
Mixed Neural Voxels for Fast Multi-view Video Synthesis

Feng Wang1 Sinan Tan1 Xinghang Li1 Zeyue Tian2 Yafei Song3 Huaping Liu1 *

1Beijing National Research Center for Information Science and Technology(BNRist),

Department of Computer Science and Technology, Tsinghua University
2Hong Kong University of Science and Technology

3 XR Lab, DAMO Academy, Alibaba Group

wang-f20@mails.tsinghua.edu.cn, hpliu@tsinghua.edu.cn

Abstract

Synthesizing high-fidelity videos from real-world multi-

view input is challenging due to the complexities of real-

world environments and high-dynamic movements. Previ-

ous works based on neural radiance fields have demon-

strated high-quality reconstructions of dynamic scenes.

However, training such models on real-world scenes is time-

consuming, usually taking days or weeks. In this paper,

we present a novel method named MixVoxels to efficiently

represent dynamic scenes, enabling fast training and ren-

dering speed. The proposed MixVoxels represents the 4D

dynamic scenes as a mixture of static and dynamic voxels

and processes them with different networks. In this way,

the computation of the required modalities for static vox-

els can be processed by a lightweight model, which essen-

tially reduces the amount of computation as many daily

dynamic scenes are dominated by static backgrounds. To

distinguish the two kinds of voxels, we propose a novel

variation field to estimate the temporal variance of each

voxel. For the dynamic representations, we design an in-

ner product time query method to efficiently query multiple

time steps, which is essential to recover the high-dynamic

movements. As a result, with 15 minutes of training for dy-

namic scenes with inputs of 300-frame videos, MixVoxels

achieves better PSNR than previous methods. For render-

ing, MixVoxels can render a novel view video with 1K reso-

lution at 37 fps. Codes and trained models are available at

https://github.com/fengres/mixvoxels.

1. Introduction

Dynamic scene reconstruction from multi-view videos

is a critical and challenging problem, with many poten-

tial applications such as interactively free-viewpoint control

*Corresponding author.

Figure 1. Our method enables rapid reconstruction of 4D dynamic

scenes. We visualize the rendering results with different train-

ing schedules. With only 15 minutes of training, our approach

achieves comparable PSNRs to other methods. Increasing the

training time further enhances the ability to recover fine details.

for movies, cinematic effects like freeze-frame bullet time,

novel view replays for sporting events, and various poten-

tial VR/AR applications. Recently, neural radiance fields

[26] have demonstrated the possibility of rendering photo-

realistic novel views for static scenes, with physically mo-

tivated 3D density and radiance modelling. Many methods

[19, 20, 49, 13, 10, 31, 28, 29, 44] extend the neural radiance

fields to dynamic scenes with additional time queries or an

explicit deformation field. Many of these methods focus on

the monocular input video setting on relatively simple dy-

namic scenes. To model more complex real-world dynamic

scenes, a more practical solution is to use multi-view syn-

chronized videos to provide dense spatial-temporal supervi-

sions [55, 23, 3, 19].

Recently, Li et al. [19] propose a real-world dynamic

scene dataset including many challenging situations such as

objects of high specularity, topology changes, and volumet-

ric effects. They address the problem by a hierarchical train-

ing scheme and the ray importance sampling strategies. Al-

though significant improvements have been achieved, some

challenges still exist: (1) The training and rendering take a

This ICCV paper is the Open Access version, provided by the Computer Vision Foundation.
Except for this watermark, it is identical to the accepted version;

the final published version of the proceedings is available on IEEE Xplore.

19706



lot of time and computation resources. (2) Highly dynamic

scenes with complex motions are still difficult to track.

In this paper, we focus on the multi-view 3D video syn-

thesis problem and present a novel method named MixVox-

els to address the above two challenges. The proposed

MixVoxels is based on the explicit voxel-grid represen-

tation, which is recently popular due to its fast training

and rendering speed on static scenes [50, 40, 8, 27]. We

extend the voxel-grid representations to support dynamic

scenes and propose an efficient inner product time query-

ing method that can query a large number of time steps

simultaneously, which is essential to recover the sharp de-

tails for highly-dynamic objects. Additionally, we represent

dynamic scenes as a mixed static-dynamic voxel-grid repre-

sentation. Specifically, the 3D spaces are split into static and

dynamic voxels by our proposed variation field. The two

components are processed by different models to reduce the

redundant computations for the static space. Theoretically,

once a dynamic scene consists of some static spaces, the

training speed will benefit from the proposed mixed voxels.

For a variety of events that occur in the physical world, the

static components of environments are dominated in most

cases, and the mixed voxels will speed up the training sig-

nificantly in these scenarios. Besides, the separation of vox-

els makes the time-variant model focus on the dynamic re-

gions, avoiding the time-aware voxels being biased by the

static spaces to produce blurred motions. Our empirical

validation confirms that the separation enables the model

to learn sharp and distinct boundaries in high-dynamic re-

gions. This also frees our method from the complex impor-

tance sampling strategies. With these designs, our method

is capable of reconstructing a dynamic scene consisting of

300 frames within 15 minutes. To summarize, the main con-

tributions of this work are:

• We propose a simple yet effective dynamic represen-

tation with inner product time querying method that

can efficiently query multiple times simultaneously,

improving the rendering quality for dynamic objects.

• We design an efficient variation field to separate static

and dynamic spaces and present a mixed voxel-grid

representation to accelerate training and rendering.

• We conduct qualitative and quantitative experiments

to validate our method. As a result, the proposed

MixVoxels achieves competitive or better rendering

qualities with a 5000× training speedup compared to

implicit dynamic scene representations.

2. Related Works

Novel View Synthesis for Static Scenes. Synthesizing

novel views for static scenes is a classical and well-studied

problem. Different approaches represent the underlying ge-

ometric with different representations. Mesh-based meth-

ods [6, 9, 46, 48, 34, 43] represent the scenes with surfaces

which is compact and easy to render, while optimizing a

mesh to fit complex scenes is challenging. Volume-based

methods such as voxel-grid [17, 35, 30, 23, 36] and multi-

plane images (MPIs) [54, 11, 25, 39, 38, 45] are more suit-

able to model the complex and translucent scenes such as

smooth and fluid. Particularly, Neural radiance fields [26]

represent the scenes with an implicit volumetric neural rep-

resentation, which employs a coordinate-based neural net-

work to query the density and color for each point. The

achieved photo-realistic rendering quality of NeRF led to an

explosion of developments in the field. Advances have been

made including improving the rendering qualities [42, 4],

adapting to more general scenarios [52, 24, 41, 5], acceler-

ating rendering or training speed [22, 51, 50, 40, 8], etc.

