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Abstract

We present Recurrent Fitting (ReFit), a neural network
architecture for single-image, parametric 3D human recon-
struction. ReFit learns a feedback-update loop that mirrors
the strategy of solving an inverse problem through optimiza-
tion. At each iterative step, it reprojects keypoints from the
human model to feature maps to query feedback, and uses
a recurrent-based updater to adjust the model to fit the im-
age better. Because ReFit encodes strong knowledge of the
inverse problem, it is faster to train than previous regression
models. At the same time, ReFit improves state-of-the-art
performance on standard benchmarks. Moreover, ReFit ap-
plies to other optimization settings, such as multi-view fitting
and single-view shape fitting. Project website: https://yufu-
wang.github.io/refit humans/

1. Introduction

Single-view 3D human reconstruction has transformed
the way we analyze and create virtual content. Progress has
primarily been driven by the use of parametric human mod-
els [43], powerful neural networks [30], and high-quality
annotated data [61]. However, the best systems to date still
struggle with various difficulties, including occlusion, un-
common poses, and diverse shape variations.

The traditional approach fits a parametric human model
to an image using handcrafted objectives and energy min-
imization techniques [9]. But this optimization process is
often riddled with local minima and corner cases. Because
of such drawbacks, recent regression methods train a neural
network to predict the parameters directly [30, 35]. Training
such networks robustly requires a large amount of 3D anno-
tated data that is hard to collect outside a lab setting. One
line of research is to design better neural network architec-
tures that can learn efficiently and generalize well to diverse
in-the-wild cases.

In this paper, we propose Recurrent Fitting (ReFit), an
architecture for 3D human reconstruction. ReFit mimics the
structure of model fitting, reducing the regression problem
to a learning-to-optimize problem. This allows ReFit to learn
faster than other architectures and improves state-of-the-art

Figure 1. Overview. ReFit mimics the strategy of model fitting
by constructing a trainable feedback-update loop that adjusts the
human model for a more accurate reconstruction.

accuracy.
ReFit has three main steps. (1) A backbone network ex-

tracts pixel-aligned image features. (2) A feedback module
queries feedback features from keypoint reprojection. (3) A
recurrent update module uses a set of disentangled GRUs to
update the body. Feedback and updates are repeated until the
body mesh is well-aligned with the image (Fig. 1).

The design of ReFit mirrors traditional model fitting. In
model fitting, the objective function computes the L2 dis-
tance between the reprojected and the detected keypoints [9].
In ReFit, each reprojected keypoint queries a window on a
feature map. A window encodes first-order information, such
as 2D flow, which is the derivative of the L2 objective. The
queried features are fed to the update module to compute
updates for the human model.

Another key element of ReFit is the disentangled and
recurrent update streams. Iterative regression methods com-
monly map a feature vector to parameter updates with an
MLP [30, 67]. Therefore, the update rules for the parameters
are entangled until the last linear layer. In contrast, parame-
ters in optimization follow update rules based on automatic
differentiation, and the rules can be very different. As an
example, in human pose, an alignment error in the right hand
will produce a gradient for the right arm and shoulder but not
for the left side. This notion of a disentangled update is diffi-
cult to achieve within a global feature vector. When learning
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the update function, we hypothesize that some degree of
disentanglement is beneficial.

To this end, ReFit’s update module uses one GRU per
parameter group to disentangle the parametric update. Each
GRU learns the prior and the update rule for one parameter
group, e.g., the rotation of a single joint. GRUs utilize mem-
ory from the previous iterations, analogous to a first-order
method with momentum [16]. At each iteration, the GRUs
can take different step sizes. In the example of right-hand
misalignment, the GRUs for the right side of the body can
output adjustments, while the GRUs for the left side can re-
turn little or no updates. This disentanglement leads to better
performance. The disentangled GRUs can be implemented
as batch matrix operations in PyTorch, allowing for efficient
training and inference.

