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Figure 1: Camera Pose Estimation with PoseDiffusion. We present a method to predict the camera parameters (extrinsics
and intriniscs) for a given collection of scene images. Our model combines the strengths of traditional epipolar constraints
from point correspondences with the power of diffusion models to iteratively refine an initially random set of poses.

Abstract

Camera pose estimation is a long-standing computer vi-
sion problem that to date often relies on classical meth-
ods, such as handcrafted keypoint matching, RANSAC and
bundle adjustment. In this paper, we propose to formulate
the Structure from Motion (SfM) problem inside a proba-
bilistic diffusion framework, modelling the conditional dis-
tribution of camera poses given input images. This novel
view of an old problem has several advantages. (i) The na-
ture of the diffusion framework mirrors the iterative proce-
dure of bundle adjustment. (ii) The formulation allows a
seamless integration of geometric constraints from epipo-
lar geometry. (iii) It excels in typically difficult scenar-
ios such as sparse views with wide baselines. (iv) The

method can predict intrinsics and extrinsics for an arbi-
trary amount of images. We demonstrate that our method
PoseDiffusion significantly improves over the classic SfM
pipelines and the learned approaches on two real-world
datasets. Finally, it is observed that our method can gener-
alize across datasets without further training. Project page:

1. Introduction

Camera pose estimation, i.e. extracting the camera in-
trinsics and extrinsics given a set of free-form multi-view
scene-centric images (e.g. tourist photos of Rome [2]), is a
traditional Computer Vision problem with a history stretch-
ing long before the inception of modern computers [20].

9773



It is a crucial task in various applications, including aug-
mented and virtual reality, and has recently regained the at-
tention of the research community due to the emergence of
implicit novel-view synthesis methods [33, 38, 25].

The classic dense pose estimation task estimates the pa-
rameters of many cameras with overlapping frusta, leverag-
ing correspondence pairs between keypoints visible across
images. It is typically addressed through a Structure-from-
Motion (SfM) framework, which not only estimates the
camera pose (Motion) but also extracts the 3D shape of the
observed scene (Structure). During the last 30 years, StM
pipelines matured into a technology capable of reconstruct-
ing thousands [2] if not millions [ 4] of free-form views.

Surprisingly, the structure of dense-view SfM
pipeline [4]] has remained mostly unchanged until
today, even though individual components have incorpo-
rated deep learning advances [8, 40, 17, 49, 53, 24]. StM
first estimates reliable image-to-image correspondences
and, later, uses Bundle Adjustment (BA) to align all cam-
eras into a common scene-consistent reference frame. Due
to the high complexity of the BA optimization landscape, a
modern SfM pipeline [44] comprises a carefully engineered
iterative process alternating between expanding the set of
registered poses and a precise 2nd-order BA optimizer [1].

With the recent proliferation of deep geometry learn-
ing, the sparse pose problem, operating on a significantly
smaller number of input views separated by wide baselines,
has become of increasing interest. For many years, this
sparse setting has been the Achilles’ Heel of traditional pose
estimation methods. Recently, RelPose [60] leveraged a
deep network to implicitly learn a bundle-adjustment prior
from a large dataset of images and corresponding camera
poses. The method has demonstrated performance superior
to SfM in settings with less than ten input frames. How-
ever, in the many-image case, its accuracy cannot match the
precise solution of the second-order BA optimizer from iter-
ative SfM. Besides, it is limited to predicting rotations only.

In this paper, we propose PoseDiffusion - a novel camera
pose estimation approach that elegantly marries deep learn-
ing with correspondence-based constraints and therefore, is
able to reconstruct camera positions at high accuracy both
in the sparse-view and dense-view regimes.