Novel View Synthesis for Dynamic Scenes. Synthe-

sizing novel views for dynamic scenes is a more challeng-

ing and applicable problem. Recently, many extensions of

NeRF for non-rigid dynamic scenes were proposed, which

take a monocular video as input to learn the deformation

and radiance fields. These methods can be categorized to

modelling deformation implicitly [20, 49, 13, 10] (learn

the non-decoupled deformation and appearance jointly) and

explicitly [31, 28, 29, 44] (learn separated deformation

and radiance fields and the deformation fields are usu-

ally in the form of relative motion with a canonical static

space). Though improvements are achieved, reconstruct-

ing the complex general scenes is still difficult with only

monocular videos. Most methods are constrained to fixed

scenes like human-model or restricted motions. For real-

world complex scenes, reconstructing from synchronized

multi-view videos is more promising due to the dense super-

vision for every viewpoint and time instant. Earlier works

[14, 55] explore the problem and show the possibility of

rendering novel videos from a set of input views. Neural

Volumes [23] proposes to use volumetric representations.

They employ an encoder-decoder network to convert input

images into a 3D volume, and decode the latent represen-

tations by the differentiable ray marching operation. [3]

presents a data-driven approach for 4D space-time visual-

ization of dynamic scenes by splitting static and dynamic

components and using a U-Net structure in screen space

to convert intermediate representation to image. Differ-

ent with this method, our method split the static and dy-

namic components in the 3D voxel space instead of the

pixel space. More recently, DyNerf [19] uses a temporal-

aware neural radiance field to address the problem, and pro-

poses some sampling strategies to train it efficiently. Com-

pared with previous methods, they propose a more com-

plicated real-world dataset and validate their method. For

accelerating the reconstruction of dynamic scenes, Fouri-

erPlenoctree [47] proposes to model the dynamics in fre-

quency domain, and generate a Plenoctree through multi-

19707



view blending to accelerate rendering. They focus on the

foreground moving objects extracted via chroma key seg-

mentation, which requires the background should be a pure

color (or rely on segmentation algorithms). Recently, the

acceleration of training and rendering for dynamic scenes

has attracted much attention. Cocurrent works include

StreamRF [18] which proposes to accelerate the training

of dynamic scenes by modeling the differences of adjacent

frames, NeRFPlayer [37] which decomposes the dynamic

scenes into static, new and deforming components, Hyper-

reel [2] which proposes an efficient sampling network and

models keyframes. K-Planes [12] and HexPlanes [7] de-

compose the 4D dynamic scenes into different 2D repre-

sentations.

Acceleration of Neural Radiance Fields. While Neu-

ral radiance fields can render novel views with high fidelity,

training and rendering require querying a deep MLP mil-

lions of times which is computationally intensive. Many

recent methods propose to accelerate the training and ren-

dering speed of NeRF. For rendering, Neural Sparse Voxel

Fields [22] proposes a voxel-grid representation to skip over

many empty regions. PlenOctree [51] accelerates the ren-

dering process by pre-tabulating the NeRF into a PlenOc-

tree and using the spherical harmonic representation of ra-

diance. Derf [32] and Kilonerf [33] propose to accelerate

the rendering speed by dividing the scenes into multiple ar-

eas, and employ multiple small network in each area. Au-

toInt [21] proposes to restructure the MLP network to ac-

celerate the computations of ray integrals, which helps ac-

celerate the rendering speed. For accelerating the training

of NeRF, some methods use explicit voxel-grid representa-

tions [50, 40] to accelerate the training process and conver-

gence speed. Instant-NGP [27] proposes a multi-resolution

hash table structure to accelerate the training. The model

sizes of most fast training methods are relatively large due

to a large number of voxels. TensoRF [8] proposes to re-

duce the model size by factorizing the 4D scene tensor into

multiple compact low-rank tensor components.

3. Method

In this section, we introduce the proposed MixVoxels,

which represents the 4D dynamic scenes as mixtures of

static and dynamic voxels. Fig. 2 illustrates the overview of

our method. In the following subsections, we will first in-

troduce the voxel-grid representations for static scenes and

our extension to dynamic scenes. Then we introduce the

variation field for identifying the dynamic voxels. At last,

we introduce the training of MixVoxels.

3.1. Static Voxel­grid Representation

Neural radiance fields [26] have demonstrated photo-

realistic novel viewpoint synthesis, while the training of

NeRF requires extensive computation due to millions of

neural network queries. For accelerating NeRF, many re-

cent works [22, 50, 40, 8] have explored the explicit vol-

umetric representation, which avoids the huge amount of

computation of querying neural network. Specifically, a 3D

scene is split into Nx × Ny × Nz voxels. The densities

and color features are stored in these voxels and denoted as

Sσ ∈ R
Nx×Ny×Nz and Sc ∈ R

Nx×Ny×Nz×C . Sσ
i,j,k and

Sc
i,j,k represent the learnable density and color feature of

the voxel corner at a discrete position (i, j, k). For a con-

tinuous position (x, y, z), the representation Sx,y,z can be

calculated by interpolating the nearest 8 discrete positions.

A small MLP network Cθ is used to parse the color features

into RGB values, taking Sc and view direction d as input.