Moreover, ReFit acts as a learned optimizer that applies
to other settings of model fitting. Using ReFit as a learned
optimizer, we propose a multi-view fitting procedure that
significantly outperforms regression on separate views. We
also demonstrate using ReFit to register a pre-scanned shape
to images of the same subject, a helpful setting for outdoor
motion capture.

The ReFit architecture is substantially different from prior
works. It uses a recurrent-based updater instead of a coarse-
to-fine pyramid that limits the number of updates [67]. ReFit
applies reprojection to query feedback instead of using a
static global feature vector [65]. Compared to learning-to-
optimize approaches [16,55], ReFit does not detect keypoints
but instead uses learned features and is end-to-end trainable.

ReFit improves state-of-the-art results on standard bench-
marks [27, 61]. The learning-to-optimize design accelerates
training: ReFit converges with only 50K training iterations.
We conduct extensive ablation studies to analyze the core
components and applications, and contribute insights for
future works.

2. Related Work
Human Mesh Model Fitting. Reconstructing human

pose and shape from images has a long history [5, 8, 10, 25].
The reconstruction often is formulated as an energy mini-
mization problem by fitting a parametric model with opti-
mization in various settings: single view [9, 19, 47, 51, 54],
multiple views [1,18,26], video [6,52], and other sensing in-
puts [61,62]. These optimization procedures involve multiple
stages and sophisticated designs to avoid local minima.

The optimization objective commonly consists of a data
term and a prior term. The data term measures the devia-
tion between the estimation and the detected features, while
the prior term imposes constraints on the pose and shape
space. In practice, optimization encounters many difficulties,
including noisy keypoint detection [11, 57], complicated pri-
ors [51, 53, 59], and the trade-off between the two terms. In
the single-view setting where such difficulties compound,

recent research shifts to two directions: learning to regress
and learning to optimize.

Human Mesh Regression. The recognition power of
deep neural network [22], paired with the representation
capability of parametric human models [43, 64], has fu-
eled the recent progress in single-view human mesh regres-
sion [14, 15, 28, 30, 31, 33–35, 39, 49, 63].

Iterative refinement is an essential strategy used by many
regression works [30, 48, 65]. Carreira et al. [12] motivate
it from a neural science standpoint, which states that the
human brain relies on feedback signals for various visual
localization tasks. The de facto implementation introduced
by HMR [30] is to concatenate the prediction with the image
feature vector to make new predictions recurrently. This
alone is not an effective strategy, as the network has to learn
error feedback solely in the latent space.

PyMAF [66, 67] proposes a refinement strategy based
on a coarse-to-fine feature pyramid. The parametric mesh
predicted from the coarse level is reprojected to feature maps
at the finer levels to gather spatial features for refinement
updates. This strategy lifts the error feedback to the image
space, but the pyramid limits the number of update steps.

ReFit reprojects mesh keypoints to the feature maps at a
single resolution but constructs a recurrent loop with GRUs
that is not limited to the number of pyramid levels. Moreover,
ReFit’s feedback and update modules have novel designs
that further boost the accuracy.

Learning to Optimize. Many vision problems are inverse
problems traditionally solved by optimization. Learning to
optimize aims to train a neural network to propose a de-
scend direction that replaces or supplements the optimizer
update [2]. This paradigm inspires network designs that
mimic optimizers in various vision tasks [3, 20, 41, 44, 58].

For the human model, LGD [55] and LFMM [16] improve
traditional model fitting by using a neural network to predict
residues for the optimizer updates. This approach is not end-
to-end differentiable because the optimizer uses keypoint
detection to compute the gradients. Neural Descent [65]
replaces the optimizer with an LSTM-based updater [24]
and reduces the detections into a feature vector. However,
reducing spatial representation into a feature vector prevents
it from having direct error feedback in the image space. ReFit
is an evolution of these methods. It uses gated recurrent
units [13, 17] as updaters but utilizes reprojection on the
learned feature maps as the feedback to infer an update.

