP (%)
Freezed TPV Backbone 25.8
Shared Multiview Encoder Weights 25.3
Same Initialization with FPV Encoder 26.1
Original 26.3

Table 6. Impact of different third-person video encoder implemen-
tations. The “Original” setup is described in Sec. 3.4.

4.4. Visualization

We visualize the first-person and third-person video class
activation maps (CAM) [56] on EPIC-Kitchens [4] dataset.
We employ first-person video encoder weights from “FPV
Only” method (61.1% & 45.8% top-1 verb & noun accura-
cies) and our method (62.3% & 47.3% top-1 verb & noun
accuracies). As shown in the first and second columns of
Figure 4, comparing with “FPV Only” method, our method
can help the model be more responsive to positive spatio-
temporal locations of video clips.

Moreover, from the third column of Figure 4, we find
that our model also has a strong response to the third-person
video locations which have overlapped semantics with the
first-person video (see bright green bounding boxes of Fig-
ure 4). It shows that our method successfully utilizes knowl-
edge from unpaired third-person videos to help learn first-
person video representations.
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5. Conclusions

In this paper, we tackle a new problem in first-person
and third-person video learning and propose SUM-L. It can
distill knowledge from unpaired, cross-dataset third-person
video without exact same multiview semantic information.
Our experiments show the validity of our proposed method.
Besides, under the more challenging scenario than typical
paired or unpaired multimodal or multiview learning, our
method outperforms existing view-alignment methods.

However, improvements from SUM-L are not very sig-
nificant. One possible reason is due to the relatively small
amount of third-person data. It will be interesting to ex-
plore more unpaired third-person video datasets. It will be
also interesting to study more downstream tasks, such as un-
paired cross-view retrieval. We leave these as future work.
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