Formally, the density σ and color c is formulated as

σ(x, y, z) = Sσ
x,y,z, c(x, y, z,d) = Cθ(S

c
x,y,z,d). (1)

3.2. Dynamic Voxel­grid Representation

For dynamic scenes, a direct extension is to add the

time dimension to the static voxel-grid representation S ex-

plicitly. However, this direct extension is almost memory-

prohibitive due to the large and linearly increasing mem-

ory footprint. For a 300-frame video, the learned mod-

els will occupy 30 GB of memory and be difficult to train

with GPUs due to the limitation of GPU memory. To

address this problem, we propose a spatially explicit and

temporally implicit representation to reduce the memory

footprint. Specifically, we represent the dynamic scene

as a 4D learnable voxel-grid Gσ ∈ R
Nx×Ny×Nz×C1 and

Gc ∈ R
Nx×Ny×Nz×C2 . Different from the static scene rep-

resentations, the densities and colors for all time steps are

implicitly encoded as compact features stored in each voxel

corner. The compact features will be processed by a time-

aware projection to acquire density and color for each time

step. Concretely, for the compact density feature Gσ
x,y,z

and color feature Gc
x,y,z in any position(x, y, z), we em-

ploy two MLPs T σ
θ1

and T c
θ2

to increase the feature dimen-

sions for better parsing time-variant density and color. The

MLPs here can be viewed as decompressors that decom-

press the compact low-dimensional voxel-grid features into

more tractable ones. Compared with directly storing high-

dimensional features in each voxel, the temporally implicit

representation reduces the memory footprint significantly

since the shared MLPs only increase memory slightly.

Inner product time query. For a discrete time step

t, we use a learnable time-variant latent representation ωt

to represent the time query. Instead of concatenating the

time query with the intermediate features, we propose to

calculate the inner product between the learned time query

and the decompressed features as the required output σ and

c. Formally, the density and color of a space-time query

(x, y, z, t) are formulated as

σ(x, y, z, t) = ωσ
t · T σ

θ1
(Gσ

x,y,z), (2)

19708



Figure 2. Overview of our method. Given a ray, we first sample

points, and split them into static and dynamic ones using the vari-

ation field. After that, we feed these points to the corresponding

branches and query the required properties. Then we merge the

static output and dynamic output for rendering the ray color. An

L2 loss is employed to calculate loss and back-propagate.

c(x, y, z,d, t) = ωc
t · T

c
θ2
(Gc

x,y,z,d). (3)

In practice, simultaneously querying multiple time steps

helps reconstruct the detail of high-dynamic motions and

reduces the training iterations to traverse through all time

steps. The inner product based query will facilitate the

training speed when simultaneously querying many time

steps in a training iteration. Specifically, we denote the

FLOPs of the MLP Tθ1 and the inner product operation as

FLOPmlp and FLOPinn, respectively. For a T -frame video,

the FLOPs of the concatenation query [19] is larger than

T · FLOPmlp (due to the extra temporal embedding dimen-

sion), while the FLOPs of our inner product query is only

FLOPmlp + T · FLOPinn (FLOPmlp >> FLOPinn).

3.3. Variation Field

In this subsection, we introduce the variation field to

identify which voxels in the 3D space are dynamic, i.e.,

the densities or colors are not constant over different time

steps. By separating the static and dynamic voxels, the re-

dundant computations caused by using a relatively heavy

time-varying model to process the static components will

be avoided, which accelerates the training and rendering.

A simpler solution for accelerate training is to separate

the static and dynamic regions in pixel-level, i.e., using the

temporal variance of pixels to produce static and dynamic

ones. However this scheme is actually not feasible because

we can only separate dynamic and static regions in training

views using the ground truth. For rendering novel views, we

can not get the pixel variance for rendering since we have

no ground truth in novel views. Thus a feasible solution is

to learn the voxel-level temporal variance which is shared

for all possible views. In addition, separating in the voxel-

level is more efficient compared to pixel-level, even if we

have an oracle to make the pixel-level separation feasible

in novel views. This is because not all voxels projected to

a dynamic pixel are dynamic, there will be only a small

fraction of voxels around the object surfaces are actually

Figure 3. Implicit interaction of multiple rays to decide which

point is dynamic. For a static ray (blue line), all points are set to be

low dynamic. For a dynamic ray (green line), at least one point is

dynamic. The intersection of multiple dynamic ray is more likely

to be a dynamic point, which is also physically intuitive.

dynamic. Therefore, the voxel level separation will produce

much fewer dynamic queries.
To perform the voxel-level separation, we utilize the

pixel-level temporal variances from training videos as the
supervision to estimate the voxel-level variances. The pixel-
level (or ray-level) temporal variances of different videos
are shown in Fig. 3. Formally, given a ray r(s) = o+ s · d
with origin o and direction d, the corresponding pixel color
at time step t is defined as C(r, t). Then the pixel-level
temporal variance D2(r) is formalized as

D
2(r) =

1

T

T∑

t=1

(C(r, t)− C̄(r))2, C̄(r) =
1

T

T∑

t=1

C(r, t),

where C̄(r) is the mean color of pixel corresponding to the

ray r. For identifying the dynamic pixels, the standard de-

viation D(r) is binarized to M(r) with a threshold γ to

provide pixel-level dynamic supervision, i.e. M(r) = 1 if

D(r) ≥ γ, else M(r) = 0. In this way, we judge that a

ray r is dynamic if M(r) = 1. Next, we use the M(r) as

supervision to estimate the voxel-level variations V .

The relations between the pixel-level variance and voxel-

level variance lie in the following aspects: (1) If a pixel is

static, then all voxels passed through by the ray correspond-

ing to the pixel should be static in most cases (We will dis-

cuss some special cases which violate this rule later in this

subsection.). (2) If a pixel is dynamic, then at least one of

the voxels passed through by the corresponding ray is dy-

namic. Fig. 3 shows the two situations. With the above two

relations, we design the variation field, which is denoted

as V ∈ R
Nx×Ny×Nz to represent the voxel-level temporal

variance. Specifically, we uniformly sample Ns points from

the near plane to the far plane in r, and build the following

equation to satisfy the two relations mentioned above:

M̂(r) = s(max({V
r(si)|i ∈ {1, ..., Ns}})), (4)

where M̂(r) is an estimation of M(r), and s is the sigmoid

function. Then we train the variation field by minimizing

19709



the following binary cross-entropy loss:

Lv = Er

[

−M(r)log(M̂(r))− (1−M(r))log(1− M̂(r))
]

. (5)

By optimizing the above loss function to all rays, we can get

the learned variation field V . The training of the variation

field is very efficient, usually taking less than 30 seconds.