ReFit can be regarded as a learned optimizer. Beside
single-view inference, we demonstrate that ReFit can be a
drop-in replacement for traditional optimizers in multi-view
model fitting. We also apply ReFit to register a pre-fitted
shape to images of the same subject.
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Figure 2. The ReFit Network. ReFit extracts one feature map per keypoint with a backbone network (Sec. 3.1). It then reprojects keypoints
from the 3D human mesh to the corresponding feature maps using the full-frame adjusted camera model (Sec. 3.2). Feedback is dropped
randomly during training, and concatenated with the current estimate Θt and the bounding box info to form the final feature vector. The final
feature is sent to N parallel GRUs to predict updates for the N parameters (Sec. 3.3). The updated mesh is again reprojected to the feature
maps to repeat the feedback-update loop until good reconstruction is achieved.

3. Recurrent Fitting

Given an image of a person, our goal is to predict the
parameters of the SMPL human model. The ReFit network
extracts image features (Sec. 3.1), compares the human mesh
with the pixel-aligned features (Sec. 3.2), and iteratively
updates the SMPL parameters (Sec. 3.3). An overview of the
method is given in Figure 2.

Preliminaries. The SMPL model [43] is parametrized
with Θ = {θ, β, π}, where θ ∈ R24×3 are the relative rota-
tions of the 24 body joints, β ∈ R10 is the shape parameter,
and π ∈ R3 is the root translation w.r.t the camera. Given Θ,
SMPL outputs the 3D mesh M(Θ) ∈ R6890×3.

3.1. Feature Extraction

We use High-Resolution Net (HRNet) [57] as the fea-
ture extractor. It produces spatially precise feature maps
that are beneficial for the feedback step. Given an image
I ∈ RH×W×3, it outputs feature maps F ∈ RH/4×W/4×K ,
where K is the number of channels. We set K to equal the
number of keypoints.

In addition, we average pool the low-resolution branch of
HRNet to produce a global feature vector and add a linear
layer to predict an initialization Θ0 for the parameters.

3.2. Feedback

Given an initial estimate, we reproject keypoints from
the SMPL model to the feature maps F to retrieve spatial
features. Each keypoint is only reprojected to one channel,
yielding K channels for K keypoints. This design is moti-
vated by model fitting, where the keypoint detector outputs
one channel per keypoint.

For a reprojection xk = (u, v) where u and v are the
pixel coordinates, we take the feature values inside a window

centered at xk as

fk = {f(x) ∈ Fk| ∥ x− xk ∥≤ r} (1)

where we set r = 3 pixels as the radius of the window. We
concatenate feedback from all the keypoints, along with the
current estimate Θt and the bounding box center cbbox and
scale sbbox, to form the final feedback vector as

f = [f1, ..., fK ,Θt, c
bbox, sbbox] (2)

Types of Keypoints. The per-keypoint feature map does
not directly detect a keypoint. Instead, each channel learns
the features associated with a keypoint. This process does not
require direct supervision, which allows us to test different
types of keypoints where 2D annotations are unavailable.
We test three types (Figure 3): semantic keypoints (K = 24);
mocap markers (K = 67); and evenly sampled mesh vertices
(K = 231). We examine the three types separately and do
not combine them.

Of the three, mocap markers provide better pose and
shape information than semantic keypoints, and are less re-
dundant than mesh vertices. We use the same mocap markers
as in AMASS [45], and the markers are defined on the mesh
surface by selecting the closest vertices.

Full-frame Adjusted Reprojection. Human regression
methods take a square-cropped image of a person as input,
assuming the optical axis going through the crop center. But
the input is usually cropped from a full-frame image with a
different optical axis. This deviation incurs an error in the
global rotation estimation, and by implication, the body pose
estimation.