PoseDiffusion introduces a diffusion framework to solve
the bundle adjustment problem by modelling the probabil-
ity p(x|I) of camera parameters x given observed images I.
Following the recent successes of diffusion models in mod-
elling complex distributions (e.g. over images [15], videos
[45], and point clouds [28]), we leverage diffusion mod-
els to learn p(z|I) from a large dataset of images with
known camera poses. Once learned, given a previously
unseen sequence, we estimate the camera poses x by sam-
pling p(z|I). The latter mildly assumes that p(z|I) forms a
near-delta distribution so that any sample from p(z|I) will

yield a valid pose. The stochastic sampling process of dif-
fusion models has been shown to efficiently navigate the
log-likelihood landscape of complex distributions [ 5], and
therefore is a perfect fit for the intricate BA optimization.
An additional benefit of the diffusion process is that it can
be trained one step at a time without the need for unrolling
gradients through the whole optimization.

Additionally, in order to increase the precision of our
camera estimation, we guide the sampling process with tra-
ditional epipolar constraints (expressed by means of reliable
2D image-to-image correspondences), which is inspired by
classifier diffusion guidance [©9]. We use this classical con-
straint to bias samples towards more geometrically consis-
tent solutions throughout the sampling process, arriving at
a more precise camera estimation.

PoseDiffusion yields state-of-the-art accuracy on the
object-centric scenes of CO3Dv2 [38], as well as on
outdoor/indoor scenes of RealEstatelOk [62]. Crucially,
PoseDiffusion also outperforms SfM methods when used to
supervise NeRF training [33], which demonstrates the supe-
rior accuracy of both the extrinsic and intrinsic estimation.

2. Related Work

Geometric Pose Estimation. The technique of estimat-
ing camera poses given image-to-image point correspon-
dences has been extensively explored in the last three
decades [12, 37]. This process typically begins with key-
point detection, conducted by handcrafted methods like
SIFT [26, 27] and SUREF [3], or alternatively, learned meth-
ods [8, 58]. The correspondences can then be established
using nearest neighbour search or learned matchers [40, 31,
]. Given these correspondences, five-point or eight-point
algorithms compute camera poses [12, 13, 21, 36] with the
help of RANSAC and its variants [ 10, 4, 5]. Typically, Bun-
dle Adjustment [50] further optimizes the camera poses.
The entire pipeline, from keypoint detection to bundle ad-
justment, is highly interdependent and needs careful tuning
to be sufficiently robust, which allows for scaling to thou-
sands of images [ 1, 39]. COLMAP [44, 43] is an open-
source implementation of the whole camera estimation pro-
cedure and has become a valuable asset to the community.

Learned Pose Estimation. Geometric pose estimation
techniques struggle when only few image-to-image matches
can be established, or more generally, in a setting with
sparse views and wide baselines [7]. Thus, instead of con-
structing geometric constraints on top of potentially unreli-
able point matches, learning-based approaches directly es-
timate the camera motion between frames. Learning can
be driven by ground truth annotations or unsupervisedly
through reprojecting points from one frame to another, mea-
suring photometric reconstruction [61, 51, 49]. Learned
methods that directly predict the relative transformation
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Figure 2: PoseDiffusion overview. Training is supervised given a multi-view dataset of images and camera poses to learn
a diffusion model Dy to model p(z|I). During inference the reverse diffusion process is guided through the gradient that
minimizes the Sampson Epipolar Error between image pairs, optimizing geometric consistency between poses.

between camera poses are often category-specific or ob-
ject centric [18, 57, 30, 56, 55]. Recently, RelPose [00]
shows category-agnostic camera pose estimation, however,
is limited to predicting rotations. The concurrent work
SparsePose [46] first regresses camera poses followed by
iterative refinement, while RelPose++ [22] decouples the
ambiguity in rotation estimation from translation prediction
by defining a new coordinate system.

Diffusion Model. Diffusion models are a category of gen-
erative models that, inspired by non-equilibrium thermody-
namics [47], approximate the data distribution by a Markov
Chain of diffusion steps. Recently, they have shown im-
pressive results on image [48, 15], video [45, 16], and even
3D point cloud [28, 29, 32] generation. Their ability to ac-
curately generate diverse high-quality samples has marked
them as a promising tool in various fields.

3. PoseDiffusion

Problem setting. We consider the problem of estimating
intrinsic and extrinsic camera parameters given correspond-
ing images of a single scene (e.g. frames from an object-
centric video, or free-form pictures of a scene).