The maximization operation well formulates the rela-

tions between a pixel and its corresponding voxels. If a

pixel is static, then the equations of Eq. (4) and Eq. (5) will

force all voxels passed through by the corresponding ray

to be static (Vx,y,z = 0). If a pixel is dynamic, Eq. (4) re-

quires at least one of the corresponding voxels (i.e., the max

value of the voxel variances) to be dynamic (Vx,y,z = +∞).

Although we provide no information about which specific

voxels in a dynamic ray are dynamic, the implicit interac-

tion of multiple different rays will force the solution to be

physically reasonable. To explain this, we focus on the ob-

servable voxels which at least passed through by one ray. If

a point (x, y, z) is passed through by at least one static ray,

then Vx,y,z will tend to be optimized to be close to zero.

If a point (x, y, z) is only passed through by dynamic rays,

and not occluded by other dynamic voxels, then Vx,y,z will

be optimized to +∞. This is because without occlusion,

the above point of (x, y, z) along the dynamic rays will be

passed by other static rays (the front space along these rays

are observable from other views). We illustrate this situa-

tion in Fig. 3.

Inference. After the training process, the temporal vari-

ation at a specific 3D position (x, y, z) is Vx,y,z , which is

easily acquired by interpolating the discrete variation field.

We then identify a voxel in the scene as dynamic if Vx,y,z

is larger than a hyper-parameter β, and as static if it is

smaller than β. Formally, we will get a dynamic mask

Ṁ ∈ {0, 1}Nx×Ny×Nz , which will be used to split sam-

pling points in a ray into static points and dynamic points.

We evaluate the effectiveness of this inference method in

the test views and find that the recall and precision are rea-

sonable for splitting the dynamic and static parts (recall:

0.97, precision: 0.94 when β = 0.9). Although the recall

seems sufficient to retrieve most dynamic parts, we empir-

ically find some false negatives in the rendering images af-

fect the rendering quality. To address this problem, we use a

ray-wise max-pooling operation to identify the points near

to a dynamic point as dynamic. The kernel size of max-

pooling is set to km = 21, and the stride is set to 1. In this

way, the recall is very closed to 1. Although many hyper-

parameters are incorporated, we have empirically found that

the thresholds γ and β are not sensitive over a wide range

of reasonable values.

Discussion. There may be some situations in which the

rules (1) are broken due to occlusion. Specifically, when a

dynamic voxel is occluded by some static voxels, the oc-

cluded parts should not be classified as static, which makes

the 2D supervision noisy. However in practice, we found

Figure 4. Impact of occlusions to the variation field.

the learning-based separation has a certain degree of toler-

ance for this situation. We conducted experiments to verify

this and present the results in Fig. 4. The occluded region

is visualized in the leftmost view (the area behind the static

roadblock). Although the dynamic region marked in yel-

low is occluded in the left view, it is actually classified as

dynamic region. This can be inferred from another view

where the occluded region has changed, as illustrated in the

middle and right images in Fig. 4). The variation field is

learning-based and will learn a solution that satisfies most

constraints. If it forces some dynamic voxels occluded by

static voxels to be 0, then the loss function from other vis-

ible views will be high. As a result, the learning-based

process tends to assign a “middle solution” to voxels with

inconsistent supervisions from different views. We also at-

temped to use the transmittance as a weight (in a way of vol-

umetric rendering) to learn the variation field which can ex-

plicitly handle the occlusion problem. However, we found a

large efficiency drop with similar performance. As a result,

we use the proposed variation field and find this formula-

tion works well for most scenes, including some challeng-

ing scenes with large areas of motions.

3.4. Training of Mixed Neural Voxels

With the help of the variation field, we can split a scene

into dynamic voxels and static voxels. To reduce redun-

dant computations, we use the lightweight static model de-

scribed in Sec. 3.1 to compute the densities and colors for

static voxels and the dynamic model described in Sec. 3.2 to

compute the densities and colors for dynamic voxels. The

overall architecture is illustrated in Fig. 2.

Specifically for a given ray r(s) = o + sd with ori-

gin o and view direction d, we apply stratified sampling

from the near to the far planes and get Ns points. Then the

Ns points are separated into static and dynamic ones by in-

ferring these points with the proposed variation field. For

the static points, we pass them into the static branch to re-

trieve the colors and densities. For the dynamic points, we

pass them into the dynamic branch together with a deferred

time query ωt to retrieve the corresponding properties. Af-

ter that, we merge the static points and dynamic points ac-

cording to their order. Then we apply volumetric rendering

to the merged points to obtain the rendered color, which is

formulated as

C(r, t) =

Ns
∑

i=1

Ti,t · (1− exp(−σi,tδi)) · ci,t, (6)

where Ti,t is the accumulated opacity (or transmittance):

19710



Ti,t = exp(−
∑i−1

j=1 σj,tδj), and δi is the distance between

adjacent samples. Given the ground truth color Cg(r, t), an

l2-loss is employed to train the model:

L = E(r,t)

[

∥Cg(r, t)− C(r, t)∥22
]

. (7)

For both static and dynamic branches, we omit the com-

putation of color for points whose densities are close to

zero, which is a widely adopted pruning strategy [22, 50, 8].

Efficiency analysis. We define the proportion of dy-

namic points in a scene as λ (≈ 0.05 for most scenes).

Besides, the FLOPs of static and dynamic branches are de-

noted as FLOPsta and FLOPdyn, respectively. Then the to-

tal FLOPs of MixVoxels are FLOPsta + λ·FLOPdyn. Em-

pirically, FLOPdyn /FLOPsta ranges from 50 to 100 with

different reasonable dimension settings. Then the accelera-

tion ratio of splitting static and dynamic models is FLOPdyn

/(FLOPsta + λ FLOPdyn) ≈ 10. In practice, the actual

speedup with a 3090 GPU is about 5, the inconsistency be-

tween analysis and experiment may come from the GPU

features, which are friendly to a more consistent network.