CLIFF [38] proposes to supervise the 2D reprojection
loss in the original full-frame image, by using the full-frame
reprojection:

xfull
2D = Π(Xfull

3D ) = Π(X3D + tfull) (3)
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where Π is the perspective projection using the original cam-
era intrinsics, X3D are the body keypoints in the canonical
body coordinate, and tfull is the translation with respect to
the optical center of the original image. The camera intrin-
sics, if unknown, can be estimated from the dimensions of
the full image [32]. This reprojection is more faithful to the
image formation process and leads to a better global rotation
estimation.

We propose to adjust the points back to the cropped image
after full-frame reprojection:

xcrop
2D = (xfull

2D − cbbox)/sbbox (4)

where cbbox and sbbox are the location and the size of the
bounding box from which the crop is obtained. We call
this full-frame adjusted reprojection. This seemingly trivial
operation grants two advantages. First, the scale of the repro-
jection is normalized. The reprojection error is unaffected
by the size of the person in the original image.

But more importantly, it extends full-frame reprojection
to the feedback step. We reproject keypoints to the cropped
image feature maps, but with this camera model, the loca-
tions are properly adjusted to be consistent with full-frame
reprojection. We use this model to retrieve fk for each key-
point as in Eq 1.

Feedback Dropout. Each keypoint reprojection produces
a feedback signal. To combine signals from all the keypoints,
we formulate it as ensemble learning using dropout [56].
Specifically, we add a dropout layer, where there is a p = 0.25
chance that feedback fk will be zeroed out during training.

During training, the network learns to infer the pose
and shape using subsets of keypoints. This prevents co-
adaptations [23] of feedback signals, and makes the network
robust at test time when some keypoints are occluded.

This design also has ties to Spatial Dropout [60], which
randomly drops feature map channels as opposed to pixel-
wise activations. Similarly, we drop a keypoint’s feedback
completely instead of dropping some values.

3.3. Update

The update module takes the feedback signal f as input
(Eq. 2), and predicts an update step ∆Θt, which is added to
produce the next estimate: Θt +∆Θt → Θt+1.

The update is split into N = 26 parallel streams. Each
stream is responsible for updating one SMPL parameter.
There are 26 streams: 24 for the joint rotations, one for the
shape parameter, and one for the translation.

Each stream has an identical structure, consisting of a
GRU and a 2-layer MLP. The GRU updates its hidden state:
(f, hn

t−1) → hn
t , and the MLP maps the hidden state to the

parametric update: (hn
t ) → ∆θnt . The parallel streams can

be implemented as batch matrix operations to run efficiently.
The update module acts as a first-order optimizer. Each

stream learns the update rule of a parameter. Multiple

Figure 3. Types of keypoints. From left to right are semantic
keypoints, mocap markers, and uniformly sampled vertices. We use
one of the three types during feedback (Sec. 3.2).

streams effectively disentangle the update rules. The feed-
back signal is similar to the data term that informs the error.
The prior, which is hand-crafted in optimization, is now
learned by the update module.

Having 26 update streams does not increase the complex-
ity because we also reduce the hidden units. The complexity
per layer is O(NM2), where N is the number of streams
and M is the size of the hidden layer. Previous works use
N = 1 and M = 1024, leading to 1M parameters per layer.
We use N = 26 and M = 32, which are 27K parameters
per layer.

3.4. Supervision

The iterative update steps produce a sequence of estimates
{Θ0, ...,ΘT }. At inference time, ΘT is the final prediction.
During training, we supervise all the iterations.

At each iteration t, the loss is made up of three terms,

Lt = λ2DLt
2D + λ3DLt

3D + λSMPLLt
SMPL (5)

where each term is calculated as

Lt
2D = ||Ĵ2D −Π(J t

3D)||2F
Lt
3D = ||Ĵ3D − J t

3D||2F
Lt
SMPL = ||Θ̂−Θt||22

J3D are the 3D joints obtained from the SMPL model, the
hat operator denotes the ground truth of that variable, and Π
is the full-frame adjusted reprojection.