Formally, given a tuple I = (I 1)11\;1 of N € Nin-
put images I* € R3>*H*W "\e seek to recover the tuple
T = (mi)i]il of corresponding camera parameters x! =
(K, g%) consisting of intrinsics K* C R**3 and extrinsics
g* € SE(3) respectively. We defer the details of the camera
parametrization to Sec.

Extrinsics ¢ map a 3D point p,, € R3 from world
coordinates to a 3D point p. € R?® = ¢‘(p,) in cam-
era coordinates. Intrinsics K then perspectivelly project
p. to a 2D point p, € R? in the screen coordinates with
K'p. ~ Aps;1],A € R where “~” indicates homoge-
neous equivalence.

3.1. Preliminaries of Diffusion models

Diffusion models [15, 47, 48] are a class of likelihood-
based models. They model a complex data distribution by
learning to invert a diffusion process from data to a sim-
ple distribution, usually by means of noising and denoising.
The noising process gradually converts the data sample z
into noise by a sequence of T' € N steps. The model is then
trained to learn the denoising process.

A Denoising Diffusion Probabilistic Model (DDPM)
specifically defines the noising process to be Gaussian.
Given a variance schedule (31, ..., 57 of T steps, the nois-
ing transitions are defined as follows:

q(@y | 1) = N(257/1 = Bravy—1, BilD), (D

where I is the identity matrix. The variance schedule is set
so that 7 follows an isotropic Gaussian distribution, i.e.,
q(zr) =~ N(0,1). Define oy = 1 — 3; and &y = Hle o,
then a closed-form solution [ | 5] exists to directly sample ¢
given a datum zq:

ze ~ (e | 20) = Ny Vo, (1 - a)l). ()

The reverse pg(zi—1|xy) is still Gaussian if 3; is small
enough. Therefore, it can be approximated by a model Dy:

po(xi—1 | ) = N(x1-1; /arDy(a,t), (1 — ap)T). (3)

3.2. Diffusion-aided Bundle Adjustment

PoseDiffusion models the conditional probability distri-
bution p(z|I) of the samples x (i.e. camera parameters)
given the images I. Following the diffusion framework [47]
(discussed above), we model p(z|I) by means of the de-
noising process. More specifically, p(x|I) is first estimated
by training a diffusion model Dy on a large training set
T = {(z;,1;)}5_, of S € N scenes with ground truth im-
age batches I; and their camera parameters x ;. Atinference
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time, for a new set of observed images I, we sample p(z|I)
in order to estimate the corresponding camera parameters
x. Note that, unlike for the noising process (Eq. (1)) which
is independent of I, the denoising process is conditioned on
the input image set I, i.e., pg(x:—1 | 2, I):

po(zi—1|Te, I) = N(w1—1; /Do (1,1, 1), (1 — ay)1).
“)
Denoiser Dy. We implement the denoiser Dy as a Trans-
former Trans [52]:

Dy(w1,t,1) = Trans [(cat(xi, t, w(ﬁ))fil] = p—1. (5)

Here, Trans accepts a sequence of noisy pose tuples x?, dif-
fusion time ¢, and feature embeddings 1 (I*) € RP¥ of the
input images I*. The denoiser outputs the tuple of corre-
sponding denoised camera parameters ;1 = (ui_ ;)N ;.
Feature embeddings come from a vision transformer model
initialized with weights of pre-trained DINO [6].

At train time, Dy is supervised with the denoising loss:
Laitt = Eit 1], 20mg(e|00.1) | Do (20, £, T) — 0%, (6)

where the expectation aggregates over all diffusion time-
steps ¢, the corresponding diffused samples z; ~
q(a¢|xo,T), and a training set 7 = {(z0,,I;)}5-; of
S € N scenes with images I; and their cameras xg ;.
Solving Bundle Adjustment by Sampling pg. The
trained denoiser Dy (Eq. (0)) is later leveraged to sample
pe(x|I) which effectively solves our task of inferring cam-
era parameters x given input images I. Note that we as-
sume p(x|I) forms a near-delta distribution and, hence, any
sample from p(x|I) will yield a valid pose. Such mild as-
sumption allows to avoid a maximum-aposteriori probabil-
ity (MAP) estimate of p(x|I).