3.5. Implementation Detail

The voxel-grid representations require large GPU mem-

ory to store the cubically growing voxel numbers. To im-

plement the voxel-grid representations more memory effi-

cient, we use the tensor factorization technique proposed in

TensoRF [8] to reduce the memory footprint. In this way,

a 3D tensor is factorized into the outer product of a vec-

tor and a 2D matrix. We factorize all the voxel-grid ten-

sors, including static voxels, dynamic voxels and the varia-

tion field. With the help of tensor factorization, the learned

model costs about 500MB for a 300-frame multi-view video

scene. For the voxel resolutsions, we follow [8] to start

from an initial low resolution of 2563, and upsample the

resolution at steps 1500, 2000, 2500, and 2750 with a lin-

ear increase in the log space. The final resolution is set to

6403. Once the resolution is changed, we re-train the vari-

ation field, which only takes about 15-30s. The voxel-grid

feature dimension is set to 27, and the hidden state of MLP

is set to 512. For training, we use Adam [15] optimizer with

a learning rate of 0.02 for voxels and 3e− 3 for MLPs. The

total variation loss [50] is incorporated as a regularization

to encourage the space smoothness.

4. Experiments

4.1. Experiment Setting

Dataset. We validate our method on two datasets: (1)

The Plenoptic Video Dataset [19], which consists of 6 pub-

licly accessible scenes: coffee-martini, flame-salmon, cook-

spinach, cut-roasted-beef, flame-steak and sear-steak. We

conduct experiments on all six scenes. Each scene con-

tains 19 videos with different camera views. The dataset

Table 1. Results on our collected dataset, including two scenes.

Scene Model PSNR↑ DSSIM↓ LPIPS↓

Moving-Cars

MixVoxels-S 18.72 0.251 0.689

MixVoxels-M 18.97 0.228 0.552

MixVoxels-L 18.89 0.222 0.540

MixVoxels-X 19.11 0.210 0.516

Solving-Rubik

MixVoxels-S 25.39 0.065 0.339

MixVoxels-M 26.05 0.059 0.275

MixVoxels-L 26.28 0.055 0.241

MixVoxels-X 26.80 0.047 0.209

contains many challenging scenes including objects with

topology changes, objects with volumetric effects, various

lighting conditions, etc. (2) Our proposed dataset includ-

ing two more complex dynamic scenes: moving-cars and

solving-rubik. The moving-cars scene features several ve-

hicles passing across the screen, with significant motion

and displacement. Meanwhile, in the solving-rubik scene,

a man solves a Rubik’s cube at a rapid pace, averaging 4

rotations per second, providing an opportunity to evaluate

the model’s ability to capture swift movements. The collec-

tion procedures used are similar to those of DyNeRF. More

details are presented in the appendix.

For training and evaluation, we follow the experiment

setting in [19] that employs 18 views for training and 1

view for evaluation. To quantitatively evaluate the render-

ing quality on novel views, we measure PSNR, DSSIM and

LPIPS[53] on the test views. We also provide more metrics

in the appendix including FLIP [1] and JOD [16], which

we find the comparisons are similar with PSNR and LPIPS.

We follow the setting of [19] to evaluate our model frame

by frame. For videos consisting of equal or more than 300

frames, we evaluate our model every 10 frames [19] to cal-

culate the frame-by-frame metrics except for the JOD met-

rics, which requires a stack of continuous video.

Training Schedules. For evaluating the effect of train-

ing time, we train MixVoxels with different configurations

shown in Tab. 2. The configurations vary in terms of train-

ing iterations and the number of sample points per ray. By

default, the step size for sampling points is set to four times

of the voxel width. The 8× means that there will be eight

times as many sampling points compared to the default.

Table 2. Different training configurations of MixVoxels.

Model Iterations Sampling points Training Time

MixVoxels-S 5000 1 × 15 min

MixVoxels-M 12500 1 × 40 min

MixVoxels-L 25000 1 × 80 min

MixVoxels-X 50000 8 × 300 min

4.2. Results

Quantitative results and comparisons. For quantita-

tive results, we present the metrics and compare with other

methods in Tab. 3. Compared with the previous state-of-the-

art method DyNeRF, we reduce the training time from 1.3K

GPU hours to 15 minutes, making the training of complex

19711



Figure 5. Visual comparisons with state-of-the-art methods. K-Planes [12] and HexPlane [7] are concurrent works. We have selected four

representative patches to better inspect the details. Our method performs well on reconstructing details and capturing movements.

Table 3. Quantitative results comparisons. All metrics are mea-

sured on 300-frame scenes. We also report the training time, ren-

dering speed (FPS) and model size. ∗ Note DyNeRF is trained on

8 GPUs, while others are trained on one GPU.

Method Train Render Size PSNR↑ DSSIM↓ LPIPS↓

DyNeRF[19] 7 days∗ - 28 MB 29.58 0.0197 0.083

Concurrent work

StreamRF[18] 75 min 8.3 5310MB 28.26 - -

NeRFPlayer[37] 360 min 0.05 - 30.69 0.034 0.111

Hyperreel[2] 540 min 2.0 360 MB 31.10 0.036 0.096

K-Planes[12] 108 min - - 31.63 0.018 -

HexPlanes[7] 720 min - 200MB 31.71 0.014 0.075

MixVoxels-S 15 min 37.7 500 MB 31.03 0.022 0.129

MixVoxels-M 40 min 37.7 500 MB 31.22 0.019 0.102

MixVoxels-L 80 min 37.7 500 MB 31.34 0.017 0.096

MixVoxels-X 300 min 4.6 500 MB 31.73 0.015 0.064

dynamic scenes more practical. For rendering, the MixVox-

els has a 37.7 fps rendering speed for 1K resolution. Com-

pared with concurrent works, MixVoxels requires less train-

ing time and achieves faster rendering speed, while achiev-

ing competitive PSNR and LPIPS. For example, with only

15 minutes of training, MixVoxels achieve 31.03 PSNR

which is comparable to other methods trained for hours.

With sufficient training, all metrics are further improved.

For the quantitative results on our collected more complex

scenes, we present them on Tab. 1.

Qualitative results and comparisons. Fig. 6 demon-

strates the novel view rendering results on different dynamic

scenes. The first four rows are novel view videos from

Plenoptic Video Dataset [19]. The last two rows present

the novel view videos from our collected two more com-

plex dynamic scenes. The results show that our method can

achieve near photo-realistic rendering quality. We provide

the video results at the supplementary material. For qual-

itative comparisons, we show them in Fig. 5. MixVoxels

can better reconstruct the moving object (the firing gun) and

textual details like the hat and the salmon stripes.