The final loss is a weighted sum of the loss at each itera-
tive update

L =

T∑
t=0

γT−tLt (6)

where we set γ = 0.85 and T = 5 for all experiments. Prior
works supervise only the last iteration to prevent the over-
shoot behavior, but it requires the gradient to flow through
a long sequence of estimates, which slows down training
convergence.

Our supervision is inspired by RAFT [58], an iterative
optical flow method. First, the gradient is backpropagated
through ∆Θt but not through Θt. In other words, at each
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iteration, we only supervise the update but not the predic-
tion from the previous step. Second, we use the proposed
weighted sum that downscales the importance of earlier iter-
ations.

3.5. Applications

ReFit is trained with single-view images for single-view
inference. But since ReFit operates similarly to an optimizer,
we demonstrate two applications in which traditionally an
optimizer is used: multi-view model fitting, and fitting a
pre-acquired shape to images of the same subject.

Multi-view ReFit. Motion capture with multiple cali-
brated cameras offers the highest accuracy [18, 27]. In a
markerless setting, an optimization procedure detects key-
points in each view and fits the model by minimizing the
reprojection error [1]. We replace this procedure using ReFit
as shown in Figure 4.

ReFit operates on each view independently to produce
updates. The updates are averaged across views with a multi-
view averaging procedure. We average the shapes by taking
the mean of the predicted PCA coefficients across views. Be-
cause the body pose consists of the relative rotation of each
joint, we directly average the body poses across views with
rotation averaging, which averages the rotation matrices and
uses SVD to project the result back to SO(3). The predicted
global rotations are with respect to each view, so we trans-
form them to a global coordinate with the calibrated extrinsic
before performing rotation averaging. This procedure results
in a single copy of the updated model. The model is then
reprojected to all views to repeat the feedback-update step.

The difference between multi-view ReFit versus simply
averaging the final predictions is that the averaging happens
during fitting. So at each iteration, the update is in the direc-
tion that explains multiple views.

Shape ReFit. In this setting, we aim to fit a known body
shape to images of the same subject with different poses.
This is relevant for applications where the shape of a subject
can be pre-scanned or pre-fitted and then used for outdoor
motion capture (mocap) [21, 61]. Registering the shape to
its images is commonly done with optimization, but we
demonstrate that ReFit can perform a similar function.

We call this procedure Shape ReFit. At each iteration,
we ignore the shape prediction and use the known shape to
render the SMPL model. Therefore, the reprojection reflects
the alignment status of the ground truth shape with the image,
and ReFit will adjust the pose and position of the model for
better alignment.

We perform experiments to verify that Shape ReFit can
indeed fit a known and fixed shape to its images.

4. Experiments
Datasets. We train the ReFit model with 3DPW [61],

Human3.6M [27], MPI-INF-3DHP [46], COCO [40] and

Figure 4. Multi-view ReFit. At each iteration, ReFit operates on all
views independently to produce updates. The multi-view averaging
procedure pool updates across views to produce a single update for
the mesh. The updated mesh is again reprojected to each view to
repeat the iterative process (Sec. 3.5).

MPII [4]. We use the pseudo ground truth SMPL annotations
from EFT [29] for COCO and MPII. We evaluate ReFit on
3DPW and Human3.6M, with the MPJPE (mean per-joint
error) and PA-MPJPE (Procrustes-aligned) metrics.

Implementation. We train ReFit for 50k iterations with
all the datasets and evaluate on 3DPW. We then finetune the
model with only Human3.6M for another 50k iterations and
evaluate on Human3.6M. We use the Adam optimizer with a
learning rate of 1e-4 and a batch size of 64. The input image
is resized to 256×256. Standard data augmentations are
applied. We include additional details in the supplementary.

4.1. Quantitative Evaluation

We present quantitative evaluation in Table 1. Our method
outperforms all single-view methods.