In more detail, following DDPM sampling [ 5], we start
from random cameras zp ~ AN(0,I) and, in each iteration
t € (T, ...,0), the next step a1 is sampled from

zp—1 ~ N (@15 /@ —1Dg(a4, £, 1), (1 — au—1)I). (7)

3.3. Geometry-Guided sampling

So far, our feed-forward network maps images directly
to the space of camera parameters. Since deep networks
are notoriously bad at regressing precise quantities, such
as camera translation vectors or angles of rotation matri-
ces [19], we significantly increase the accuracy of PoseDif-
fusion by leveraging two-view geometry constraints which
form the backbone of state-of-the-art SfM methods.

To this end, we extract reliable 2D correspondences
between scene images and guide DDPM sampling iter-
ations (Eq. (7)) so that the estimated poses satisfy the
correspondence-induced two-view epipolar constraints.

Geometric
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Figure 3: Inference. For each step ¢, Geometry-Guided
Sampling (GGS) samples the distribution pg(x¢—1 | z¢,I,t)
of refined cameras x;_; conditioned on input images I and
the previous estimate x;, while being guided by the gradient
of the Sampson matching density p(I|x).

Sampson Epipolar Error. Specifically, let PY =
{(p}%,pi,) ivj 17 denote a set of 2D correspondences be-
tween image points pr, € R? for a pair of scene im-
ages (I, I7), and denote (2%, x7) the corresponding camera
poses. Given the latter, we evaluate the compatibility be-
tween the cameras and the 2D correspondences via a robust

version of Sampson Epipolar Error e/ € R [12]:

eij(mi,mj,Pij) =

[P T i
p; FYp,

,; (FiIpy)3 + (Fiipy)3 + (F4Tp])3 + (FiiTp))3

where p = [p; 1] denotes p in homogeneous coordinates,
[2]. = min(z,¢€) is a robust clamping function, (z); re-
trieves {-th element of a vector z, and F'y € R3*3 is the
Fundamental Matrix [|2] mapping points p, from image I°
to lines in image 17 and vice-versa. Directly optimizing the
epipolar constraint p/." F/ b usually provides sub-optimal
results [12], which is also observed in our experiments.
Sampson-guided sampling. We follow the classifier dif-
fusion guidance [9] to guide the sampling towards a solution
which minimizes the Sampson Epipolar Error and, as such,
satisfies the image-to-image epipolar constraint.

In each sampling iteration, classifier guidance perturbs
the predicted mean p;—1 = Dg(zy,t, I) with a gradient of
x¢-conditioned guidance distribution p(I|z;):

Dy(w4,t,1) = Dg(4,t,I) + sV, logp(I]azy), (8)

where s € R controls the strength of the guidance.
259(3:,5, t, I) then replaces Dy(z¢,t, I) in Egs. (4) and (7).
Assuming a uniform prior over cameras = allows model-
ing p(I|x;) from Eq. (8) as a product of independent expo-
nential distributions over the pairwise Sampson Errors €%/:
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Figure 4: Pose estimation on CO3Dv2. Estimated cameras given input images I (first row). Our PoseDiffusion (2nd row) is
compared to RelPose (3rd row), COLMAP+SPSG (4th row), and the ground truth. Missing cameras indicate failure.

p(I)ze) = Hp([ﬂ]ﬂxi,x{) o Hexp(—eij). )
i,j (2]

Note that our choice of p(I|x;) is meaningful since its mode
is attained when Sampson Errors between all image pairs is
0 (i.e. all epipolar constraints are satisfied).