We further investigate the relations between rendering

efficiency and rendering quality. As shown in the lower part

of Tab. 3, it was observed that an increase in training time

leads to improvements in both PSNR and LPIPS. Longer

Figure 6. Novel view synthesis of MixVoxels. We select some

frames at different views. The last column demonstrates the nor-

malized depth. We provide videos at the supplemental material.

training facilitates the reconstruction of sharp boundaries

and fine details. Visual comparisons presented in Fig. 7 re-

veals that 15 minutes of training produces satisfactory re-

covery of most scene components but resulted in blurry mo-

tion details. With longer training, the moving objects be-

come clearer with a distinct boundary.

4.3. Ablation Study

In this subsection, we empirically justify the design of

MixVoxels by ablating or modifying several key features.

We also provide analysis that intuitively explains the abla-

tions. We conduct all experiments in this subsection on the

coffee-martini scene, which we find is typical for demon-

strating the fast-moving complex objects.

Ablation on splitting voxels. To study the effect of

splitting static and dynamic voxels, we compare MixVox-

19712



Figure 7. Qualitative demonstration of different training schedules.

Longer training helps better reconstruct the high-dynamic parts.

Figure 8. Qualitative comparison of MixVoxels and the full-

dynamic model. Training with full-dynamic models with the same

iterations can not well reconstruct the motion details.

Table 4. Ablation on the mixed voxels. Training with the full-

dynamic voxel model hurts both efficiency and efficacy.

Method Time PSNR↑ DSSIM↓ LPIPS↓ FLIP↓ JOD↑

Full-Dynamic 2.5h 28.36 0.036 0.2236 0.1196 7.44

MixVoxels 0.6h 29.47 0.026 0.1167 0.1223 7.99

Table 5. Ablation on three different methods for time query. We

only substitute the time query with different method, and train

them on the proposed MixVoxels framework.

Method Time PSNR↑ DSSIM↓ LPIPS↓ FLIP↓ JOD↑

Concat 58m 28.95 0.037 0.2146 0.1294 7.44

Fourier 43m 28.67 0.029 0.1824 0.1286 7.60

Inner product 40m 29.47 0.026 0.1167 0.1223 7.99

els with a full-dynamic voxel-grid representation, where all

points are processed by the dynamic model. Tab. 4 shows

the comparisons. With the same training iterations, the full-

dynamic model is more time-consuming, which is intuitive

because it processes all voxels with the dynamic models.

Fig. 8 shows the qualitative comparison. The full-dynamic

model recovered blurred motions. We speculate the reason

is because the large area of static regions affects the captur-

ing of dynamic information. The network will be biased by

most static voxels with no motions and tend to learn low-

frequency information.

Ablation on time query. We compare our inner prod-

uct time query method with other variants: (1) Concate-

nation which concatenates the temporal embedding with

the voxel features to be processed by an MLP. (2) Fourier

head proposed by [47] which reconstructs the dynamics in

Figure 9. Ablation on the number of time query denoted as Q.

frequency-domain. Tab. 5 shows the performance compar-

ison. The concatenation query method is both space- and

time-consuming. Querying one time step requires forward-

ing the fused features through the whole MLP. Limited by

the GPU memory, we can only query 50 time steps per-

iteration with the concatenation way, which harms the per-

formance on high-dynamic regions. The Fourier head pro-

cesses the features to predict the magnitudes of different

frequency components and the performance is competitive,

while it requires an additional inverse discrete Fourier trans-

form to recover the information in the temporal domain.

Overall, the inner product query is the simplest and most

efficient way for querying.

Number of time queries per-iteration. We empirically

find that simultaneously querying multiple time steps in an

iteration helps reconstruct the details of moving parts. Fig. 9

demonstrates the effect of different numbers of time queries

denoted as Q. With more time queries, the boundaries of

the moving hand and the flowing coffee become clearer.

Querying more time steps can provide dense supervision

and make the model acquire global temporal information

in every iteration, which accelerates the convergence speed.

The effective inner product time queries allow adding more

time queries with negligible increase in computation.

4.4. Limitations

Our method can synthesize novel view videos with a rel-

ative high quality. However, for some scenes with complex

lighting conditions, some inconsistent property predictions

may appear at the boundary between dynamic and static

voxels, which is shown in Fig. 10. We suspect that the

phenomenon is caused by the under-sampling of dynamic

regions on scenes with some bad conditions. We will inves-

tigate ways to address the problem in future works.

Figure 10. Some inconsistent density and color predictions in the

boundaries between dynamic and static regions.

5. Conclusion

This paper demonstrates a new method named MixVox-

els to efficiently reconstruct the 4D dynamic scenes and

synthesize novel view videos. The core of our method is

to split the 3D space into static and dynamic components

19713



with the proposed variation field, and process them with

different branches. The separation speeds up the training

and makes the dynamic branch focus on the dynamic parts

to improve the performance. We also design an efficient dy-

namic voxel-grid representation with an inner product time

query. The proposed method achieves competitive results

with only 15 minutes of training, making the training and

rendering of complex dynamic scenes more practical. We

believe the fast training speed will enable potentially useful

applications that are bottlenecked by training efficiency.

6. Acknowledgement

This work was supported in part by the National Natu-
ral Science Fund for Distinguished Young Scholars under
Grant 62025304.

References

[1] Pontus Andersson, Jim Nilsson, Tomas Akenine-Möller,

Magnus Oskarsson, Kalle Åström, and Mark D Fairchild.

Flip: A difference evaluator for alternating images. Proc.

ACM Comput. Graph. Interact. Tech., 3(2):15–1, 2020. 6

[2] Benjamin Attal, Jia-Bin Huang, Christian Richardt, Michael

Zollhoefer, Johannes Kopf, Matthew O’Toole, and Changil

Kim. Hyperreel: High-fidelity 6-dof video with ray-

conditioned sampling. arXiv preprint arXiv:2301.02238,

2023. 3, 7

[3] Aayush Bansal, Minh Vo, Yaser Sheikh, Deva Ramanan, and

Srinivasa Narasimhan. 4d visualization of dynamic events

from unconstrained multi-view videos. In Proceedings of

the IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5366–5375, 2020. 1, 2

[4] Jonathan T Barron, Ben Mildenhall, Matthew Tancik, Peter

Hedman, Ricardo Martin-Brualla, and Pratul P Srinivasan.