We organize the methods by their training data to present
a moderate view of progress: the quality of training data
plays a major role in improving test accuracy, as is pointed
out by recent studies [50]. We follow this practice and train
CLIFF [38] as our baseline with the same data and procedure.
Overall, ReFit outperforms other architectures.

We exam the generalization by training with synthetic
data from BEDLAM [7] following their proposed losses.
Table 2 shows that ReFit generalizes better, and by using
both synthetic and real data for training, it achieves the best
results.

4.2. Ablations

We conduct ablation experiments to examine the core
components of ReFit. All models are trained with the same
data as the proposed main model, and tested on 3DPW.

Type of Keypoints. We train three models with the three
types of keypoints in the feedback step. They are used for
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Training Architecture 3DPW Human3.6M

MPJPE PA-MPJPE MPJPE PA-MPJPE

H+M+2D HMR [30] 130.0 76.7 88.0 56.8

H+M+
2D-SPIN [35]

HMR† 98.5 60.9 64.8 43.7
ProHMR [36] - 59.8 - 41.2
PyMAF [67] 92.8 58.9 57.7 40.5

H+M+
2D-EFT [29]

PARE∗ [34] 82.0 50.9 - -
HMR∗† 79.5 48.0 58.8 39.5
PyMAF∗ [66] 78.0 47.1 54.2 37.2
ReFit∗ 71.0 43.9 48.5 32.4

H+M+
3DPW+

2D-EFT [29]

PARE∗ [34] 74.5 46.5 - -
PyMAF∗ [66] 74.2 45.3 - -
HybrIK [37] 74.1 45.0 55.4 33.6
CLIFF∗‡ [38] 73.5 44.3 52.6 35.0
ReFit∗ 65.8 41.0 48.4 32.2

Table 1. Evaluation grouped by training data (H: H36M, M: MPI-
INF-3DHP, 2D-X: 2D datasets with 3D pseudo-gt from method X).
The superscripts denote (∗: using HRNet backbone, †: implementa-
tion from Zhang et al. [66, 67], ‡: our implementation).

Training Architecture 3DPW

MPJPE PA-MPJPE PVE

BEDLAM [7] BEDLAM-CLIFF 72.0 46.6 85.0
ReFit 66.2 43.8 80.1

BEDLAM + Real ReFit 57.6 38.2 67.6

Table 2. Evaluation: with additional synthetic data from BEDLAM.

reprojection to query features, but there is no supervision on
the 2D locations. Using mocap markers produces the best
results, confirming previous studies [45,68] that demonstrate
mocap markers as a good proxy to infer the human body.

Feedback Dropout. We test the effect of dropout in the
feedback step. We see that feedback dropout significantly
boosts accuracy, likely because it prevents co-adaptations
of keypoint signals, and makes the model robust when key-
points are occluded.

Full-frame Adjusted Reprojection. Our result confirms
that using full-frame reprojection for supervision improves
accuracy [38]. The proposed full-frame adjusted model ex-
tends to the feedback step. The best result is achieved when
the camera model is faithful to the full image formation in
all stages of the network.

Feedback Radius. For each keypoint, we query a window
at its reprojection location as the feedback feature. The radius
of the window affects the local context. The motivation is
that the window encodes first-order information to indicate
where the keypoint should move on the 2D image plane.
Overall, we find that r = 3 works well.