3.4. Method details

Representation details. We represent the extrinsics ¢° =
(q,t?) as a 2-tuple comprising the quaternion q° € H
of the rotation matrix R* € SO(3) and the camera trans-
lation vector t° € R3. As such, ¢g‘(p,) represents a
linear world-to-camera transformation p. = ¢‘(pw) =
Rip, + t'. We use a camera calibration matrix K? =
[f%,0,p2:0, f',py;0,0,1] € R3*3, with one degree of
freedom defined by the focal length f© € RT. Follow-
ing common practice in SfM [42, 43], the principal point
coordinates p.,p, € R are fixed to the center of the im-
age. To ensure strictly positive focal length f?, we rep-
resent it as fi = exp(f), where fi € R is the quan-
tity predicted by the denoiser Dy. Therefore, the trans-
former Trans (Eq. (5)) outputs a tuple of raw predictions

(( fﬂ q’, tl)) which is converted (in close-form) to a tu-
i=1
N

ple of cameras = = (K%, ¢"))._,.

Tackling Coordinate Frame Ambiguity. Because our
training set 7 is constructed by SfM reconstructions [42],
the training poses {g; Jszl are defined up to an arbitrary
scene-specific similarity transformation. To prevent over-
fitting to the scene-specific training coordinate frames, we
canonicalize the input before passing to the denoiser: we
normalize the extrinsics g; = (j;,...g;" ) as relative camera
poses to a randomly selected pivot camera ;. We inform
the denoiser about the pivot camera by appending a binary
flag péivm € {0,1} to the image features 1 (I*) (Eq. (5)).
Furthermore, in order to canonicalize the scale, we divide
the input camera translations by the median of the norms of
the pivot-normalized translations.

4. Experiments

We experiment on two real-world datasets, ablate the de-
sign choices of the model, and compare with prior work.

Datasets. We consider two datasets with different statis-
tics. The first is CO3Dv2 [38] containing roughly 37k turn-
table-like videos of objects from 51 MS-COCO categories
[23]. The dataset provides cameras automatically anno-
tated by COLMAP [44] using 200 frames in each video.
Secondly, we evaluate on RealEstatel0k [62] which com-
prises 80k YouTube clips capturing the interior and exterior
of real estate. Its camera annotations were auto-generated
with ORB-SLAM 2 [34] and refined with bundle adjust-

9777



Figure 5: Pose estimation accuracy on CO3Dv2. Metrics RRAQ7, RTAQr at different thresholds 7 and mAA(30) (y-
axes, higher-better) as a function of the number of input frames (z-axes). RelPose does not predict camera translation and

hence is omitted in the respective figures.

ment. We use the same training set as in [54], i.e. 57k train-
ing scenes and, as some baselines are time-consuming, a
random smaller 1.8k-video subset of the original 7K test
videos. Naturally, we always test on unseen videos.

Baselines and comparisons. We chose COLMAP [44],
one of the most popular SfM pipelines, as a dense-pose
estimation baseline. Besides the classic version leverag-
ing RANSAC-matched SIFT features, we also benchmark
COLMAP+SPSG which builds on SuperPoints [8] matched
with SuperGlue [40]. PixSfM [24] further improves accu-
racy by directly aligning deep features. We also compare to
RelPose [60] which is the current State of the Art in sparse
pose estimation. Finally, to ablate Geometry Guided Sam-
pling (GGS - Eq. (9)), PoseDiffusion w/o GGS leverages our
denoiser without GGS.

Training. We train the denoiser Dy using the Adam opti-
mizer with the initial learning rate of 0.0005 until conver-
gence of Ly - learning rate is decayed ten-fold after 30
epochs. The latter takes two days on 8 GPUs. In each train-
ing batch, we randomly sample between 3-20 frames and
their cameras from a random scene of the training dataset.

Geometry-guided sampling. PoseDiffusion’s GGS lever-
ages the SuperPoint features [8] matched with SuperGlue
[40], where the Sampson error is clamped at ¢ = 10
(Sec. 3.3). To avoid spurious local minima, we apply GGS
to the last 10 diffusion sampling steps. During each step
t, we adjust the sampling mean by running 100 GGS iter-
ations. We observed improved sampling stability when the
guidance strength s (Eq. (8)) is set adaptively so that the
norm of the guidance gradient Vp(I|z) does not exceed a
multiple a||¢]| (v = 0.0001) of the current mean’s norm.