Mip-nerf: A multiscale representation for anti-aliasing neu-

ral radiance fields. In Proceedings of the IEEE/CVF Inter-

national Conference on Computer Vision, pages 5855–5864,

2021. 2

[5] Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P

Srinivasan, and Peter Hedman. Mip-nerf 360: Unbounded

anti-aliased neural radiance fields. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 5470–5479, 2022. 2

[6] Chris Buehler, Michael Bosse, Leonard McMillan, Steven

Gortler, and Michael Cohen. Unstructured lumigraph ren-

dering. In Proceedings of the 28th annual conference on

Computer graphics and interactive techniques, pages 425–

432, 2001. 2

[7] Ang Cao and Justin Johnson. Hexplane: a fast representation

for dynamic scenes. arXiv preprint arXiv:2301.09632, 2023.

3, 7

[8] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and

Hao Su. Tensorf: Tensorial radiance fields. arXiv preprint

arXiv:2203.09517, 2022. 2, 3, 6

[9] Paul E Debevec, Camillo J Taylor, and Jitendra Malik. Mod-

eling and rendering architecture from photographs: A hybrid

geometry-and image-based approach. In Proceedings of the

23rd annual conference on Computer graphics and interac-

tive techniques, pages 11–20, 1996. 2

[10] Yilun Du, Yinan Zhang, Hong-Xing Yu, Joshua B Tenen-

baum, and Jiajun Wu. Neural radiance flow for 4d view

synthesis and video processing. In 2021 IEEE/CVF In-

ternational Conference on Computer Vision (ICCV), pages

14304–14314. IEEE Computer Society, 2021. 1, 2

[11] John Flynn, Michael Broxton, Paul Debevec, Matthew Du-

Vall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and

Richard Tucker. Deepview: View synthesis with learned gra-

dient descent. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 2367–

2376, 2019. 2

[12] Sara Fridovich-Keil, Giacomo Meanti, Frederik Warburg,

Benjamin Recht, and Angjoo Kanazawa. K-planes: Explicit

radiance fields in space, time, and appearance. arXiv preprint

arXiv:2301.10241, 2023. 3, 7

[13] Chen Gao, Ayush Saraf, Johannes Kopf, and Jia-Bin Huang.

Dynamic view synthesis from dynamic monocular video. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 5712–5721, 2021. 1, 2

[14] Takeo Kanade, Peter Rander, and PJ Narayanan. Virtualized

reality: Constructing virtual worlds from real scenes. IEEE

multimedia, 4(1):34–47, 1997. 2

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for

stochastic optimization. arXiv preprint arXiv:1412.6980,

2014. 6

[16] Vamsi Kiran Adhikarla, Marek Vinkler, Denis Sumin,

Rafal K Mantiuk, Karol Myszkowski, Hans-Peter Seidel, and

Piotr Didyk. Towards a quality metric for dense light fields.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 58–67, 2017. 6

[17] Kiriakos N Kutulakos and Steven M Seitz. A theory of shape

by space carving. International journal of computer vision,

38(3):199–218, 2000. 2

[18] Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Ping

Tan. Streaming radiance fields for 3d video synthesis. arXiv

preprint arXiv:2210.14831, 2022. 3, 7

[19] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon

Green, Christoph Lassner, Changil Kim, Tanner Schmidt,

Steven Lovegrove, Michael Goesele, Richard Newcombe,

et al. Neural 3d video synthesis from multi-view video. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 5521–5531, 2022. 1, 2,

4, 6, 7

[20] Zhengqi Li, Simon Niklaus, Noah Snavely, and Oliver Wang.

Neural scene flow fields for space-time view synthesis of dy-

namic scenes. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 6498–

6508, 2021. 1, 2

[21] David B Lindell, Julien NP Martel, and Gordon Wetzstein.

Autoint: Automatic integration for fast neural volume ren-

dering. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 14556–

14565, 2021. 3

[22] Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and

Christian Theobalt. Neural sparse voxel fields. Advances

19714



in Neural Information Processing Systems, 33:15651–15663,

2020. 2, 3, 6

[23] Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel

Schwartz, Andreas Lehrmann, and Yaser Sheikh. Neural vol-

umes: Learning dynamic renderable volumes from images.

arXiv preprint arXiv:1906.07751, 2019. 1, 2

[24] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi,

Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duck-

worth. Nerf in the wild: Neural radiance fields for uncon-

strained photo collections. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 7210–7219, 2021. 2

[25] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,

Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and

Abhishek Kar. Local light field fusion: Practical view syn-

thesis with prescriptive sampling guidelines. ACM Transac-

tions on Graphics (TOG), 38(4):1–14, 2019. 2

[26] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,

Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:

Representing scenes as neural radiance fields for view syn-

thesis. Communications of the ACM, 65(1):99–106, 2021. 1,

2, 3

[27] Thomas Müller, Alex Evans, Christoph Schied, and Alexan-

der Keller. Instant neural graphics primitives with a multires-

olution hash encoding. arXiv preprint arXiv:2201.05989,

2022. 2, 3

[28] Keunhong Park, Utkarsh Sinha, Jonathan T Barron, Sofien

Bouaziz, Dan B Goldman, Steven M Seitz, and Ricardo

Martin-Brualla. Nerfies: Deformable neural radiance fields.