Inference Iterations. We train the model with T = 5
update steps during training. At inference time, we test the
model accuracy with various update steps. T = 0 indicates
the initial guess from the backbone. Most previous methods

Experiment Method 3DPW

MPJPE PA-MPJPE

Type of Keypoints
Reprojection

Semantic Keypoints 70.3 42.1
Mocap Markers 65.8 41.0
Sparse Vertices 69.2 41.9

Feedback Dropout
No Dropout 70.2 42.1
p = 0.15 68.5 41.5
p = 0.25 65.8 41.0

Full-frame Adjusted
Reprojection

No Full-frame 70.6 42.6
Only Supervision 68.8 42.5
Supervision+Feedback 65.8 41.0

Feedback Radius
r = 0 68.7 42.4
r = 1 68.6 41.7
r = 3 65.8 41.0

Inference
Iterations

T = 0 73.0 45.0
T = 2 67.6 42.1
T = 5 65.8 41.0
T = 10 66.9 42.0

Update Module One GRU 69.6 42.3
26 GRUs 65.8 41.0

Supervision Last Iteration 70.5 44.3
All Iterations 65.8 41.0

Table 3. Ablation of model designs. The highlighted option is used
for the final model. We detail each experiment in Sec. 4.2.

use 3 steps, corresponding to T = 2 in our case. We see
the benefit of using more update steps. We also observe
that increasing to T = 10 does not cause the estimation to
diverge.

Update Module. We use 26 parallel GRU streams to
predict updates. To test the alternative, we swap out the
26 GRU with one larger GRU with 516 hidden units. This
model has lower accuracy, confirming our hypothesis that
it is beneficial to have separate update operators to learn
separate update rules.

Supervision. We test supervising all iterations against
supervising only the last iteration. Supervising all iterations
achieves higher accuracy, but stopping the gradient across
iterations as stated in Sec. 3.4 is important for stable training.

4.3. Qualitative Evaluation

We show qualitative results on 3DPW in Figure 5. We or-
ganize the results by MPJPE percentile, with X th percentile
indicating higher error than X% of the samples.

Overall, we observe accurate reconstructions with good
alignment to images throughout different percentiles. We
carefully inspect examples at the 99th percentile and find that
most examples have severe occlusions. Occlusion by another
human produces a second level of complexity. We include
more examples in the supplementary.

We provide examples from COCO in Figure 9 that high-
lights the difference between the initial estimation without
refinement (T=0) and the final results from ReFit (T=5).
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30th percentile 60th percentile 90th percentile 99th percentile

Figure 5. Qualitative results from ReFit on 3DPW. Examples are organized by MPJPE percentile. Higher percentile indicates higher error.
For example, samples at the 99th percentile have higher error than 99% of the examples. The MPJPE at the four percentiles are 50.5mm,
65.4mm, 99.3mm and 158.8mm respectively. Samples at the 99th percentile often have severe occlusions or cropping.

Figure 6. Shape ReFit. From left to right are image, ReFit, ReFit
with ground truth shape substitute, and Shape ReFit. White boxes
highlight misalignment if shape is substituted in place.

4.4. Application Evaluation

We evaluate how ReFit performs in the two proposed
applications: Shape ReFit and Multi-view ReFit.

Shape ReFit is more accurate than ReFit, as ground truth
shape is used during the fitting process (Tab 4). Replacing
the final prediction from ReFit with the ground truth shape
(ReFit + gt shape) yields similar pose accuracy. However,
substituting the shape in place produces misalignment to the
image when the predicted shape is noticeably different from
the ground truth, as shown in Figure 6. From the qualitative
examples, we see that Shape ReFit can indeed fit a pre-
acquired shape to its image.

In the multi-view experiments, we run ReFit and Multi-
view ReFit on S9 and S11 from Human3.6M (Tab 5). In
the first baseline, we run ReFit on each view separately
and report the average reconstruction errors. In the second
baseline, we run ReFit on each view separately but average
the final predictions. Averaging the predictions from multiple
views improves the results, particularly in MPJPE, due to a
better global rotation estimation. The proposed multi-view
ReFit produces the best results. The improvement is more
evident in terms of the per-vertex error (PVE), where we see
a 27% improvement over the baseline. In this setting, we

Method
3DPW Human3.6M

MPJPE PA-MPJPE MPJPE PA-MPJPE

ReFit 65.8 41.0 48.4 32.2
ReFit + gt shape 61.7 40.6 41.8 29.8
Shape ReFit 61.7 40.7 44.4 32.1

Table 4. Shape ReFit on 3DPW and Human3.6M. Shape ReFit
(Sec. 3.5) recovers more accurate poses than ReFit. Substituting
shape in place (ReFit + gt shape) has similar accuracy, but produces
misalignment (Fig. 6).