Evaluation metrics. We compute the Relative Rotation
Accuracy (RRA) to compare the relative rotation RiRjT

from i-th to j-th camera to the ground truth R;‘R}T. Simi-
larly, the Relative Translation Accuracy RTA(t;;, t};) =

arccos(t,;t7;/(I|ti;[|[|t};]])) evaluates the angle between
the predicted and ground-truth vector t;; / t7; pointing from
camerai to j. RRA/RTA are invariant to the absolute coor-
dinate frame ambiguity. For a given threshold 7, we report
RTAQ7/RRAQT (7 € {5,15,30}), i.e. the percentage of
camera pairs with RRA /RTA below a threshold 7.

Additionally, following the Image Matching Bench-
mark [17], we report mean Average Accuracy (mAA)
(also known as Area under Curve - AUC). Specifically,
mAA calculates the area under the curve recording the
accuracies of the angular differences between the ground-
truth and predicted cameras for a range of angular accu-
racy thresholds. For an image pair, mA A defines the accu-
racy at a threshold 7 as min(RRA@7, RTAQr). Following
RelPose’s [60] upper angular threshold of 30°, we report
mAA(30) which is integrated over T € [1, 30].

4.1. Camera pose estimation

Object-centric pose. We first compare on CO3Dv2
where each scene comprises frames capturing a single ob-
ject from a variety of viewpoints with approximately con-
stant distance from the object. Fig. 5 contains quantitative
results while Fig. 4 illustrates example camera estimates.
PoseDiffusion significantly improves over all baselines in all
metrics in both the sparse and dense setting. Note that, here
ground truth cameras were obtained with COLMAP itself
(but using 200 frames), likely favouring COLMAP recon-
structions. Importantly, removing GGS (PoseDiffusion w/o
GGS) leads to a drop in performance for tighter accuracy
thresholds across all metrics. This clearly demonstrates that
GGS facilitates accurate camera estimates. The latter also
validates the accuracy of our intrinsics since they are an im-
portant component of GGS.

Scene-centric pose. Here, we reconstruct camera poses in
free-form in/outdoor scenes of RealEstate 10k which, histor-
ically, has been the domain of traditional SfM methods. We
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PoseDiffusion Input I

COLMAP+SPSG

Figure 6: Pose estimation on RealEstatelOk visualizing the cameras estimated given input images I (first row). Our
PoseDiffusion (2nd row) is compared to COLMAP+SPSG (3rd row), and the ground truth. Missing cameras indicate failure.
For better visualization, we display each scene from three different viewpoints.

Figure 7: Pose estimation on RealEstatel0k. Metrics RRAQr, RTAQr at different thresholds 7 and mA A (30) (y-axes,
higher-better) as a function of the number of input frames (x-axes).

evaluate quantitatively in Fig. 7 and qualitatively in Fig.
PoseDiffusion significantly outperforms all baselines in all
metrics. Here, the comparison to COLMAP is fairer than
on CO3Dv2, as RealEstate10k used ORB-SLAM?2 [35] to
obtain the ground-truth cameras.

Importance of diffusion. To validate the effect of the dif-
fusion model, we also provide the PoseReg baseline, which
uses the same architecture and training hyper-parameters as
our method but directly regresses poses. PoseReg shows
clearly lower performance (cf. Tab. |). Moreover, without
the iterative refinement of our diffusion model, the gain of
applying GGS to PoseReg (PoseReg+GGS) is limited.

Generalization. We also evaluate the ability of different
methods to generalize to different data distributions. First,
following RelPose [60], we train on a set of 41 training cat-
egories from CO3Dv2, and evaluate the remaining 10 held-

out categories. As shown in Tab. 2, our method outperforms
all baselines indicating superior generalizability, even with-
out the help of GGS.

Moreover, we evaluate a significantly more difficult sce-
nario: transfer from the CO3Dv2 to RealEstate10k. This
setting brings a considerable difficulty: CO3Dv2 predomi-
nantly contains indoor objects with circular fly-around tra-
jectories while RealEstate10k comprises outdoor scenes
and linear fly-through camera motion (see Figs. 4 and 6).
Surprisingly, our results are still comparable to PixSfM,
while better than COLMAP and RelPose.