In Proceedings of the IEEE/CVF International Conference

on Computer Vision, pages 5865–5874, 2021. 1, 2

[29] Keunhong Park, Utkarsh Sinha, Peter Hedman, Jonathan T

Barron, Sofien Bouaziz, Dan B Goldman, Ricardo Martin-

Brualla, and Steven M Seitz. Hypernerf: A higher-

dimensional representation for topologically varying neural

radiance fields. arXiv preprint arXiv:2106.13228, 2021. 1, 2

[30] Eric Penner and Li Zhang. Soft 3d reconstruction for view

synthesis. ACM Transactions on Graphics (TOG), 36(6):1–

11, 2017. 2

[31] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and

Francesc Moreno-Noguer. D-nerf: Neural radiance fields

for dynamic scenes. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

10318–10327, 2021. 1, 2

[32] Daniel Rebain, Wei Jiang, Soroosh Yazdani, Ke Li,

Kwang Moo Yi, and Andrea Tagliasacchi. Derf: Decom-

posed radiance fields. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

14153–14161, 2021. 3

[33] Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas

Geiger. Kilonerf: Speeding up neural radiance fields with

thousands of tiny mlps. In Proceedings of the IEEE/CVF In-

ternational Conference on Computer Vision, pages 14335–

14345, 2021. 3

[34] Gernot Riegler and Vladlen Koltun. Free view synthesis. In

European Conference on Computer Vision, pages 623–640.

Springer, 2020. 2

[35] Steven M Seitz and Charles R Dyer. Photorealistic scene

reconstruction by voxel coloring. International Journal of

Computer Vision, 35(2):151–173, 1999. 2

[36] Vincent Sitzmann, Justus Thies, Felix Heide, Matthias

Nießner, Gordon Wetzstein, and Michael Zollhofer. Deep-

voxels: Learning persistent 3d feature embeddings. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 2437–2446, 2019. 2

[37] Liangchen Song, Anpei Chen, Zhong Li, Zhang Chen,

Lele Chen, Junsong Yuan, Yi Xu, and Andreas Geiger.

Nerfplayer: A streamable dynamic scene representation

with decomposed neural radiance fields. arXiv preprint

arXiv:2210.15947, 2022. 3, 7

[38] Pratul P Srinivasan, Ben Mildenhall, Matthew Tancik,

Jonathan T Barron, Richard Tucker, and Noah Snavely.

Lighthouse: Predicting lighting volumes for spatially-

coherent illumination. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

8080–8089, 2020. 2

[39] Pratul P Srinivasan, Richard Tucker, Jonathan T Barron,

Ravi Ramamoorthi, Ren Ng, and Noah Snavely. Pushing the

boundaries of view extrapolation with multiplane images. In

Proceedings of the IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, pages 175–184, 2019. 2

[40] Cheng Sun, Min Sun, and Hwann-Tzong Chen. Direct voxel

grid optimization: Super-fast convergence for radiance fields

reconstruction. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 5459–

5469, 2022. 2, 3

[41] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Prad-

han, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron,

and Henrik Kretzschmar. Block-nerf: Scalable large scene

neural view synthesis. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

8248–8258, 2022. 2

[42] Matthew Tancik, Pratul Srinivasan, Ben Mildenhall, Sara

Fridovich-Keil, Nithin Raghavan, Utkarsh Singhal, Ravi Ra-

mamoorthi, Jonathan Barron, and Ren Ng. Fourier features

let networks learn high frequency functions in low dimen-

sional domains. Advances in Neural Information Processing

Systems, 33:7537–7547, 2020. 2

[43] Justus Thies, Michael Zollhöfer, and Matthias Nießner. De-

ferred neural rendering: Image synthesis using neural tex-

tures. ACM Transactions on Graphics (TOG), 38(4):1–12,

2019. 2

[44] Edgar Tretschk, Ayush Tewari, Vladislav Golyanik, Michael

Zollhöfer, Christoph Lassner, and Christian Theobalt. Non-

rigid neural radiance fields: Reconstruction and novel view

synthesis of a dynamic scene from monocular video. In

Proceedings of the IEEE/CVF International Conference on

Computer Vision, pages 12959–12970, 2021. 1, 2

[45] Richard Tucker and Noah Snavely. Single-view view synthe-

sis with multiplane images. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition,

pages 551–560, 2020. 2

[46] Michael Waechter, Nils Moehrle, and Michael Goesele. Let

there be color! large-scale texturing of 3d reconstructions.

19715



In European conference on computer vision, pages 836–850.

Springer, 2014. 2

[47] Liao Wang, Jiakai Zhang, Xinhang Liu, Fuqiang Zhao, Yan-

shun Zhang, Yingliang Zhang, Minye Wu, Jingyi Yu, and

Lan Xu. Fourier plenoctrees for dynamic radiance field ren-

dering in real-time. In Proceedings of the IEEE/CVF Con-

ference on Computer Vision and Pattern Recognition, pages

13524–13534, 2022. 2, 8

[48] Daniel N Wood, Daniel I Azuma, Ken Aldinger, Brian Cur-

less, Tom Duchamp, David H Salesin, and Werner Stuetzle.

Surface light fields for 3d photography. In Proceedings of

the 27th annual conference on Computer graphics and inter-

active techniques, pages 287–296, 2000. 2

[49] Wenqi Xian, Jia-Bin Huang, Johannes Kopf, and Changil

Kim. Space-time neural irradiance fields for free-viewpoint

video. In Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition, pages 9421–9431,

2021. 1, 2

[50] Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong

Chen, Benjamin Recht, and Angjoo Kanazawa. Plenox-

els: Radiance fields without neural networks. arXiv preprint

arXiv:2112.05131, 2021. 2, 3, 6

[51] Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng,

and Angjoo Kanazawa. Plenoctrees for real-time rendering

of neural radiance fields. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 5752–

5761, 2021. 2, 3

[52] Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen

Koltun. Nerf++: Analyzing and improving neural radiance

fields. arXiv preprint arXiv:2010.07492, 2020. 2

[53] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shecht-

man, and Oliver Wang. The unreasonable effectiveness of

deep features as a perceptual metric. In Proceedings of the

IEEE conference on computer vision and pattern recogni-

tion, pages 586–595, 2018. 6

[54] Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe,

and Noah Snavely. Stereo magnification: Learning

view synthesis using multiplane images. arXiv preprint

arXiv:1805.09817, 2018. 2

[55] C Lawrence Zitnick, Sing Bing Kang, Matthew Uyttendaele,

Simon Winder, and Richard Szeliski. High-quality video

view interpolation using a layered representation. ACM

transactions on graphics (TOG), 23(3):600–608, 2004. 1,

2

19716