Method
Human3.6M

MPJPE PA-MPJPE PVE

ReFit 52.6 34.9 66.3
ReFit + avg 41.7 29.0 54.4
Multi-view ReFit (5 iters) 38.4 26.6 50.0
Multi-view ReFit (10 iters) 37.5 26.9 48.4

Table 5. Multi-view ReFit on Human3.6M. Per-vertex error (PVE)
is computed with mesh recovered from MoSH [42]. Multi-view Re-
Fit uses multi-view information during fitting, and is more accurate
than simply averaging the predictions (ReFit + avg).

also see the benefit of running for more update iterations,
with 10 iterations slightly better than 5 iterations.

We show qualitative results for Multi-view ReFit in Fig-
ure 7. We compare the results against the mesh recov-
ered using MoSH [42]. Multi-view ReFit produces accu-
rate 3D poses. We further test combining Multi-view with
Shape ReFit. The recovered mesh is very close to MoSH
results. MoSH is a proprietary optimization procedure that
uses multi-view video and localized 3D markers, while our
method only assumes multi-view images and optionally a
pre-fitted shape. This result points to an alternative mocap
procedure, where one can pre-fit the shape to an A-posed
subject with optimization and use Multi-view + Shape ReFit
for motion capture. The result can be used on its own or as
initialization for optimization. A detailed comparison with
MoSH is left for future work.
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Two Views Multi-view ReFit Multi-view + Shape ReFit

Figure 7. Multi-vew ReFit. We show results for 2 of 4 views. In the middle (blue meshes), multi-view ReFit reconstructs accurate poses
compare to the ground truth grey meshes from MoSH [42]. On the right (green meshes), assuming ground truth shapes are pre-fitted and
available, multi-view ReFit produces results that are very close to MoSH.

Figure 8. Per-keypoint feature map. Each channel corresponds to
the learned features of a keypoint. Here we show feature maps from
the semantic keypoint model. The network learns a peak (blue) or
a valley (yellow surrounded by blue) response around the keypoint,
without direct supervision.

4.5. Visualization of Feature Maps

Feature maps from the proposed model are slightly blurry
and harder to visualize, as they have positive and negative
values. We train an alternative model, where we add a ReLU
operator on the feature maps. This modification decreases
the performance slightly, as the feature maps become less
expressive (strictly positive), but makes them easier to visu-
alize. Figure 8 shows examples from the model with ReLU,
and we include more examples from both models in the
supplementary.

We show feature maps from the semantic keypoint model,
as semantic keypoints are more interpretable than markers.
The model learns meaningful features around the correspond-
ing keypoints, often as peaks or valleys. When a keypoint is
reprojected onto the feature map, the peak or valley provides
directional information that helps the next network layer

Figure 9. Refinement in-the-wild. Examples from the coco val-
idation set. From top to bottom are images, predictions without
refinement update (T=0), and predictions from ReFit (T=5).

infer where the keypoint should move on the 2D plane. This
signal, combined with signals from other keypoints, can then
be converted to updates for the 3D pose.

5. Conclusion

We have presented ReFit, the Recurrent Fitting Network
that iteratively fits the parametric human model to images
to recover the pose and shape of people. ReFit mirrors tradi-
tional model fitting, but learns the objective and update rules
from data end-to-end. ReFit utilizes parallel GRU units that
disentangle the learned update rules. Moreover, we demon-
strate ReFit as a learned optimizer for multi-view fitting
and shape fitting. ReFit is efficient to train and achieves
state-of-the-art accuracy in challenging datasets.
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