4.2. Novel-view synthesis.

To evaluate the quality of the camera pose prediction for
downstream tasks, we train NeRF models using predicted
camera parameters and measure the RGB reconstruction er-
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. . COLMAP . . Ours  PoseReg )
Metric | RelPose +SPSG PixSfM PoseReg wloGGS  +GGS Ours
RRA@15]| 57.1 31.6 33.7 532 759 57.0  80.5
RTA@Q@15 27.3 329 49.1 72.8 534 798
mAA(30) 253 30.1 45.0 56.0 482  66.5

Table 1: Pose regression ablation comparing a diffusion-
free pose regressor PoseReg (with/without GGS) to our
PoseDiffusion on CO3Dv2 with 10 input frames (Bold de-
notes the top result and an underline signifies the second
best).

Test Set ‘COLMAP COLMAP+SPSG PixSfM  Ours w/o GGS Ours

CO3Dv2 Unseen 25.8 30.3 342 40.1 50.8
RealEstate10k 26.1 452 49.4 18.7 48.0

Table 2: Generalization reporting mA A (30) for 10 input
frames. We first train on 41 CO3Dv2 seen categories. Test-
ing is conducted on 11 unseen categories (top row), and on
RealEstate10k (bottom) (Bold denotes the top result and an
underline signifies the second best).

# frames RelPose COLMAP+SPSG  Ours Target

10

20

50

Figure 8: Synthesized novel views. NeRF trained with
camera poses estimated by various methods. This metric
is more fair as it does not rely on GT pose annotations by
another method.

ror in novel views. Note that, as opposed to the camera pose
evaluation on CO3Dv2, here, we fairly evaluate against un-
biased image ground truth. We generate a dataset of 10, 20,
and 50 frames for 50 random sequences of CO3Dv2. Each
sequence contains 4 validation frames with the remaining
ones used to train the NeRF. We report PSNR averaged
over all validation frames as an indirect measure of camera
pose accuracy. Furthermore, the experiment also evaluates
the accuracy of the predicted intrinsics (focal lengths) since
these are an inherent part of the NeRF’s camera model sig-
nificantly affecting the rendering quality.

In Tab. 3, our method outperforms COLMAP+SPSG,
demonstrating the better suitability of our predicted cam-
eras for NVS. Moreover, Ours + GT Focal Length, which

# frames
Method ‘ 10 20 50
RelPose [60]* 2133  23.12  25.09
Ours + GT Focal Length | 24.72  26.58  28.61

COLMAP+SPSG 15.78 25.17 28.66
Ours 2437 2696 28.53

Table 3: Novel View Synthesis. PSNR for NeRFs [33]
trained on CO3Dv2 using cameras estimated by various

methods. RelPose * does not predict translation vectors and
focal lengths, and uses the ground truth here instead.

replaces the predicted focal lengths with the ground truth,
is perfectly on par with Ours, signifying the reliability of
our intrinsics. Fig. 8 provides the qualitative comparison.

Execution time. Our method without GGS typically takes
around 1 second for inference on a sequence of 20 frames,
and enabling GGS increases the execution time to 60-90
seconds. GGS is currently unoptimized (a simple for loop
in Python), compared to common C++ implementations for
SfM methods which can be adopted here.

5. Conclusion

This paper presents PoseDiffusion, a learned camera es-
timator enjoying both the power of traditional epipolar ge-
ometry constraint and diffusion model. We show how the
diffusion framework is ideally compatible with the task of
camera parameter estimation. The iterative nature of this
classical task is mirrored in the denoising diffusion formula-
tion. Additionally, point-matching constraints between im-
age pairs can be used to guide the model and refine the final
prediction. In our experiments, we improve over traditional
StM methods such as COLMAP, as well as the learned ap-
proaches. We are able to show improvements regarding the
pose prediction accuracy as well as on the novel-view syn-
thesis task, which is one of the most popular current ap-
plications of COLMAP. Finally, we are able to demonstrate
that our method can overcome one of the main limitations of
learned methods: generalization across datasets, even when
trained on a dataset with different pose distributions.
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